Crawford, Niall Alexander (2016) the Biomechanics of Tree Frog Adhesion Under Challenging Conditions

Total Page:16

File Type:pdf, Size:1020Kb

Crawford, Niall Alexander (2016) the Biomechanics of Tree Frog Adhesion Under Challenging Conditions Crawford, Niall Alexander (2016) The biomechanics of tree frog adhesion under challenging conditions. PhD thesis http://theses.gla.ac.uk/7102/ Copyright and moral rights for this thesis are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given. Glasgow Theses Service http://theses.gla.ac.uk/ [email protected] The Biomechanics of tree frog adhesion under challenging conditions Niall Alexander Crawford (MRes) This thesis is submitted for the degree of Doctor of Philosophy February 2016 Centre for Cell Engineering College of Medical, Veterinary and Life Sciences 2 Abstract Tree frogs have evolved specialised toe pads which allow them to efficiently climb vertical surfaces. The toe pad stick by using ‘wet adhesion’ – a combination of forces produced by a thin layer of fluid between the pad and the surface which provide temporary adhesion to allow quick attachment and detachment for climbing. Most studies on tree frogs have been based on their adhesive capabilities on surfaces which are flat, clean and dry (usually glass). However, climbing tree frogs in the wild will come across a variety of surfaces which could affect their adhesive abilities. This PhD investigated whether tree frog adhesion is affected by various ‘challenging’ surfaces, which reflect conditions that tree frogs may encounter whilst climbing. These include rough surfaces, wet conditions, surfaces with loose particulate and hydrophobic surfaces. Experiments were predominantly conducted using a force transducer to measure adhesive and frictional forces of single toe pads, as well as whole animal attachment experiments involving a rotating tilting board. The toe pads of tree frogs were shown to possess a self-cleaning mechanism, whereby the pads will remove contaminants (and subsequently recover adhesive forces) through repeated use, thanks to shear movements of the pad and the presence of pad fluid which aids contaminant deposition. To investigate how torrent frogs (frogs which inhabit waterfalls) can adhere to rough and flooded surfaces, the performance of torrent frogs species Staurois guttatus was compared to a tree frog species (Rhacophorus pardalis). Torrent frogs could produce higher adhesive forces than tree frogs with their toe pads, and possess a specialised toe pad morphology (directional fluid channels on the pad periphery) which may contribute to better performance in flooded conditions. Torrent frogs utilise large areas of ventral skin to stay attached on overhanging surfaces, while tree frogs display a reduction in contact area resulting in a failure to stay attached. This combination of ability and behaviour 3 will help torrent frogs to stay attached on the rough and flooded surfaces that make up their waterfall habitat. On rough surfaces, tree frogs showed improved (compared to smooth surface performance) performance on smaller scale roughness (asperity size <10 µm), and poorer performance on the larger scale roughnesses tested (30 – 425 µm). Interference reflection microscopy (IRM) revealed that larger asperities result in pad fluid being unable to fill the larger gaps of such surfaces, which was confirmed by adding water to rough surfaces to improve attachment performance. The soft pad does however aid in conforming to some rough surfaces, which could account for the better performance on the smaller scale roughness. Many plant surfaces exhibit hydrophobic properties, and so the adhesive performance of tree frogs on hydrophobic surfaces was compared to that on hydrophilic surfaces. It was found that the toe pads could produce similar adhesive and frictional forces on both surfaces. The pad fluids contact angles were then measured on hydrophobic surfaces using IRM, where droplets of pad fluid formed lower contact angles (and are therefore exhibiting higher wettability) than water. Though the exact composition of pad fluid is unknown, some form of surfactant must be present which aids wetting of surfaces (either a surface modification or detergent present in the fluid) to allow wet adhesion to occur - goniometer experiments of water on dried footprints on hydrophobic surfaces confirmed this. The ability to stick in a variety of conditions could provide inspiration for ‘smart’ adhesives, which mimic the adaptable adhesion of tree frog toe pads. 4 Table of Contents 1. General Introduction ......................................................................... 12 1.1 Advantages to climbing .................................................................... 13 1.2 Climbing with adhesive pads ............................................................. 13 1.2.1 Dry adhesion ........................................................................... 15 1.2.2 Wet adhesion .......................................................................... 18 1.2.3 Adhesion in insects and spiders ..................................................... 21 1.2.4 Adhesion in tree frogs ................................................................ 23 1.3 Challenges for adhesive pads ............................................................. 26 1.3.1 Fast, effortless detachment ......................................................... 27 1.3.2 Self-cleaning properties of adhesive pads ......................................... 29 1.3.3 Sticking under wet conditions ....................................................... 