Vertebrate Faunal Turnover During the Triassic-Jurassic Transition: an Indian Scenario

Total Page:16

File Type:pdf, Size:1020Kb

Vertebrate Faunal Turnover During the Triassic-Jurassic Transition: an Indian Scenario Harris et al., eds., 2006, The Triassic-Jurassic Terrestrial Transition. New Mexico Museum of Natural History and Science Bulletin 37. 77 VERTEBRATE FAUNAL TURNOVER DURING THE TRIASSIC-JURASSIC TRANSITION: AN INDIAN SCENARIO SASWATI BANDYOPADHYAY AND DHURJATI PRASAD SENGUPTA Geological Studies Unit, Indian Statistical Institute, 203 Barrackpore Trunk Road, Kolkata 700108, India, E-mail: [email protected] and [email protected] Abstract—The Gondwana basins of India yield unique Permo-Mesozoic vertebrates. Among these, the Pranhita- Godavari (P-G) basin has an almost continuous faunal succession spanning the Late Permian to Early Jurassic, and possibly into the Middle Jurassic. In the P-G basin, nine successive vertebrate-bearing horizons have been identified – these include five Triassic and three Jurassic biotic zones. The faunal assemblages of the Late Triassic (Early to Late Norian) and Early Jurassic (Hettangian to Sinemurian) zones of the P-G basin clearly exhibit evidence of faunal turnover from the Late Triassic to Early Jurassic. The elements of the Late Norian Lower Dharmaram fauna, which includes aetosaurs, phytosaurs, and small prosauropods, is replaced by large prosauropods and a sphenosuchian in the Hettangian Upper Dharmaram Formation, which is, in turn, succeeded by the overlying Sinemurian to Pliensbachian Lower Kota Formation that includes sauropods, triconodonts, and “symmetrodonts.” The Upper Dharmaram fauna does not contain aetosaurs or phytosaurs, and the Triassic-Jurassic boundary lies at the base of the upper part of the Dharmaram. INTRODUCTION Triassic and Jurassic continental deposits of India are found mainly in the Gondwana successions that are preserved in a number of discreet basins of peninsular India. These intracratonic basins are nucleated along preexisting zones of weakness in the Precambrian basement (Chakraborty et al., 2003). Until recently, these were well known for their rich coal reserves and plant fossils rather than their faunal remains. Recovery of many new fossil vertebrates, significant both in numbers of genera and species as well as complete skeletons, during the last five decades have made them more useful in the understanding of the evolutionary history of vertebrates on the continent. The major Gondwanan basins of India (Fig. 1), the Pranhita-Godavari (P-G), Satpura, Son-Mahanadi (S-M) and Damodar basins (Fig. 2) are now known for their vertebrate assem- blages that occur mostly in fluvial red beds. Among these four, the P-G basin provides the most complete succession of vertebrate faunas rang- ing from Permian to Jurassic. The Satpura basin has a succession from Permian to Middle Triassic. In the S-M basin, a succession from Per- mian to Late Triassic has been identified so far, whereas a succession from Permian to Early Triassic is seen in the Damodar basin. A global terrestrial faunal turnover during the Late Triassic and Early Jurassic epochs has been noted by several workers (Colbert, 1949, 1958; Olsen et al., 1987, 1990). Though initially this was not generally accepted, a scrutiny of the faunal assemblage during this time showed that some major groups, namely phytosaurs, procolophonids, and prolacertiforms, were replaced by crocodylomorphs and/or sphenodontians. Later detailed, end-Triassic faunal analyses in different parts of the world indicated that various mammal-like reptiles, rhynchosaurs, and “thecodontians” also disappeared at the end of Trias- sic and were replaced by early dinosaurs, crocodylomorphs, etc. – in short, there was a faunal shift at the beginning of the Jurassic (Olsen and Galton, 1977; Benton, 1986a). This Late Triassic-Early Jurassic faunal turnover led to a downward shift in the boundary of the Early Jurassic (Olsen and Galton, 1977; Padian, 1986), which prompted Bandyopadhyay and Roy Chowdhury (1996) to examine the Triassic and Jurassic verte- brate faunal assemblage of the P-G basin. Earlier, the Kota Formation had been considered to represent the continental Jurassic in Indian Gondwana. The faunal component of the Kota Formation, however, FIGURE 