Orbital Debris: a Chronology

Total Page:16

File Type:pdf, Size:1020Kb

Orbital Debris: a Chronology NASA/TP-1999-208856 January 1999 Orbital Debris: A Chronology David S. F. Portree Joseph P. Loftus, Jr. The NASA STI Program Office . in Profile Since its founding, NASA has been dedicated to • CONFERENCE PUBLICATION. Collected the advancement of aeronautics and space papers from scientific and technical science. The NASA Scientific and Technical conferences, symposia, seminars, or other Information (STI) Program Office plays a key part meetings sponsored or cosponsored by in helping NASA maintain this important role. NASA. The NASA STI Program Office is operated by • SPECIAL PUBLICATION. Scientific, Langley Research Center, the lead center for technical, or historical information from NASA’s scientific and technical information. NASA programs, projects, and mission, often The NASA STI Program Office provides access concerned with subjects having substantial to the NASA STI Database, the largest collection public interest. of aeronautical and space science STI in the world. The Program Office is also NASA’s • TECHNICAL TRANSLATION. institutional mechanism for disseminating the English-language translations of foreign results of its research and development activities. scientific and technical material pertinent to These results are published by NASA in the NASA’s mission. NASA STI Report Series, which includes the following report types: Specialized services that complement the STI Program Office’s diverse offerings include • TECHNICAL PUBLICATION. Reports of creating custom thesauri, building customized completed research or a major significant databases, organizing and publishing research phase of research that present the results of results . even providing videos. NASA programs and include extensive data or theoretical analysis. Includes compilations For more information about the NASA STI of significant scientific and technical data and Program Office, see the following: information deemed to be of continuing reference value. NASA’s counterpart of peer- • Access the NASA STI Program Home Page at reviewed formal professional papers but has http://www.sti.nasa.gov less stringent limitations on manuscript length and extent of graphic presentations. • E-mail your question via the Internet to [email protected] • TECHNICAL MEMORANDUM. Scientific and technical findings that are preliminary or • Fax your question to the NASA Access Help of specialized interest, e.g., quick release Desk at (301) 621-0134 reports, working papers, and bibliographies that contain minimal annotation. Does not • Telephone the NASA Access Help Desk at contain extensive analysis. (301) 621-0390 • CONTRACTOR REPORT. Scientific and • Write to: technical findings by NASA-sponsored NASA Access Help Desk contractors and grantees. NASA Center for AeroSpace Information 7121 Standard Hanover, MD 21076-1320 NASA/TP-1999-208856 January 1999 Orbital Debris: A Chronology David S. F. Portree Houston, Texas Joseph P. Loftus, Jr Lyndon B. Johnson Space Center Houston, Texas David S. F. Portree is a freelance writer working in Houston, Texas ii Contents List of Figures ................................................................................................................ iv Preface ........................................................................................................................... v Acknowledgments ......................................................................................................... vii Acronyms and Abbreviations ........................................................................................ ix The Chronology ............................................................................................................. 1 1961 ......................................................................................................................... 4 1962 ......................................................................................................................... 5 1963 ......................................................................................................................... 5 1964 ......................................................................................................................... 6 1965 ......................................................................................................................... 6 1966 ......................................................................................................................... 7 1967 ......................................................................................................................... 8 1968 ......................................................................................................................... 9 1969 ......................................................................................................................... 10 1970 ......................................................................................................................... 10 1971 ......................................................................................................................... 11 1972 ......................................................................................................................... 14 1973 ......................................................................................................................... 17 1974 ......................................................................................................................... 18 1975 ......................................................................................................................... 19 1976 ......................................................................................................................... 21 1977 ......................................................................................................................... 23 1978 ......................................................................................................................... 25 1979 ......................................................................................................................... 27 1980 ......................................................................................................................... 31 1981 ......................................................................................................................... 33 1982 ......................................................................................................................... 36 1983 ......................................................................................................................... 41 1984 ......................................................................................................................... 43 1985 ......................................................................................................................... 45 1986 ......................................................................................................................... 48 1987 ......................................................................................................................... 52 1988 ......................................................................................................................... 55 1989 ......................................................................................................................... 59 1990 ......................................................................................................................... 63 1991 ......................................................................................................................... 70 1992 ......................................................................................................................... 77 1993 ......................................................................................................................... 89 1994 ......................................................................................................................... 98 1995 ......................................................................................................................... 103 1996 ......................................................................................................................... 111 1997 ......................................................................................................................... 121 1998 ......................................................................................................................... 137 Appendix 1 .................................................................................................................... 139 Appendix 2 .................................................................................................................... 142 Index ............................................................................................................................. 149 iii List of Figures Figure Page 1. Rate that a Catalogued Object is Expected to Pass within 100 yards of an Orbiting Spacecraft. .................................................... 2 2. Number of Objects in Low Earth Orbit as Estimated by Various Measurements. .............................................................................. 3 3. Gabbard diagram.............................................................................................. 13 4. Whipple Bumper. ............................................................................................