30 1.3.4 Adhesion to rough surfaces .......................................................... 31 1.4 Bioinspiration ............................................................................... 34 1.5 Aims of this thesis .......................................................................... 36 2. General Materials and Methods ............................................................. 37 2.1 Introduction – adhesion measuring techniques ........................................ 38 2.1.1 Whole animal force measurement techniques .................................... 38 2.1.2 Smaller scale force measurements ................................................. 39 2.2 Materials and methods .................................................................... 41 2.2.1 Frog species and care ................................................................ 41 2.2.2 Whole animal experimentation methods .......................................... 42 2.2.3 Single toe pad experimentation methods ......................................... 45 2.3 Conclusions .................................................................................. 48 3. Evidence of self-cleaning in the adhesive toe pads of tree frogs .................... 49 3.1 Introduction ................................................................................. 50 3.2 Materials and methods .................................................................... 52 3.2.1 Study animals .......................................................................... 52 3.2.2 Contamination ......................................................................... 52 3.2.3 Force measurements ................................................................. 53 3.2.4 Statistics ................................................................................ 55 3.3 Results ....................................................................................... 56 3.3.1 Single toe pad force recovery ....................................................... 56 3.3.2 Contact area and bead deposition .................................................. 58 3.4 Discussion ................................................................................... 61 3.4.1 Occurrence of self-cleaning ......................................................... 61 3.4.2 Mechanisms of self-cleaning in tree frogs ......................................... 64 5 3.4.3 Comparisons with other animals .................................................... 65 3.4.4 Biomimetic implications ............................................................. 66 4. The attachment abilities of torrent frogs on rough and wet surfaces .............. 68 4.1 Introduction ................................................................................. 69 4.2 Materials and methods .................................................................... 71 4.2.1 Experiments from 2010 study ....................................................... 71 4.2.2 Study animals and location .......................................................... 73 4.2.3 Force measurements ................................................................. 75 4.2.4 Morphology investigation using SEM ................................................ 76 4.2.5 Statistics ............................................................................... 76 4.3 Results ....................................................................................... 77 4.3.1 Force measurements of toe pads, belly and thigh skin .......................... 77 4.3.2 Skin morphology ....................................................................... 79 4.4 Discussion ..................................................................................
Recommended publications
  • A Review of Natural Joint Systems and Numerical Investigation of Bio-Inspired GFRP-To-Steel Joints
    materials Article A Review of Natural Joint Systems and Numerical Investigation of Bio-Inspired GFRP-to-Steel Joints Evangelos I. Avgoulas and Michael P. F. Sutcliffe * Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK; [email protected] * Correspondence: [email protected]; Tel.: +44-1223-332-996 Academic Editor: Frank Müller Received: 25 April 2016; Accepted: 1 July 2016; Published: 12 July 2016 Abstract: There are a great variety of joint types used in nature which can inspire engineering joints. In order to design such biomimetic joints, it is at first important to understand how biological joints work. A comprehensive literature review, considering natural joints from a mechanical point of view, was undertaken. This was used to develop a taxonomy based on the different methods/functions that nature successfully uses to attach dissimilar tissues. One of the key methods that nature uses to join dissimilar materials is a transitional zone of stiffness at the insertion site. This method was used to propose bio-inspired solutions with a transitional zone of stiffness at the joint site for several glass fibre reinforced plastic (GFRP) to steel adhesively bonded joint configurations. The transition zone was used to reduce the material stiffness mismatch of the joint parts. A numerical finite element model was used to identify the optimum variation in material stiffness that minimises potential failure of the joint. The best bio-inspired joints showed a 118% increase of joint strength compared to the standard joints. Keywords: natural joints; adhesive joints; biomimetics; bio-inspiration; composites 1. Introduction In recent years, the use of composite materials in automotive and aerospace industries has shown an upward trend due to their good stiffness-to-weight (E/r) and strength-to-weight (s/r) ratios.