1. Stratigraphic successions of the major Gondwana basins of India. showed that the upper part of the Dharmaram Formation, which had been previously considered Upper Triassic (Norian), actually contains mainly demarcated the beginning of the Jurassic in India. In the other vertebrates that mark the beginning of the Jurassic in India. Their study Gondwanan basins, a continuous succession from Triassic to Jurassic is 78 faunal succession on the whole, evolving chronologically within a sedi- mentary package that is continuous in nature. The Upper Permian Kundaram Formation is characterized by red mudstone, sandstone, sandstone-mudstone alternations, and ferruginous shale. The sand bodies are laterally persistent, trough cross-stratified exhibiting unimodal palaeocurrent direction, and were formed by the lateral migration and avulsion of channels (Ray, 1997). The Kundaram Fauna An assemblage of Permian reptiles, characterized by abundant dicynodonts, has been recovered from the mudstone unit of the Kundaram Formation. The dicynodonts are dominated by Endothiodon followed by Cistecephalus, Pristerodon, Emydops, Oudenodon and Kingoria (Ray and Bandyopadhyay, 2003). The vertebrate assemblage also contains a gorgonopsian and a captorhinid. Paleontologically, this horizon is im- portant because it is the only horizon in India that produces Permian reptiles. On the basis of similarities of the Kundaram fauna with those of the Tropidostoma Assemblage zone and Cistecephalus Assemblage zone of the Middleton Formation of South Africa, Ray (1999, 2001) dated the Kundaram fauna as late Late Permian (Tatarian). Recently, Ward et al. (2005, supplementary information fig. S4) showed that, except Endothiodon, the other Kundaram fauna ranges either up to the middle or to the end of Dicynodon Zone, of which Emydops is again restricted only in the Dicynodon Zone. Besides, only Pristerodon ranges from the Tapinocephalus Zone to the middle of the Dicynodon Zone. The abun- dance of Endothiodon in the Kundaram Formation, and the stratigraphical ranges of other Kundaram dicynodonts, further strengthen a late Late FIGURE 2. Major Gondwana basins of India. Permian (Tatarian) age for this horizon. The lithology of the overlying Kamthi Formation includes silt- not recorded (Fig. 1); hence, they will not be treated further here. stone and ferruginous sandstone that is pebbly in places. A medium- The present paper describes briefly the geological history of the grained, poorly-sorted, argillaceous quartzose sandstone (quartz wackes P-G basin, along with the faunal associations of important vertebrate containing up to 45% clay matrix) and thin sheets of sandy siltstone horizons. This is followed by a discussion of faunal distribution and characterize the lower part, while the upper part has coarse, poorly- faunal turnover across the Triassic-Jurassic boundary, substantiating the sorted argillaceous yellowish brown sandstone with siltstone clasts and pattern of extinction, origination and diversification of terrestrial verte- quartz and quartzite pebbles (Sengupta, 1970). From the basal siltstone, brates. It may be mentioned that the details of the Gondwanan verte- two as-yet undescribed specimens of Lystrosaurus sp. have been found brates of India, current through 1999, are given in Bandyopadhyay (1999). (S. Ray, personal commun.), while Brachyops laticeps has been collected Below, only the references of subsequent publications on Indian from the upper part of Kamthi Formation (Mangli ‘beds’) (Owen, 1855). Gondwanan vertebrates are mentioned. The formations successively overlying the Kamthi Formation, the Yerrapalli, Bhimaram, Maleri, and Dharmaram, are mostly mud- BRIEF GEOLOGICAL HISTORY OF THE dominated, red bed units rich in vertebrate fossils. The red mudstones PRANHITA-GODAVARI BASIN are considered to have been deposited from suspension in interchannel The Gondwana succession in the Pranhita-Godavari basin occurs floodplain areas (Sengupta, 1970) and indicate good drainage and well- as a narrow, rectilinear outcrop trending NNW-SSE and is bordered on aerated floodplain deposits under a warm, moist climate with seasonally both sides by Proterozoic and/or Archean rocks. The overall dip of the distributed rainfall (Robinson, 1970; Behrensmeyer and Hook, 1992, succession is 5º