Recommended publications
  • The Start of the Manned Space Race by Andrew J
    The Start of the Manned Space Race by Andrew J. LePage November 1998 Introduction of Sputnik 1 and 2 in October and November of 1957 changed everything. At the same time NACA and the USAF were studying manned spaceflight (see The Beginnings of The first Sputnik launches were to affect the manned America's Man in Space Program in the October space program in several ways. The impact the 1998 issue of SpaceViews), comparable efforts were launch of Sputnik 1 had on the West led Soviet quietly taking place independently in the Soviet Primer Nikita Khrushchev to exploit space missions Union . As with virtually every other aspect of the for their propaganda value. Development of more Soviet Union's early space program, Chief Designer advanced and spectacular missions like the manned Sergei P. Korolev and his OKB-1 (Experimental satellite program were immediately approved and Design Bureau No. 1) lead the way. All during the placed on the fast track. Also at the insistence of 1950s when Korolev and his colleague, Mikhail K. Khrushchev, Sputnik 2 was launched with a dog on Tikhonravov of NII-4 (Scientific Research Institute board. While thermal control problems marred the No. 4), were pushing their original Earth satellite mission, it did demonstrate that weightlessness would proposal, it also included plans to send probes to the not be a major hazard for a human (see Sputnik 2: Moon and men into orbit. When the satellite The First Animal in Space in the November 1997 proposal was finally adopted by the Soviet issue of SpaceViews). As a result, Korolev scrapped government on January 30, 1956, the lunar probe and his initial, more conservative approach and moved manned satellite projects were also given the green ahead with a much more aggressive plan.
    [Show full text]
  • Information Summaries
    TIROS 8 12/21/63 Delta-22 TIROS-H (A-53) 17B S National Aeronautics and TIROS 9 1/22/65 Delta-28 TIROS-I (A-54) 17A S Space Administration TIROS Operational 2TIROS 10 7/1/65 Delta-32 OT-1 17B S John F. Kennedy Space Center 2ESSA 1 2/3/66 Delta-36 OT-3 (TOS) 17A S Information Summaries 2 2 ESSA 2 2/28/66 Delta-37 OT-2 (TOS) 17B S 2ESSA 3 10/2/66 2Delta-41 TOS-A 1SLC-2E S PMS 031 (KSC) OSO (Orbiting Solar Observatories) Lunar and Planetary 2ESSA 4 1/26/67 2Delta-45 TOS-B 1SLC-2E S June 1999 OSO 1 3/7/62 Delta-8 OSO-A (S-16) 17A S 2ESSA 5 4/20/67 2Delta-48 TOS-C 1SLC-2E S OSO 2 2/3/65 Delta-29 OSO-B2 (S-17) 17B S Mission Launch Launch Payload Launch 2ESSA 6 11/10/67 2Delta-54 TOS-D 1SLC-2E S OSO 8/25/65 Delta-33 OSO-C 17B U Name Date Vehicle Code Pad Results 2ESSA 7 