    [Show full text]
  • Chrysomela 43.10-8-04
    CHRYSOMELA newsletter Dedicated to information about the Chrysomelidae Report No. 43.2 July 2004 INSIDE THIS ISSUE Fabreries in Fabreland 2- Editor’s Page St. Leon, France 2- In Memoriam—RP 3- In Memoriam—JAW 5- Remembering John Wilcox Statue of 6- Defensive Strategies of two J. H. Fabre Cassidine Larvae. in the garden 7- New Zealand Chrysomelidae of the Fabre 9- Collecting in Sholas Forests Museum, St. 10- Fun With Flea Beetle Feces Leons, France 11- Whither South African Cassidinae Research? 12- Indian Cassidinae Revisited 14- Neochlamisus—Cryptic Speciation? 16- In Memoriam—JGE 16- 17- Fabreries in Fabreland 18- The Duckett Update 18- Chrysomelidists at ESA: 2003 & 2004 Meetings 19- Recent Chrysomelid Literature 21- Email Address List 23- ICE—Phytophaga Symposium 23- Chrysomela Questionnaire See Story page 17 Research Activities and Interests Johan Stenberg (Umeå Univer- Duane McKenna (Harvard Univer- Eduard Petitpierre (Palma de sity, Sweden) Currently working on sity, USA) Currently studying phyloge- Mallorca, Spain) Interested in the cy- coevolutionary interactions between ny, ecological specialization, population togenetics, cytotaxonomy and chromo- the monophagous leaf beetles, Altica structure, and speciation in the genus somal evolution of Palearctic leaf beetles engstroemi and Galerucella tenella, and Cephaloleia. Needs Arescini and especially of chrysomelines. Would like their common host plant Filipendula Cephaloleini in ethanol, especially from to borrow or exchange specimens from ulmaria (meadow sweet) in a Swedish N. Central America and S. America. Western Palearctic areas. Archipelago. Amanda Evans (Harvard University, Maria Lourdes Chamorro-Lacayo Stefano Zoia (Milan, Italy) Inter- USA) Currently working on a phylogeny (University of Minnesota, USA) Cur- ested in Old World Eumolpinae and of Leptinotarsa to study host use evolu- rently a graduate student working on Mediterranean Chrysomelidae (except tion.
    [Show full text]
  • Vol. 25 No. 1 March, 2000 H a M a D R Y a D V O L 25
    NO.1 25 M M A A H D A H O V D A Y C R R L 0 0 0 2 VOL. 25NO.1 MARCH, 2000 2% 3% 2% 3% 2% 3% 2% 3% 2% 3% 2% 3% 2% 3% 2% 3% 2% 3% 4% 5% 4% 5% 4% 5% 4% 5% 4% 5% 4% 5% 4% 5% 4% 5% 4% 5% HAMADRYAD Vol. 25. No. 1. March 2000 Date of issue: 31 March 2000 ISSN 0972-205X Contents A. E. GREER & D. G. BROADLEY. Six characters of systematic importance in the scincid lizard genus Mabuya .............................. 1–12 U. MANTHEY & W. DENZER. Description of a new genus, Hypsicalotes gen. nov. (Sauria: Agamidae) from Mt. Kinabalu, North Borneo, with remarks on the generic identity of Gonocephalus schultzewestrumi Urban, 1999 ................13–20 K. VASUDEVAN & S. K. DUTTA. A new species of Rhacophorus (Anura: Rhacophoridae) from the Western Ghats, India .................21–28 O. S. G. PAUWELS, V. WALLACH, O.-A. LAOHAWAT, C. CHIMSUNCHART, P. DAVID & M. J. COX. Ethnozoology of the “ngoo-how-pak-pet” (Serpentes: Typhlopidae) in southern peninsular Thailand ................29–37 S. K. DUTTA & P. RAY. Microhyla sholigari, a new species of microhylid frog (Anura: Microhylidae) from Karnataka, India ....................38–44 Notes R. VYAS. Notes on distribution and breeding ecology of Geckoella collegalensis (Beddome, 1870) ..................................... 45–46 A. M. BAUER. On the identity of Lacerta tjitja Ljungh 1804, a gecko from Java .....46–49 M. F. AHMED & S. K. DUTTA. First record of Polypedates taeniatus (Boulenger, 1906) from Assam, north-eastern India ...................49–50 N. M. ISHWAR. Melanobatrachus indicus Beddome, 1878, resighted at the Anaimalai Hills, southern India .............................