to 12º N and NW, with a general northward paleocurrent Sheldon, 2005). direction (Sengupta, 1970; Veevers and Tewari, 1995). Glacial, Red to violet mudstone with scattered, thin sheets of quartzose fluvioglacial, fluvial, and lacustrine sediments were deposited in this sandstone and relatively smaller lenticular sand bodies made up of cali- basin during the Permo-Mesozoic period (Robinson, 1970; Read and che-derived calcarenite/calcirudite are characteristic features of the Watson, 1975; Veevers and Tewari, 1995). Yerrapalli Formation (Dasgupta, 1993). Small, lenticular sand bodies Glacial sediments of the Talchir Formation were the first Phanero- enclosing the mudstones (Fig. 3) represent fillings of small ephemeral zoic deposits in this basin. Boulder-pebble conglomerate, pebbly sand- channels that wandered over an extensive floodplain. Parallel laminated, stone, and khaki-green shale of Early Permian age characterize this unit. sheet-like sandstones often displaying parting lineation were deposited The overlying Barakar Formation contains medium to coarse, white to by waning currents of sheet flows associated with episodic overbank yellow sandstone
Recommended publications
  • Triassic- Jurassic Stratigraphy Of
    Triassic- Jurassic Stratigraphy of the <JF C7 JL / Culpfeper and B arbour sville Basins, VirginiaC7 and Maryland/ ll.S. PAPER Triassic-Jurassic Stratigraphy of the Culpeper and Barboursville Basins, Virginia and Maryland By K.Y. LEE and AJ. FROELICH U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1472 A clarification of the Triassic--Jurassic stratigraphic sequences, sedimentation, and depositional environments UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1989 DEPARTMENT OF THE INTERIOR MANUEL LUJAN, Jr., Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government Library of Congress Cataloging in Publication Data Lee, K.Y. Triassic-Jurassic stratigraphy of the Culpeper and Barboursville basins, Virginia and Maryland. (U.S. Geological Survey professional paper ; 1472) Bibliography: p. Supt. of Docs. no. : I 19.16:1472 1. Geology, Stratigraphic Triassic. 2. Geology, Stratigraphic Jurassic. 3. Geology Culpeper Basin (Va. and Md.) 4. Geology Virginia Barboursville Basin. I. Froelich, A.J. (Albert Joseph), 1929- II. Title. III. Series. QE676.L44 1989 551.7'62'09755 87-600318 For sale by the Books and Open-File Reports Section, U.S. Geological Survey, Federal Center, Box 25425, Denver, CO 80225 CONTENTS Page Page Abstract.......................................................................................................... 1 Stratigraphy Continued Introduction... ..........................................................................................
    [Show full text]
  • Ischigualasto Formation. the Second Is a Sile- Diversity Or Abundance, but This Result Was Based on Only 19 of Saurid, Ignotosaurus Fragilis (Fig
    This article was downloaded by: [University of Chicago Library] On: 10 October 2013, At: 10:52 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Journal of Vertebrate Paleontology Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/ujvp20 Vertebrate succession in the Ischigualasto Formation Ricardo N. Martínez a , Cecilia Apaldetti a b , Oscar A. Alcober a , Carina E. Colombi a b , Paul C. Sereno c , Eliana Fernandez a b , Paula Santi Malnis a b , Gustavo A. Correa a b & Diego Abelin a a Instituto y Museo de Ciencias Naturales, Universidad Nacional de San Juan , España 400 (norte), San Juan , Argentina , CP5400 b Consejo Nacional de Investigaciones Científicas y Técnicas , Buenos Aires , Argentina c Department of Organismal Biology and Anatomy, and Committee on Evolutionary Biology , University of Chicago , 1027 East 57th Street, Chicago , Illinois , 60637 , U.S.A. Published online: 08 Oct 2013. To cite this article: Ricardo N. Martínez , Cecilia Apaldetti , Oscar A. Alcober , Carina E. Colombi , Paul C. Sereno , Eliana Fernandez , Paula Santi Malnis , Gustavo A. Correa & Diego Abelin (2012) Vertebrate succession in the Ischigualasto Formation, Journal of Vertebrate Paleontology, 32:sup1, 10-30, DOI: 10.1080/02724634.2013.818546 To link to this article: http://dx.doi.org/10.1080/02724634.2013.818546 PLEASE SCROLL DOWN FOR ARTICLE Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content.