8/16/68 2Delta-58 TOS-E 1SLC-2E S OSO 3 3/8/67 Delta-46 OSO-E1 17A S 2ESSA 8 12/15/68 2Delta-62 TOS-F 1SLC-2E S OSO 4 10/18/67 Delta-53 OSO-D 17B S PIONEER (Lunar) 2ESSA 9 2/26/69 2Delta-67 TOS-G 17B S OSO 5 1/22/69 Delta-64 OSO-F 17B S Pioneer 1 10/11/58 Thor-Able-1 –– 17A U Major NASA 2 1 OSO 6/PAC 8/9/69 Delta-72 OSO-G/PAC 17A S Pioneer 2 11/8/58 Thor-Able-2 –– 17A U IMPROVED TIROS OPERATIONAL 2 1 OSO 7/TETR 3 9/29/71 Delta-85 OSO-H/TETR-D 17A S Pioneer 3 12/6/58 Juno II AM-11 –– 5 U 3ITOS 1/OSCAR 5 1/23/70 2Delta-76 1TIROS-M/OSCAR 1SLC-2W S 2 OSO 8 6/21/75 Delta-112 OSO-1 17B S Pioneer 4 3/3/59 Juno II AM-14 –– 5 S 3NOAA 1 12/11/70 2Delta-81 ITOS-A 1SLC-2W S Launches Pioneer 11/26/59 Atlas-Able-1 –– 14 U 3ITOS 10/21/71 2Delta-86 ITOS-B 1SLC-2E U OGO (Orbiting Geophysical
    [Show full text]
  • L AUNCH SYSTEMS Databk7 Collected.Book Page 18 Monday, September 14, 2009 2:53 PM Databk7 Collected.Book Page 19 Monday, September 14, 2009 2:53 PM
    databk7_collected.book Page 17 Monday, September 14, 2009 2:53 PM CHAPTER TWO L AUNCH SYSTEMS databk7_collected.book Page 18 Monday, September 14, 2009 2:53 PM databk7_collected.book Page 19 Monday, September 14, 2009 2:53 PM CHAPTER TWO L AUNCH SYSTEMS Introduction Launch systems provide access to space, necessary for the majority of NASA’s activities. During the decade from 1989–1998, NASA used two types of launch systems, one consisting of several families of expendable launch vehicles (ELV) and the second consisting of the world’s only partially reusable launch system—the Space Shuttle. A significant challenge NASA faced during the decade was the development of technologies needed to design and implement a new reusable launch system that would prove less expensive than the Shuttle. Although some attempts seemed promising, none succeeded. This chapter addresses most subjects relating to access to space and space transportation. It discusses and describes ELVs, the Space Shuttle in its launch vehicle function, and NASA’s attempts to develop new launch systems. Tables relating to each launch vehicle’s characteristics are included. The other functions of the Space Shuttle—as a scientific laboratory, staging area for repair missions, and a prime element of the Space Station program—are discussed in the next chapter, Human Spaceflight. This chapter also provides a brief review of launch systems in the past decade, an overview of policy relating to launch systems, a summary of the management of NASA’s launch systems programs, and tables of funding data. The Last Decade Reviewed (1979–1988) From 1979 through 1988, NASA used families of ELVs that had seen service during the previous decade.