    [Show full text]
  • First Record of Rhacophorus Verrucopus Huang, 1983 From
    Herpetozoa 33: 207–211 (2020) DOI 10.3897/herpetozoa.33.e60214 First record of Rhacophorus verrucopus Huang, 1983 from Myanmar Shuo Liu1, Ye Htet Lwin2, Ruichang Quan2,3, Song Li1 1 Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China 2 Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw 05282, Myanmar 3 Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China http://zoobank.org/6A7AD27F-91CA-4E9F-AA9C-0B5AB864021B Corresponding author: Song Li ([email protected]) Academic editor: G.Gollmann ♦ Received 31 October 2020 ♦ Accepted 19 November 2020 ♦ Published 1 December 2020 Abstract We report the first country record of Rhacophorus verrucopus Huang, 1983 from Myanmar, based on one specimen collected from Htamanthi Wildlife Sanctuary, Sagaing Division. Morphologically, the specimen shows good agreement with the original descrip- tion of R. verrucopus and phylogenetically, it is clustered with the specimen of R. verrucopus from Medog, Tibet, China with strong support. This is also the first record of R. verrucopus from outside of China. Key Words 16S rRNA, Htamanthi Wildlife Sanctuary, new record, tree frog Introduction sity Research Institute, Chinese Academy of Science have found many new species and new records of animals and Rhacophorus Kuhl & van Hasselt, 1822 occurs in the trop- plants in northern Myanmar (Li and Quan 2017). During ical and temperate zones of East, South and Southeast Asia our field survey in northern Myanmar in 2019, a specimen and, recently, was partitioned into three genera including of Rhacophorus with a small and elongated body and dis- Rhacophorus, Leptomantis Peters, 1867 and Zhangixalus Li, tinct tarsal projections was collected.
    [Show full text]
  • A Comparison of Hispine Beetles (Coleoptera: Chrysomelidae) Associated with Three Orders of Monocot Host Plants in Lowland Panama
    International Journal of Tropical Insect Science Vol. 27, No. 3/4, pp. 159-171, 2008 DOI: 10.1017/S1742758407864071 © icipe 2008 A comparison of hispine beetles (Coleoptera: Chrysomelidae) associated with three orders of monocot host plants in lowland Panama Christophe Meskens1*, Donald Windsor2 and Thierry Hance1 1 Unite d'Ecologie et de Biogeographie, Biodiversity Research Centre, Universite catholique de Louvain, 4-5, Place Croix du Sud, Louvain-la- Neuve 1348, Belgium: ^Smithsonian Tropical Research Institute, Apartado 0843-03092, Panama (Accepted 17 October 2007) Abstract. The feeding traces in fossil ginger leaves and the conserved phylogenetic relationships seen today in certain clades of hispine beetles on their monocot hosts point towards a long and intimate plant-insect evolutionary relationship. Studies in the 1970s and 1980s documented the rich fauna of rolled-leaf hispine beetles and their association with the Neotropical monocot family Heliconiaceae in Central America. In this report, the taxonomic breadth of these early studies is expanded to include species in the families, Marantaceae, Poaceae, Arecaceae and Costaceae, all with species occurring sympatrically with the Heliconiaceae in lowland Panama. Additionally, the analysis is widened to include open-leaf scraping and internal leaf-mining clades of hispoid Cassidinae. The censuses add more than 5080 Cassidinae herbivore occurrence records on both open and unfurled new leaf rolls of 4600 individual plants. Cluster analysis reveals that while many Hispinae species tend to group with plant species in only one of the three monocot orders, 9 of 16 Hispinae species on Zingiberales hosts were recorded in substantial numbers on both the Heliconiaceae and the Marantaceae, indicating an underlying pattern of feeding flexibility at the host plant family level.