    [Show full text]
  • Studies on Continental Late Triassic Tetrapod Biochronology. I. the Type Locality of Saturnalia Tupiniquim and the Faunal Succession in South Brazil
    Journal of South American Earth Sciences 19 (2005) 205–218 www.elsevier.com/locate/jsames Studies on continental Late Triassic tetrapod biochronology. I. The type locality of Saturnalia tupiniquim and the faunal succession in south Brazil Max Cardoso Langer* Departamento de Biologia, FFCLRP, Universidade de Sa˜o Paulo (USP), Av. Bandeirantes 3900, 14040-901 Ribeira˜o Preto, SP, Brazil Received 1 November 2003; accepted 1 January 2005 Abstract Late Triassic deposits of the Parana´ Basin, Rio Grande do Sul, Brazil, encompass a single third-order, tetrapod-bearing sedimentary sequence that includes parts of the Alemoa Member (Santa Maria Formation) and the Caturrita Formation. A rich, diverse succession of terrestrial tetrapod communities is recorded in these sediments, which can be divided into at least three faunal associations. The stem- sauropodomorph Saturnalia tupiniquim was collected in the locality known as ‘Waldsanga’ near the city of Santa Maria. In that area, the deposits of the Alemoa Member yield the ‘Alemoa local fauna,’ which typifies the first association; includes the rhynchosaur Hyperodapedon, aetosaurs, and basal dinosaurs; and is coeval with the lower fauna of the Ischigualasto Formation, Bermejo Basin, NW Argentina. The second association is recorded in deposits of both the Alemoa Member and the Caturrita Formation, characterized by the rhynchosaur ‘Scaphonyx’ sulcognathus and the cynodont Exaeretodon, and correlated with the upper fauna of the Ischigualasto Formation. Various isolated outcrops of the Caturrita Formation yield tetrapod fossils that correspond to post-Ischigualastian faunas but might not belong to a single faunal association. The record of the dicynodont Jachaleria suggests correlations with the lower part of the Los Colorados Formation, NW Argentina, whereas remains of derived tritheledontid cynodonts indicate younger ages.
    [Show full text]
  • Tetrapod Biostratigraphy and Biochronology of the Triassic–Jurassic Transition on the Southern Colorado Plateau, USA
    Palaeogeography, Palaeoclimatology, Palaeoecology 244 (2007) 242–256 www.elsevier.com/locate/palaeo Tetrapod biostratigraphy and biochronology of the Triassic–Jurassic transition on the southern Colorado Plateau, USA Spencer G. Lucas a,⁎, Lawrence H. Tanner b a New Mexico Museum of Natural History, 1801 Mountain Rd. N.W., Albuquerque, NM 87104-1375, USA b Department of Biology, Le Moyne College, 1419 Salt Springs Road, Syracuse, NY 13214, USA Received 15 March 2006; accepted 20 June 2006 Abstract Nonmarine fluvial, eolian and lacustrine strata of the Chinle and Glen Canyon groups on the southern Colorado Plateau preserve tetrapod body fossils and footprints that are one of the world's most extensive tetrapod fossil records across the Triassic– Jurassic boundary. We organize these tetrapod fossils into five, time-successive biostratigraphic assemblages (in ascending order, Owl Rock, Rock Point, Dinosaur Canyon, Whitmore Point and Kayenta) that we assign to the (ascending order) Revueltian, Apachean, Wassonian and Dawan land-vertebrate faunachrons (LVF). In doing so, we redefine the Wassonian and the Dawan LVFs. The Apachean–Wassonian boundary approximates the Triassic–Jurassic boundary. This tetrapod biostratigraphy and biochronology of the Triassic–Jurassic transition on the southern Colorado Plateau confirms that crurotarsan extinction closely corresponds to the end of the Triassic, and that a dramatic increase in dinosaur diversity, abundance and body size preceded the end of the Triassic. © 2006 Elsevier B.V. All rights reserved. Keywords: Triassic–Jurassic boundary; Colorado Plateau; Chinle Group; Glen Canyon Group; Tetrapod 1. Introduction 190 Ma. On the southern Colorado Plateau, the Triassic– Jurassic transition was a time of significant changes in the The Four Corners (common boundary of Utah, composition of the terrestrial vertebrate (tetrapod) fauna.
