The Occurrence and Evolution of Arsenic in Aquifers of the Avala Volcanic Complex (Outskirts of Belgrade, Serbia)
Total Page:16
File Type:pdf, Size:1020Kb
GEOLOŠKI ANALI BALKANSKOGA POLUOSTRVA Volume 81 (2), December 2020, 33–48 – https://doi.org/10.2298/GABP200517007P Original scientific paper Оригинални научни рад The occurrence and evolution of arsenic in aquifers of the Avala volcanic complex (outskirts of Belgrade, Serbia) 1 1 AjA 1oZNANović jiL1jANA oPovi ć ANjA 1ETrović MANTiPć Arko PA, hL ić oPrAN Ar, TiNkovi ćP P , D S & G M Abstract. 2 Avala Mountain is accommodated 15 km southward from the city of Belgrade and extends over the area of about 10 km . Avala Mountain is a cultural and historical heritage of Belgrade qualified by the Law on Environ - mental protection. The area is abundant with water springs that have been ex - ploited by tourist facilities and local population. By analyzing groundwater sampled from several springs and wells located in a vicinity of the Avala mag - matic entity here we study the occurrence, concentration and origin of arsenic pollutant. The investigated springs are accommodated within the faulted com - plex of Mesozoic carbonate and clastic sediments, serpentinite, further in - truded by the Tertiary magmatic rocks. By u sing the concentrations of the major and minor components(e.g. Cr, Ni, Fe, Mn) in groundwater, the relation - ship between groundwater and local lithostratigraphic units is outlined. Chemical analysis of the investigated waters shows that arsenic concentration in groundwater of the investigated area is in range from 3.0 to 102.0 μg/l. Ar - senic concentrations over the maximum allowed value in drinking water (10 Key words: μg/l) are detected in more than 55% cases. The occurrence of arsenic in arsenic, groundwater groundwater can be attributed to local igneous rocks, i.e. to the process of ox - aquifer, volcanic complex, Avala. idation of sulphide minerals with As (major or minor presence) – primarily arsenopyrite or pyrite. Groundwater with higher concentration of arsenic (above10 μg/l) is exploited as drinking water used by tourists and by local population. Along term use of the water with high concentration of arsenic im - Аpoпsсeт aр аmкaт jo. r health risk. 2 Планина Авала смештена је 15 km јужно од Београда и простире се на површини од око 10 km . На том простору се налазе неки од каптираних извора и бунара из којих воду употребљавају туристи и локално становништво. У овом раду анализирана је појава, концентра - ција и порекло арсена у подземној води аквифера вулканског комплекса Авале. Њега чини испуцали мезозојски офиолитски комлекс додатно испресецан терцијарним магматитима . Корелације између главних компонената (катјона и анјона ), као и микрокомпонената (као што су Cr, Zn, Ni, Fe, Mn и As) указала је на могућу везу између подземне воде и литостратиграфских јединица. Хемијском анализом утврђено је да је опсег концентрација Аѕ од 3.0–102.0 μg/l. Максимална довољена кон - центрација (10 μg/l) премашена је у 55% испитиваних узорака. 1 Geological Survey of Serbia, Rovinjska 12, 11000 Belgrade, Serbia. E-mail: [email protected] 33 Maja PoznanoVić , L jiLjana PoPoVi ć, Tanja PETRoVić PanTić , D aRko SPahić & G oRan MaRinkoVi ć Кључне речи: арсен, подземна вода, Присуство арсена у испитиваним узорцима може бити пореклом из аквифер вулканског комплекса, локалних магматских стена, односно последица оксидације минерала у Авала . којима је Аѕ главна или споредна компонента (арсенопирит и пирит), чије је присуство доказано у испитиваној области. Дуготрајном свако - дневном употребом подземне воде у којој је доказано присуство Аѕ у концентрацијама изнад 10 μg/l може представљати висок ризик по здравље. Introduction presence and distribution of other elements, or - th ganic mattEeTrr aunšEdv Smkiicrobiological activity in water Arsenic is a chemical halcoth phile and siderophilte h and soil ( P , 2005). element which occupies 20 place in the abundance At moderate or high redox potentials As occurs in the Earth’s crust, being 14 in seawater and 12 as a series of pentavalent (arsenate) oxyanions. in human body. The concentration of As in unpol - however, under most reducing (ac3id– and mildly al - luted fresh waters typically ranges from 1–10 μg/l, kaline) conditions and lower red3ox potential the rising to 100–5000 μth gA/NlD iAnL areausZ uokfi sulfide minerali - trivAaNlDeAnL t arusZeunkiite specieAsr iN(AGEsr o )EpiLrLey dominate zation and mining ( M & S , 2002). With the (M & S , 2002; B & r , 2012). in beginning of the 20 century its concentration be - negative ion forms As adsorbs at positive-charged comes a very important topic, accounting its toxicity surface (e.ugx. TaomN orphous or crysuto al forms of Fe, Mn and carcinogenicity. Namely, a long term exposure oxides) (L et al., 2008; G et al., 2009) and and consummation of