    [Show full text]
  • Soviet Steps Toward Permanent Human Presence in Space
    SALYUT: Soviet Steps Toward Permanent Human Presence in Space December 1983 NTIS order #PB84-181437 Recommended Citation: SALYUT: Soviet Steps Toward Permanent Human Presence in Space–A Technical Mere- orandum (Washington, D. C.: U.S. Congress, Office of Technology Assessment, OTA- TM-STI-14, December 1983). Library of Congress Catalog Card Number 83-600624 For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 Foreword As the other major spacefaring nation, the Soviet Union is a subject of interest to the American people and Congress in their deliberations concerning the future of U.S. space activities. In the course of an assessment of Civilian Space Stations, the Office of Technology Assessment (OTA) has undertaken a study of the presence of Soviets in space and their Salyut space stations, in order to provide Congress with an informed view of Soviet capabilities and intentions. The major element in this technical memorandum was a workshop held at OTA in December 1982: it was the first occasion when a significant number of experts in this area of Soviet space activities had met for extended unclassified discussion. As a result of the workshop, OTA prepared this technical memorandum, “Salyut: Soviet Steps Toward Permanent Human Presence in Space. ” It has been reviewed extensively by workshop participants and others familiar with Soviet space activities. Also in December 1982, OTA wrote to the U. S. S. R.’s Ambassador to the United States Anatoliy Dobrynin, requesting any information concerning present and future Soviet space activities that the Soviet Union judged could be of value to the OTA assess- ment of civilian space stations.
    [Show full text]
  • 2019 Nano/Microsatellite Market Forecast, 9Th Edition
    2019 NANO/MICROSATELLITE MARKET FORECAST, 9TH EDITION Copyright 2018, SpaceWorks Enterprises, Inc. (SEI) APPROVED FOR PUBLIC RELEASE. SPACEWORKS ENTERPRISES, INC., COPYRIGHT 2018. 1 Since 2008, SpaceWorks has actively monitored companies and economic activity across both the satellite and launch sectors 0 - 50 kg 50 - 250kg 250 - 1000kg 1000 - 2000kg 2000kg+ Custom market assessments are available for all mass classes NANO/MICROSATELLITE DEFINITION Picosatellite Nanosatellite Microsatellite Small/Medium Satellite (0.1 – 0.99 kg) (1 – 10 kg) (10 – 100 kg) (100 – 1000 kg) 0 kg 1 kg 10 kg 100 kg 1000 kg This report bounds the upper range of interest in microsatellites at 50 kg given the relatively large amount of satellite development activity in the 1 – 50 kg range FORECASTING METHODOLOGY SpaceWorks’ proprietary Launch Demand Database (LDDB) Downstream serves as the data source for all satellite market Demand assessments ▪ Planned The LDDB is a catalogue of over 10,000+ historical and Constellations future satellites containing both public and non-public (LDDB) satellite programs Launch Supply SpaceWorks newly updated Probabilistic Forecast Model (PFM) is used to generate future market potential SpaceWorks PFM Model ▪ The PFM considers down-stream demand, announced/planed satellite constellations, and supply-side dynamics, among other relevant factors Expert Analysis The team of expert industry analysts at SpaceWorks SpaceWorks further interprets and refines the PFM results to create Forecast accurate market forecasts Methodology at a Glance 2018 SpaceWorks forecasted 2018 nano/microsatellite launches with unprecedented accuracy – actual satellites launched amounted to just 5% below our analysts’ predictions. In line with SpaceWorks’ expectations, the industry corrected after a record launch year in 2017, sending 20% less nano/microsatellites to orbit than in 2018.