    [Show full text]
  • Species Account
    SPECIES ACCOUNT AMPHIBIA I. Family MEGOPHRYIDAE Megophrys acera s Horned Frog This was a leaf litter frog, which inhabited forest floor of closed-canopy evergreen forests at Gunung Tujuh. It occurs from the lowlands at about 750 meters asl up to mountain forests over 1500 meters asl (Mistar, 2003). At Gunung Tujuh it was found at elevation 1200 meters asl. This is a rare species, which was only found at Gunung Tujuh survey site. This species is known from Peninsular Thailand through most of Peninsular Malaysia (Berry, 1975) and Sumatra (Mistar, 2003). Figure 21. M. aceras from Gunung Tujuh (Photograph by J. Holden). Megophrys nasuta Bornean Horned Frog, Malayan Horned Frog, Horned Toad, Large Horned Frog It was a leaf litter frog, which inhabited intact lowland and sub mountain rainforest, generally near forest streams. Adults are terrestrial in habits, but tadpoles live in clear forest streams. It occurred about 500 meters asl up to 1000 meters asl. It was regularly encountered, and its characteristic call was frequently heard in suitable habitat. It was uncommon in Tapan, Lumayang, Sungai Durian, Muara Kambang, Muara Sako, Muara Labuh and Lubuk Selasih survey sites. This species is known from southern, throughout Peninsular Malaysia (Berry, 1975), Tioman Island, Singapore (Lim and Lim, 1992), Sumatra, Bintan, all parts of Borneo and the Natuna Islands (Inger and Stuebing, 2005; Mistar, 2003). Figure 22. M. nasuta from Tapan (Photograph by J. Holden). Megophrys paralella Megophrys paralella was described by Inger and Iskandar (2005). Type locality of the species is Lubuk Selasih, West Sumatra, at elevation 1289 meters asl.
    [Show full text]
  • The Effect of Native Forest Dynamics Upon the Arrangements of Species in Oak Forests-Analysis of Heterogeneity Effects at the Example of Epigeal Arthropods
    Master thesis Summer term 2011 The effect of native forest dynamics upon the arrangements of species in oak forests-analysis of heterogeneity effects at the example of epigeal arthropods Die Auswirkungen natürlicher Walddynamiken auf die Artengefüge in Eichenwäldern: Untersuchung von Heterogenitätseffekten am Beispiel epigäischer Raubarthropoden Study course: Ecology, Evolution and Nature conservation (M.Sc.) University of Potsdam presented by Marco Langer 757463 1. Evaluator: Prof. Dr. Monika Wulf, Institut für Landnutzungssysteme Leibniz-Zentrum für Agrarlandschaftsforschung e.V. 2. Evaluator: Tim Mark Ziesche, Landeskompetenzzentrum Eberswalde Published online at the Institutional Repository of the University of Potsdam: URL http://opus.kobv.de/ubp/volltexte/2011/5558/ URN urn:nbn:de:kobv:517-opus-55588 http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-55588 Abstract The heterogeneity in species assemblages of epigeal spiders was studied in a natural forest and in a managed forest. Additionally the effects of small-scale microhabitat heterogeneity of managed and unmanaged forests were determined by analysing the spider assemblages of three different microhabitat structures (i. vegetation, ii. dead wood. iii. litter cover). The spider were collected in a block design by pitfall traps (n=72) in a 4-week interval. To reveal key environmental factors affecting the spider distribution abiotic and biotic habitat parameters (e.g. vegetation parameters, climate parameters, soil moisture) were assessed around each pitfall trap. A TWINSPAN analyses separated pitfall traps from the natural forest from traps of the managed forest. A subsequent discriminant analyses revealed that the temperature, the visible sky, the plant diversity and the mean diameter at breast height as key discriminant factors between the microhabitat groupings designated by The TWINSPAN analyses.