waters with the concentra - thus can be removed from aquatic systems. tions ranging > 5uo0 μg/l could be related to skin can - Generally, occurrence of a higher content of As in cer mortality ( G et al., 2009). For this reason, most groundwater is documented in specific geological countries have reduced maximum allowed concen - areas/conditions: in the areas of sulfide mineraliza - trations (MAC) in drinking water by decreasing the tion, geothermal areas, anaerobic aquifers, in arid recommenFdEeiFdE rvalue of Who (1999) from 50 μg/l to and semiarid areas with elevated ph values. in 10 μg/l (P et al., 2002). global scale, high concentration of arsenic in in nature arsenic constitutes many of Earth min - groundwater considers as the major environmental erals occurring either as a dominant or secondary issue. in South Asia (india, Bangla desh, China, viet - element . As a chalcophile element, arsenic occurs in nam, Taiwan), concentration reach es up to 3400 the form of sulphides, arsenides and sulpharsenides μg/l, whereas South America has documented con - of heavy metals. Arsenic2 als3o can occur in the form sidMeErDaLbEly y lower values 300 μg/l (Chile, Argentina) of oxides (arsenolite - As o ), prevalent in oxidizing (S , 2006). jELić zones sulfide-arsenide ore. As a siderophile ele - A clustero voAfN eićarlier TiAnNvieć stigations A(LeM.gA.C, iBA et ment, arsenic appears in the form of arsenopyrite al., 200E6T;r jović & S , 2006; D et al., and sulfides of iron (pyrite, marcasite). 2009; P et al., 2012) indicate that groundwa - The origin of arsenic in groundwater can be nat - ter of Serbia have rather a scattered irregular pat - ural (geological structure, volcanism, erosion) but tern of arsenic concentration. A special attention in also may originate from anthropogenic source (uti - the number of studies is reflecting onto the occur - lization of herbicidEeNs, pesticides, fungicides, fossil rence of arsenic in groundwater of vojvodina ( sedi - fuels, mining, etc., r et al., 2007). Arsenic is redox- mentary) aquifers of Banat and Bačka admi nistrative sensitive element and its presence, distribution, areas. Another source of arsenic in Serbia could be form and mobility in groundwater is the result of a associated with the areas of considerable geother - c34omplex interaction of the several geochemical pa - mal potential, such as LGueokl.o avn.s Bkaalk .b paonlujoas .,s 2p0a20, ,j 8o1š (a2)n, 3ič3–k4a 8 rameters. These parameters include ph, Eh values, banja spa, Bujanovačka banja spa. These spas are The occurrence and evolution of arsenic in aquifers of the Avala volcanic complex (outskirts of Belgrade, Serbia) characterized by documeEnTtreodv imć odAeNrTai ćtely hLiogkho cLioCn A - Mesozoic agglomeration is a product of Late Meso - ceAnNtDraić tions of arsenic ( P -P & Z - zoic-Tertiary magmatic activity associated with the M , 2012). developing and closure of ancient vardar ocean The presence of arsenic within the investigated (NW Neotethys). The investigateodL jaićrea belongs to a, area was detected earlier, documented in several so-called, “Europe sub-basin” ( T et al., 2018). in water springs of Avala Mountain (springs “Sakinac”, the tectonic sense, the investigated segment is actu - “velika česma” and “vranovac”; Fig. 1). The measu - allPyA haicć commAuoDdEaNtyei d within the East vardar Zone red concentrations of arsenic exceed the limit of (S & G Aro,v2ić 019) or the segmCheMniDt of the maximum allowed concentrations (MAC) of arsenic “Sava Zone” ( M et al., 2007; S et al. , in water, according to botohZ,N tAhNeo dvoić mestoicP oavnidć foreign 2008). The oldest rock system outcropping is rep - regulations (10 μg/l) ( P & P , 2009). resented by the oopLjhićiolite-bearoiLnjigć system of jurassic in this study, the concentration fluctuations of As serpentinites ( T , 1995; T et al., 2018) scat - were observed during the period May–September tered over the eastern and southern section of this 2008. The results of the observations suggested that lower-latitude mountain (Fig. 1). The exposed there are almost insignificant variations in the mea - oceanic litho sphere of the Avala Mt. system is strati - sured concentrations. Therefore, a possible dilution graphically succeeded by the interchange of deep- due to the mixing of infiltrated atmospheric waters water flysch-like marine conditions of Lower in the short time has no effect on arsenic concentra - Cretaceous age. This sequence is succeeded by an - tions. in order to determine the oxidation state of other, this time dominant flysch-bearingo Lsjyićstems of arsenic of this groundwater, the samopZNleAs N woveićre ana - upper Cretaceous–Paleogene age ( T et al., lyzed by stripping voltammetry ( P et al., 2018). This pre- Tertiary Neotethyan tectonomag - 2009). The analysis corroborated that a dominant matic agglome ration is penetrated