    [Show full text]
  • The Soviet Space Program
    C05500088 TOP eEGRET iuf 3EEA~ NIE 11-1-71 THE SOVIET SPACE PROGRAM Declassified Under Authority of the lnteragency Security Classification Appeals Panel, E.O. 13526, sec. 5.3(b)(3) ISCAP Appeal No. 2011 -003, document 2 Declassification date: November 23, 2020 ifOP GEEAE:r C05500088 1'9P SloGRET CONTENTS Page THE PROBLEM ... 1 SUMMARY OF KEY JUDGMENTS l DISCUSSION 5 I. SOV.IET SPACE ACTIVITY DURING TfIE PAST TWO YEARS . 5 II. POLITICAL AND ECONOMIC FACTORS AFFECTING FUTURE PROSPECTS . 6 A. General ............................................. 6 B. Organization and Management . ............... 6 C. Economics .. .. .. .. .. .. .. .. .. .. .. ...... .. 8 III. SCIENTIFIC AND TECHNICAL FACTORS ... 9 A. General .. .. .. .. .. 9 B. Launch Vehicles . 9 C. High-Energy Propellants .. .. .. .. .. .. .. .. .. 11 D. Manned Spacecraft . 12 E. Life Support Systems . .. .. .. .. .. .. .. .. 15 F. Non-Nuclear Power Sources for Spacecraft . 16 G. Nuclear Power and Propulsion ..... 16 Te>P M:EW TCS 2032-71 IOP SECl<ET" C05500088 TOP SECRGJ:. IOP SECREI Page H. Communications Systems for Space Operations . 16 I. Command and Control for Space Operations . 17 IV. FUTURE PROSPECTS ....................................... 18 A. General ............... ... ···•· ................. ····· ... 18 B. Manned Space Station . 19 C. Planetary Exploration . ........ 19 D. Unmanned Lunar Exploration ..... 21 E. Manned Lunar Landfog ... 21 F. Applied Satellites ......... 22 G. Scientific Satellites ........................................ 24 V. INTERNATIONAL SPACE COOPERATION ............. 24 A. USSR-European Nations .................................... 24 B. USSR-United States 25 ANNEX A. SOVIET SPACE ACTIVITY ANNEX B. SOVIET SPACE LAUNCH VEHICLES ANNEX C. SOVIET CHRONOLOGICAL SPACE LOG FOR THE PERIOD 24 June 1969 Through 27 June 1971 TCS 2032-71 IOP SLClt~ 70P SECRE1- C05500088 TOP SEGR:R THE SOVIET SPACE PROGRAM THE PROBLEM To estimate Soviet capabilities and probable accomplishments in space over the next 5 to 10 years.' SUMMARY OF KEY JUDGMENTS A.
    [Show full text]
  • The Rae Table of Earth Satellites 1957-1986 the Rae Table Ofearth Satellites
    THE RAE TABLE OF EARTH SATELLITES 1957-1986 THE RAE TABLE OFEARTH SATELLITES 1957-1986 compiled at The Royal Aircraft Establishment, Famborough, Hants, England by D.G. King-Dele, FRS, D.M.C. Walker, PhD, J.A. Pilkington, BSc, A.N. Winterbottom, H. Hiller, BSc and G.E. Perry, MBE The Table is a chronological list of the 2869 launches of satellites and space vehicles between 1957 and the end of 1986, giving the name and international designation of each satellite and its associated rocket(s), with the date of launch, lifetime (actual or estimated), mass, shape, dimensions and at least one set of orbital parameters. Other fragments associated with a launch, and space vehicles that escape from the Earth's influence, are given without details. Including fragments, more than 17000 satellites appear in the 893 pages of the tabulation, and there is a full Index. M TOCKTON S P R E S S © Crown copyright 1981, 1983, 1987 Softcover reprint of the hardcover 3rd edition 1987 978-0-333-39275-1 Published by permission of the Controller of Her Majesty's Stationery Office. All rights reserved. No part of this publication may be reproduced, or transmitted, in any form or by any means, without permission. Published in the United States and Canada by STOCKTON PRESS, 1987 15 East 26th Street, New York, N.Y. 10010 Library of Congress Cataloging-in-Publication Data The R.A.E. table of earth satellites, 1957-1986. Rev. ed. of: The RAE table of earth satellites, 1957- 1980. 2nd ed. 1981. 1. Artificial satellites- Registers.