    [Show full text]
  • 2020 Frontiers ALAN.Pdf
    fnins-14-602796 November 11, 2020 Time: 19:19 # 1 REVIEW published: 16 November 2020 doi: 10.3389/fnins.2020.602796 Exposure to Artificial Light at Night and the Consequences for Flora, Fauna, and Ecosystems Jack Falcón1*, Alicia Torriglia2, Dina Attia3, Françoise Viénot4, Claude Gronfier5, Francine Behar-Cohen2, Christophe Martinsons6 and David Hicks7 1 Laboratoire Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), MNHN, CNRS FRE 2030, SU, IRD 207, UCN, UA, Paris, France, 2 Centre de Recherche des Cordeliers, INSERM U 1138, Ophtalmopole Hôpital Cochin, Assistance Publique - Hôpitaux de Paris, Université de Paris - SU, Paris, France, 3 ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Maisons-Alfort, France, 4 Muséum National d’Histoire Naturelle, Paris, France, 5 Lyon Neuroscience Research Center (CRNL), Waking Team, Inserm UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Lyon, France, 6 Centre Scientifique et Technique du Bâtiment, Saint Martin d’Hères, France, 7 Inserm, CNRS, Institut des Neurosciences Cellulaires et Intégratives, Université de Strasbourg, Strasbourg, France The present review draws together wide-ranging studies performed over the last decades that catalogue the effects of artificial-light-at-night (ALAN) upon living species and their environment. We provide an overview of the tremendous variety of light- Edited by: Jacques Epelbaum, detection strategies which have evolved in living organisms - unicellular, plants and Institut National de la Santé et de la animals, covering chloroplasts (plants), and the plethora of ocular and extra-ocular Recherche Médicale, France organs (animals). We describe the visual pigments which permit photo-detection, Reviewed by: Randy J. Nelson, paying attention to their spectral characteristics, which extend from the ultraviolet West Virginia University, United States into infrared.
    [Show full text]
  • Extreme Positive Allometry of Animal Adhesive Pads and the Size Limits of Adhesion-Based Climbing
    Extreme positive allometry of animal adhesive pads and the size limits of adhesion-based climbing David Labontea,1, Christofer J. Clementeb, Alex Dittrichc, Chi-Yun Kuod, Alfred J. Crosbye, Duncan J. Irschickd, and Walter Federlea aDepartment of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom; bSchool of Science and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia; cDepartment of Life Sciences, Anglia Ruskin University, Cambridge CB1 1PT, United Kingdom; dBiology Department, University of Massachusetts Amherst, Amherst, MA 01003; and eDepartment of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA 01003 Edited by David B. Wake, University of California, Berkeley, CA, and approved December 11, 2015 (received for review October 7, 2015) Organismal functions are size-dependent whenever body surfaces animals to climb smooth vertical or inverted surfaces, thereby supply body volumes. Larger organisms can develop strongly opening up new habitats. Adhesive pads have evolved multiple folded internal surfaces for enhanced diffusion, but in many cases times independently within arthropods, reptiles, amphibians, and areas cannot be folded so that their enlargement is constrained by mammals and show impressive performance: They are rapidly anatomy, presenting a problem for larger animals. Here, we study controllable, can be used repeatedly without any loss of perfor- the allometry of adhesive pad area in 225 climbing animal species, mance, and function on rough, dirty, and flooded surfaces (12). This covering more than seven orders of magnitude in weight. Across performance has inspired a considerable amount of work on tech- all taxa, adhesive pad area showed extreme positive allometry and nical adhesives that mimic these properties (13).
    [Show full text]
  • Insect Egg Size and Shape Evolve with Ecology but Not Developmental Rate Samuel H
    ARTICLE https://doi.org/10.1038/s41586-019-1302-4 Insect egg size and shape evolve with ecology but not developmental rate Samuel H. Church1,4*, Seth Donoughe1,3,4, Bruno A. S. de Medeiros1 & Cassandra G. Extavour1,2* Over the course of evolution, organism size has diversified markedly. Changes in size are thought to have occurred because of developmental, morphological and/or ecological pressures. To perform phylogenetic tests of the potential effects of these pressures, here we generated a dataset of more than ten thousand descriptions of insect eggs, and combined these with genetic and life-history datasets. We show that, across eight orders of magnitude of variation in egg volume, the relationship between size and shape itself evolves, such that previously predicted global patterns of scaling do not adequately explain the diversity in egg shapes. We show that egg size is not correlated with developmental rate and that, for many insects, egg size is not correlated with adult body size. Instead, we find that the evolution of parasitoidism and aquatic oviposition help to explain the diversification in the size and shape of insect eggs. Our study suggests that where eggs are laid, rather than universal allometric constants, underlies the evolution of insect egg size and shape. Size is a fundamental factor in many biological processes. The size of an 526 families and every currently described extant hexapod order24 organism may affect interactions both with other organisms and with (Fig. 1a and Supplementary Fig. 1). We combined this dataset with the environment1,2, it scales with features of morphology and physi- backbone hexapod phylogenies25,26 that we enriched to include taxa ology3, and larger animals often have higher fitness4.