    [Show full text]
  • The Origin and Early Evolution of Dinosaurs
    Biol. Rev. (2010), 85, pp. 55–110. 55 doi:10.1111/j.1469-185X.2009.00094.x The origin and early evolution of dinosaurs Max C. Langer1∗,MartinD.Ezcurra2, Jonathas S. Bittencourt1 and Fernando E. Novas2,3 1Departamento de Biologia, FFCLRP, Universidade de S˜ao Paulo; Av. Bandeirantes 3900, Ribeir˜ao Preto-SP, Brazil 2Laboratorio de Anatomia Comparada y Evoluci´on de los Vertebrados, Museo Argentino de Ciencias Naturales ‘‘Bernardino Rivadavia’’, Avda. Angel Gallardo 470, Cdad. de Buenos Aires, Argentina 3CONICET (Consejo Nacional de Investigaciones Cient´ıficas y T´ecnicas); Avda. Rivadavia 1917 - Cdad. de Buenos Aires, Argentina (Received 28 November 2008; revised 09 July 2009; accepted 14 July 2009) ABSTRACT The oldest unequivocal records of Dinosauria were unearthed from Late Triassic rocks (approximately 230 Ma) accumulated over extensional rift basins in southwestern Pangea. The better known of these are Herrerasaurus ischigualastensis, Pisanosaurus mertii, Eoraptor lunensis,andPanphagia protos from the Ischigualasto Formation, Argentina, and Staurikosaurus pricei and Saturnalia tupiniquim from the Santa Maria Formation, Brazil. No uncontroversial dinosaur body fossils are known from older strata, but the Middle Triassic origin of the lineage may be inferred from both the footprint record and its sister-group relation to Ladinian basal dinosauromorphs. These include the typical Marasuchus lilloensis, more basal forms such as Lagerpeton and Dromomeron, as well as silesaurids: a possibly monophyletic group composed of Mid-Late Triassic forms that may represent immediate sister taxa to dinosaurs. The first phylogenetic definition to fit the current understanding of Dinosauria as a node-based taxon solely composed of mutually exclusive Saurischia and Ornithischia was given as ‘‘all descendants of the most recent common ancestor of birds and Triceratops’’.
    [Show full text]
  • Constraints on the Timescale of Animal Evolutionary History
    Palaeontologia Electronica palaeo-electronica.org Constraints on the timescale of animal evolutionary history Michael J. Benton, Philip C.J. Donoghue, Robert J. Asher, Matt Friedman, Thomas J. Near, and Jakob Vinther ABSTRACT Dating the tree of life is a core endeavor in evolutionary biology. Rates of evolution are fundamental to nearly every evolutionary model and process. Rates need dates. There is much debate on the most appropriate and reasonable ways in which to date the tree of life, and recent work has highlighted some confusions and complexities that can be avoided. Whether phylogenetic trees are dated after they have been estab- lished, or as part of the process of tree finding, practitioners need to know which cali- brations to use. We emphasize the importance of identifying crown (not stem) fossils, levels of confidence in their attribution to the crown, current chronostratigraphic preci- sion, the primacy of the host geological formation and asymmetric confidence intervals. Here we present calibrations for 88 key nodes across the phylogeny of animals, rang- ing from the root of Metazoa to the last common ancestor of Homo sapiens. Close attention to detail is constantly required: for example, the classic bird-mammal date (base of crown Amniota) has often been given as 310-315 Ma; the 2014 international time scale indicates a minimum age of 318 Ma. Michael J. Benton. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Philip C.J. Donoghue. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Robert J.