    [Show full text]
  • The New Commercial Spaceports
    The New Commercial Spaceports Derek Webber1 Spaceport Associates, Rockville, Maryland 20852,USA During the second half of the 20th Century, the first launch sites were established, mostly during the ‘fifties and ‘sixties. They were originally a product of the cold war and served military and civil government purposes. They were used for launching sounding rockets, space probes, for missile testing and injecting military, scientific, and eventually commercial satellites into orbit. Initially the sites were in either the USA or the former Soviet Union, but gradually they were introduced in other countries too. Governmental astronaut crews were also sent into orbit from these early launch sites. As the 21st Century begins, a new era is emerging where a fuller range of commercial missions will be undertaken and moreover where public space travel will become common place. This situation ushers in a new kind of launch facility, known as the commercial spaceport. I. Introduction here will be vastly different requirements for the future public space travelers, and their families and friends, T than are normally available at the traditional launch sites built fifty years ago. Indeed, the creation of this emerging kind of facility, the commercial spaceport, is in some ways a very necessary part of the creation of the new space businesses that the twenty-first century offers. It will be essential that, while the space tourism companies are becoming established in order to provide services to the new public space travelers, suitable ground based facilities will be developed in parallel to sustain and support these operations. This paper provides an insight into these commercial spaceport facilities, and their characteristics, in order to assist in both design and business planning processes.
    [Show full text]
  • Quarterly Launch Report
    Commercial Space Transportation QUARTERLY LAUNCH REPORT Featuring the launch results from the previous quarter and forecasts for the next two quarters. 1st Quarter 1997 U n i t e d S t a t e s D e p a r t me n t o f T r a n sp o r t a t i o n • F e d e r a l A v i a t io n A d m in i st r a t i o n A s so c i a t e A d mi n is t r a t o r f o r C o mm e r c ia l S p a c e T r a n s p o r t a t io n QUARTERLY LAUNCH R EPORT 1 1ST QUARTER 1997 R EPORT Objectives This report summarizes recent and scheduled worldwide commercial, civil, and military orbital space launch events. Scheduled launches listed in this report are vehicle/payload combinations that have been identified in open sources, including industry references, company manifests, periodicals, and government documents. Note that such dates are subject to change. This report highlights commercial launch activities, classifying commercial launches as one or more of the following: • Internationally competed launch events (i.e., launch opportunities considered available in principle to competitors in the international launch services market), • Any launches licensed by the Office of the Associate Administrator for Commercial Space Transportation of the Federal Aviation Administration under U.S. Code Title 49, Section 701, Subsection 9 (previously known as the Commercial Space Launch Act), and • Certain European launches of post, telegraph and telecommunications payloads on Ariane vehicles.
    [Show full text]
  • 7Th European Conference on Space Debris
    JBIS Journal of the British Interplanetary Society VOL. 70 No. 2/3/4 FEBRUARY/MARCH/APRIL 2017 Contents 7TH EUROPEAN CONFERENCE ON SPACE DEBRIS Temporal Analysis of ENVISAT’s Rotational Motion Debris Attitude Motion Measurements and Modelling by Combining Different Observation Techniques Assessment of Post-Manoeuvre Observation Correlation Using Short-Arc Tracklets Optical Measurements Association Using Optimized Boundary Value Initial Orbit Determination Coupled with Markov Clustering Algorithm Method of Predicting and Processing Breakups of Space Objects GESTRA-Technology Aspects and Mode Design for Space Surveillance and Tracking Information-Theoretic Approaches to Space Object Collision Risk Induced by the Uncatalogued Space Debris Population in the Presence of Large Constellations Sensitivity of the Space Debris Environment to Large Constellations and Small Satellites Status of the Space Environment: Current Level of Adherence to the Space Debris Mitigation Fast Re-Entry Deorbitation with Acceptable Risk Level Architecture and First Achievements of a Simulation for the Approach of an Uncooperative Target E.Deorbit - ESA’s Active Debris Removal Mission Airbus DS Vision Based Navigation Solutions Tested on LIRIS Experiment Data ISSN 0007-084X www.bis-space.com Publication Date: 15 August 2017 GUEST EDITOR International Advisory Board Dr Holger Krag, ESA DEPUTY EDITOR Rachel Armstrong, Newcastle University, UK Duncan Law-Green Peter Bainum, Howard University, USA ASSOCIATE EDITORS Stephen Ashworth Stephen Baxter, Science & Science Fiction Writer, UK Keith Cooper Stephen Gamble James Benford, Microwave Sciences, California, USA Paul Gilster Rob Swinney James Biggs, The University of Strathclyde, UK PRODUCTION ASSISTANT Anu Bowman, Foundation for Enterprise Development, California, USA B. Jones Gerald Cleaver, Baylor University, USA PROMOTION G.