    [Show full text]
  • Dynamics and Phenology of Ballooning Spiders in an Agricultural Landscape of Western Switzerland
    Departement of Biology University of Fribourg (Switzerland) Dynamics and phenology of ballooning spiders in an agricultural landscape of Western Switzerland THESIS Presented to the Faculty of Science of the University of Fribourg (Switzerland) in consideration for the award of the academic grade of Doctor rerum naturalium by Gilles Blandenier from Villiers (NE, Switzerland) Dissertation No 1840 UniPrint 2014 Accepted by the Faculty of Science of the Universtiy of Fribourg (Switzerland) upon the recommendation of Prof. Dr. Christian Lexer (University of Fribourg) and Prof. Dr. Søren Toft (University of Aarhus, Denmark), and the President of the Jury Prof. Simon Sprecher (University of Fribourg). Fribourg, 20.05.2014 Thesis supervisor The Dean Prof. Louis-Félix Bersier Prof. Fritz Müller Contents Summary / Résumé ........................................................................................................................................................................................................................ 1 Chapter 1 General Introduction ..................................................................................................................................................................................... 5 Chapter 2 Ballooning of spiders (Araneae) in Switzerland: general results from an eleven-years survey ............................................................................................................................................................................ 11 Chapter 3 Are phenological
    [Show full text]
  • Maliau Basin Conservation Project. Zoological Survey
    Danlced Management of Maliau Basin Conservation Area Sabah, Malaysia Maliau Basin Conservation Project Zoological Survey November 200 Author: Dr. Carl Traeholt NEPCon, Odensegade 4 B, Postbox 5102, DK 8100 Aarhus C, Denmark Phone: + 45 86180866 Fax: + 45 86181012 E-mail: [email protected] submitted by Carl Traeholt NEPCon Aarhus Denmark phone: 019-3521399 (mobile) email: [email protected] Duration: June -September 29th, 2000 March -June 30th, 2001 Table of contents List of a bb revia finns ~...~~ ~.. 4 1. Background :~ 5 2. Activities and results...~~...~..~.~.~..&A~ ~~ 6 2.1 Small mammals trapping : 6 2.2 Amphibian collection 9 2.3 Recording wildl~fe by camera trapping 10 2.4 Other mammal~pecies and monitoring routes 11 2.5 Birdob,~ervation /2 2.2.6 7 Otherslraining , 13 2.7.1 Species identification training 13 2.7.2 Data analysis workshop 15 2.7.3 Other training activities , , 15 3. Data analysis and interpretation 17 3.1 Big mammals ~ 17 3.1.1 Banteng, Bo~'.iavanicus 18 3.1.2 Elephants, Elephas maximus 19 3.1.3 Sambardeer, Cervus' unicolour 20 3.1.4 Bearded pig, ..f)'USscrofa 20 3.1.5 Barking deer,Mun~iiacu~' mun~iak andM atherodes " 21 3.1.6 Sun bear,Helarctos malayanus , 21 3.1.7 Clouded leopard, Nel?felis'nebulosa 22 3.2 Smail.mammaL~ ~ 22 3.2.1 Mustelids, civets, cats, otters and mongooses 23 3.2.2 Rats, squirrels and shrews , , , , ,., ,..23 3.2.2 Other captured species 25 4. 3.3Constraints Primates ...~.~.~~ ~ ~ ~...~ 28 4.1 General. con,~traint,~ , 28 4.24.3 CMTTOurism and development, 28 4.3.1 Priorities of transportation 29 4.3..2Facilities 29 4.44.4.1 Labour Transfer and replacement of staff 30 4.4.2 Staff and salary 30 ,.
    [Show full text]