    [Show full text]
  • The Sauropodomorph Biostratigraphy of the Elliot Formation of Southern Africa: Tracking the Evolution of Sauropodomorpha Across the Triassic–Jurassic Boundary
    Editors' choice The sauropodomorph biostratigraphy of the Elliot Formation of southern Africa: Tracking the evolution of Sauropodomorpha across the Triassic–Jurassic boundary BLAIR W. MCPHEE, EMESE M. BORDY, LARA SCISCIO, and JONAH N. CHOINIERE McPhee, B.W., Bordy, E.M., Sciscio, L., and Choiniere, J.N. 2017. The sauropodomorph biostratigraphy of the Elliot Formation of southern Africa: Tracking the evolution of Sauropodomorpha across the Triassic–Jurassic boundary. Acta Palaeontologica Polonica 62 (3): 441–465. The latest Triassic is notable for coinciding with the dramatic decline of many previously dominant groups, followed by the rapid radiation of Dinosauria in the Early Jurassic. Among the most common terrestrial vertebrates from this time, sauropodomorph dinosaurs provide an important insight into the changing dynamics of the biota across the Triassic–Jurassic boundary. The Elliot Formation of South Africa and Lesotho preserves the richest assemblage of sauropodomorphs known from this age, and is a key index assemblage for biostratigraphic correlations with other simi- larly-aged global terrestrial deposits. Past assessments of Elliot Formation biostratigraphy were hampered by an overly simplistic biozonation scheme which divided it into a lower “Euskelosaurus” Range Zone and an upper Massospondylus Range Zone. Here we revise the zonation of the Elliot Formation by: (i) synthesizing the last three decades’ worth of fossil discoveries, taxonomic revision, and lithostratigraphic investigation; and (ii) systematically reappraising the strati- graphic provenance of important fossil locations. We then use our revised stratigraphic information in conjunction with phylogenetic character data to assess morphological disparity between Late Triassic and Early Jurassic sauropodomorph taxa. Our results demonstrate that the Early Jurassic upper Elliot Formation is considerably more taxonomically and morphologically diverse than previously thought.
    [Show full text]
  • Late Triassic) Adrian P
    New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/56 Definition and correlation of the Lamyan: A new biochronological unit for the nonmarine Late Carnian (Late Triassic) Adrian P. Hunt, Spencer G. Lucas, and Andrew B. Heckert, 2005, pp. 357-366 in: Geology of the Chama Basin, Lucas, Spencer G.; Zeigler, Kate E.; Lueth, Virgil W.; Owen, Donald E.; [eds.], New Mexico Geological Society 56th Annual Fall Field Conference Guidebook, 456 p. This is one of many related papers that were included in the 2005 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks.
    [Show full text]
  • University of Birmingham the Earliest Bird-Line Archosaurs and The
    University of Birmingham The earliest bird-line archosaurs and the assembly of the dinosaur body plan Nesbitt, Sterling; Butler, Richard; Ezcurra, Martin; Barrett, Paul; Stocker, Michelle; Angielczyk, Kenneth; Smith, Roger; Sidor, Christian; Niedzwiedzki, Grzegorz; Sennikov, Andrey; Charig, Alan DOI: 10.1038/nature22037 License: None: All rights reserved Document Version Peer reviewed version Citation for published version (Harvard): Nesbitt, S, Butler, R, Ezcurra, M, Barrett, P, Stocker, M, Angielczyk, K, Smith, R, Sidor, C, Niedzwiedzki, G, Sennikov, A & Charig, A 2017, 'The earliest bird-line archosaurs and the assembly of the dinosaur body plan', Nature, vol. 544, no. 7651, pp. 484-487. https://doi.org/10.1038/nature22037 Link to publication on Research at Birmingham portal Publisher Rights Statement: Checked for eligibility: 03/03/2017. General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. •User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain. Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.