    [Show full text]
  • Deep Space Chronicle Deep Space Chronicle: a Chronology of Deep Space and Planetary Probes, 1958–2000 | Asifa
    dsc_cover (Converted)-1 8/6/02 10:33 AM Page 1 Deep Space Chronicle Deep Space Chronicle: A Chronology ofDeep Space and Planetary Probes, 1958–2000 |Asif A.Siddiqi National Aeronautics and Space Administration NASA SP-2002-4524 A Chronology of Deep Space and Planetary Probes 1958–2000 Asif A. Siddiqi NASA SP-2002-4524 Monographs in Aerospace History Number 24 dsc_cover (Converted)-1 8/6/02 10:33 AM Page 2 Cover photo: A montage of planetary images taken by Mariner 10, the Mars Global Surveyor Orbiter, Voyager 1, and Voyager 2, all managed by the Jet Propulsion Laboratory in Pasadena, California. Included (from top to bottom) are images of Mercury, Venus, Earth (and Moon), Mars, Jupiter, Saturn, Uranus, and Neptune. The inner planets (Mercury, Venus, Earth and its Moon, and Mars) and the outer planets (Jupiter, Saturn, Uranus, and Neptune) are roughly to scale to each other. NASA SP-2002-4524 Deep Space Chronicle A Chronology of Deep Space and Planetary Probes 1958–2000 ASIF A. SIDDIQI Monographs in Aerospace History Number 24 June 2002 National Aeronautics and Space Administration Office of External Relations NASA History Office Washington, DC 20546-0001 Library of Congress Cataloging-in-Publication Data Siddiqi, Asif A., 1966­ Deep space chronicle: a chronology of deep space and planetary probes, 1958-2000 / by Asif A. Siddiqi. p.cm. – (Monographs in aerospace history; no. 24) (NASA SP; 2002-4524) Includes bibliographical references and index. 1. Space flight—History—20th century. I. Title. II. Series. III. NASA SP; 4524 TL 790.S53 2002 629.4’1’0904—dc21 2001044012 Table of Contents Foreword by Roger D.
    [Show full text]
  • GEMINI MANNED FLIGHT PROGRAM to DATE by LT
    GEMINI MANNED FLIGHT PROGRAM TO DATE bY LT. COL. JAMES A. McDIVITT, USAF (M) Astronaut - NASA/MSC NEIL A. ARMSTRONG Astronaut - NASA/MSC SHEPARD: We'd like to talk during this part of the presentation aboui the Gemini program and tu give you a current status report on the last three flights which we have completed this year. A few days ago, a Marine colleague of mine and I were having a discussion in the control center at Houston. This Marine colleague is now a soft drink salesman but he happened to be there for the occasion of the receni eight-day mission which we completed. We were discussing a flight which occurred in May of 1961. The flight plan indicated so many seconds of control and rate command, SO many seconds of control in manual, so many seconds to look out the window, so many seconds for this, so many seconds for that, a completely chalked full flight plan. In the meantime on the control center floor discussion was going on between the ground and the pilots and they were saying "well if we don't get this thing done Tuesday we can do it Thursday." We have two gentlemen here to present the last part of this session for you. I could spend a great deal of time introducing both of them. They both have wide experience, varied backgrounds, with emphasis of course in the aero- space and aeronautical professions. They both I think are fairly well known to you so I won't take too much time in enumerating the many accomplishments which they have achieved to date.
    [Show full text]