    [Show full text]
  • Gondwana Vertebrate Faunas of India: Their Diversity and Intercontinental Relationships
    438 Article 438 by Saswati Bandyopadhyay1* and Sanghamitra Ray2 Gondwana Vertebrate Faunas of India: Their Diversity and Intercontinental Relationships 1Geological Studies Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India; email: [email protected] 2Department of Geology and Geophysics, Indian Institute of Technology, Kharagpur 721302, India; email: [email protected] *Corresponding author (Received : 23/12/2018; Revised accepted : 11/09/2019) https://doi.org/10.18814/epiiugs/2020/020028 The twelve Gondwanan stratigraphic horizons of many extant lineages, producing highly diverse terrestrial vertebrates India have yielded varied vertebrate fossils. The oldest in the vacant niches created throughout the world due to the end- Permian extinction event. Diapsids diversified rapidly by the Middle fossil record is the Endothiodon-dominated multitaxic Triassic in to many communities of continental tetrapods, whereas Kundaram fauna, which correlates the Kundaram the non-mammalian synapsids became a minor components for the Formation with several other coeval Late Permian remainder of the Mesozoic Era. The Gondwana basins of peninsular horizons of South Africa, Zambia, Tanzania, India (Fig. 1A) aptly exemplify the diverse vertebrate faunas found Mozambique, Malawi, Madagascar and Brazil. The from the Late Palaeozoic and Mesozoic. During the last few decades much emphasis was given on explorations and excavations of Permian-Triassic transition in India is marked by vertebrate fossils in these basins which have yielded many new fossil distinct taxonomic shift and faunal characteristics and vertebrates, significant both in numbers and diversity of genera, and represented by small-sized holdover fauna of the providing information on their taphonomy, taxonomy, phylogeny, Early Triassic Panchet and Kamthi fauna.
    [Show full text]
  • ' Or ''Long'' Rhaetian? Astronomical Calibration of Austrian Key Sections
    ”Short” or ”long” Rhaetian ? Astronomical calibration of Austrian key sections Bruno Galbrun, Slah Boulila, Leopold Krystyn, Sylvain Richoz, Silvia Gardin, Annachiara Bartolini, Martin Maslo To cite this version: Bruno Galbrun, Slah Boulila, Leopold Krystyn, Sylvain Richoz, Silvia Gardin, et al.. ”Short” or ”long” Rhaetian ? Astronomical calibration of Austrian key sections. Global and Planetary Change, Elsevier, 2020, 192, pp.103253. 10.1016/j.gloplacha.2020.103253. hal-02884087 HAL Id: hal-02884087 https://hal.archives-ouvertes.fr/hal-02884087 Submitted on 29 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Galbrun B., Boulila S., Krystyn L., Richoz S., Gardin S., Bartolini A., Maslo M. (2020). « Short » or « long » Rhaetian ? Astronomical calibration of Austrian key sections. Global Planetary Change. Vol. 192C. https://doi.org/10.1016/j.gloplacha.2020.103253 « Short » or « long » Rhaetian ? Astronomical calibration of Austrian key sections Bruno Galbruna,*, Slah Boulilaa, Leopold Krystynb, Sylvain Richozc,d, Silvia Gardine, Annachiara
    [Show full text]
  • Tiago Rodrigues Simões
    Diapsid Phylogeny and the Origin and Early Evolution of Squamates by Tiago Rodrigues Simões A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in SYSTEMATICS AND EVOLUTION Department of Biological Sciences University of Alberta © Tiago Rodrigues Simões, 2018 ABSTRACT Squamate reptiles comprise over 10,000 living species and hundreds of fossil species of lizards, snakes and amphisbaenians, with their origins dating back at least as far back as the Middle Jurassic. Despite this enormous diversity and a long evolutionary history, numerous fundamental questions remain to be answered regarding the early evolution and origin of this major clade of tetrapods. Such long-standing issues include identifying the oldest fossil squamate, when exactly did squamates originate, and why morphological and molecular analyses of squamate evolution have strong disagreements on fundamental aspects of the squamate tree of life. Additionally, despite much debate, there is no existing consensus over the composition of the Lepidosauromorpha (the clade that includes squamates and their sister taxon, the Rhynchocephalia), making the squamate origin problem part of a broader and more complex reptile phylogeny issue. In this thesis, I provide a series of taxonomic, phylogenetic, biogeographic and morpho-functional contributions to shed light on these problems. I describe a new taxon that overwhelms previous hypothesis of iguanian biogeography and evolution in Gondwana (Gueragama sulamericana). I re-describe and assess the functional morphology of some of the oldest known articulated lizards in the world (Eichstaettisaurus schroederi and Ardeosaurus digitatellus), providing clues to the ancestry of geckoes, and the early evolution of their scansorial behaviour.
    [Show full text]