The Creation and Administration of Unique Identifiers, 1967-2017 2

Total Page:16

File Type:pdf, Size:1020Kb

The Creation and Administration of Unique Identifiers, 1967-2017 2 [AUTHOR] 1 TABLE OF CONTENTS TABLE OF CONTENTS FOREWORD ......................................................................................................... 4 1 INTRODUCTION .................................................................................................. 6 1.1 Objectives .................................................................................................................................... 6 1.2 Scope ............................................................................................................................................ 8 1.3 Method ...................................................................................................................................... 11 1.4 Summary of Findings ................................................................................................................. 14 2 INSTANTIATING THE UNIQUE IDENTIFIERS (1969-2017) .......................... 17 2.1 The Arpanet .............................................................................................................................. 17 2.1.1 Host Addresses ................................................................................................................................ 22 2.1.2 Multiplexing Numbers .................................................................................................................... 23 2.1.3 Host Names ..................................................................................................................................... 25 2.1.4 Declarative Specifications ............................................................................................................... 27 2.2 The Internet .............................................................................................................................. 28 2.2.1 Internet Protocol (IP) Address ....................................................................................................... 29 2.2.2 Transmission Control Protocol (TCP) Ports .................................................................................. 31 2.2.3 Network Numbers ........................................................................................................................... 33 2.2.4 Autonomous System Numbers (ASNs) ........................................................................................... 33 2.2.5 Host Names ..................................................................................................................................... 35 2.2.6 Domain Name System (DNS) ......................................................................................................... 36 2.2.7 Protocol Parameters ....................................................................................................................... 38 3 OPERATIONAL ORGANIZATIONS (1969-2017) .............................................. 39 3.1 Network Working Group (NWG) (1969-c.1980) ....................................................................... 39 3.2 Bolt Beranek and Newman Inc. (BBN) (1969-92) ..................................................................... 43 3.3 Stanford Research Institute Network Information Center (SRI and DDN NIC) (1969-91) ..... 45 3.4 Root Server Operators ............................................................................................................... 48 3.5 University of Southern California Information Sciences Institute (USC-ISI) (1976-98) .......... 50 3.6 Network Solutions, Inc. (NSI) and Verisign (1991-2017) .......................................................... 53 3.7 ICANN IANA Department (1999-2017) and Public Technical Identifiers (PTI) (2016-17) ..... 55 The Creation and Administration of Unique Identifiers, 1967-2017 2 TABLE OF CONTENTS 3.8 Regional Internet Registries (RIRs) .......................................................................................... 59 4 PRE-ICANN POLICY ADVISORY AND COORDINATION ORGANIZATIONS (1975-99) .............................................................................. 60 4.1 Arpanet Sponsors Group (1975-83) ........................................................................................... 60 4.2 Internet Configuration Control Board (ICCB) (1979-84) .......................................................... 61 4.3 Internet Advisory Board (IAB), Internet Activities Board (IAB), Internet Architecture Board (IAB) (1984-2017) ...................................................................................................................... 62 4.4 Internet Engineering Task Force (IETF) (1986-2017), Internet Engineering Steering Group (IESG) (1989-2017) .................................................................................................................... 66 5 POLICY SETTING ORGANIZATIONS (1968-2017) .......................................... 68 5.1 The Defense Advanced Research Projects Agency (DARPA) (1968-98) .................................. 69 5.2 Defense Communications Agency (DCA) and Defense Data Network Program Management Office (DDN PMO) (1975-92) ................................................................................................... 74 5.3 National Science Foundation (1982-98) ..................................................................................... 76 5.4 Federal Research Internet Coordinating Committee (FRICC) (1987-90), Federal Networking Council (FNC) (1990-97) ........................................................................................................... 81 5.5 U.S. Department of Commerce (DoC) (1997-2016) ................................................................... 83 5.6 Regional Internet Registries (RIRs) (1992-2017) ...................................................................... 87 5.7 IANA Functions and the Internet Corporation for Assigned Names and Numbers (ICANN) (1998-2017) ................................................................................................................................ 89 5.7.1 IANA Functions Stewardship Transition Agreements .................................................................... 90 5.7.1.1 DOC-ICANN Memorandum of Understanding (MOU), Joint Project Agreement (JPA), and Affirmation of Commitments (AOC) .............................................................................................. 90 5.7.1.2 USC-ICANN Transition Agreement ................................................................................................ 93 5.7.1.3 NTIA-NIST-ICANN Cooperative Research and Development Agreement (CRADA) .................... 93 5.7.1.4 DOC-ICANN InterNIC® Agreement ................................................................................................ 94 5.7.1.5 DOC-ICANN IANA Functions Contracts ....................................................................................... 94 5.7.2 IANA Functions Stewardship Transition (IANA Stewardship Transition) Process and Implementation Agreements ........................................................................................................... 96 6 ACKNOWLEDGMENTS .................................................................................... 100 7 SOURCES ........................................................................................................... 101 The Creation and Administration of Unique Identifiers, 1967-2017 3 FOREWORD FOREWORD Vinton G. Cerf Stephen D. Crocker VP, Google CEO, Shinkuro, Inc. Former Chairman, ICANN Former Chairman, ICANN As the Arpanet and Internet evolved, the role and importance of unique identifiers increased markedly. At first, the creation and administration of the necessary identifiers was a small matter and handled as an implicit task within the contracts for the overall network development. Over time, the creation and administration of unique identifiers evolved into a visible and important activity on its own. The Arpanet project was started in 1968 by the U.S. Advanced Research Projects Agency (ARPA), now called the Defense Advanced Research Projects Agency (DARPA). It aimed at applying packet switching to computer communication. It developed a layered protocol architecture for host-to-host communication, which included a variety of identifiers necessary for referencing hosts on the network and labeling key parameters of the protocols used to support networked applications. With support from ARPA and experience gained from the Arpanet project, the Internet’s design began in 1973 to be a highly distributed, scalable, and adaptable network of networks. It inherited many of the concepts and institutions emerging from the development of the Arpanet, including the need for identifiers of various kinds. It was concluded that memorable names for the hosts on each network and numeric addresses and identifiers would be needed for uniquely distinguishing the hosts and networks that make up the Internet. The many communication protocols required to implement applications or supporting infrastructure of the Internet also had configuration parameters that needed unique identifiers for reference. In recognition of the emergent central role of identifiers, the Internet Corporation for Assigned Names and Numbers (ICANN) and Google commissioned this report to document the design, evolution, and management of the Internet’s unique identifiers. It draws upon considerable input from the Internet community as well as in-depth research by the report’s authors, Bradley Fidler and Russ Mundy. The report offers the
Recommended publications
  • ARIN History and Services
    History and Services www.arin.net Table of Contents Part I: History..............................................................................................3 How did ARIN get started?..................................................................3 Where does ARIN fit in the “Big Picture”?.......................................4 Key Organizations - ICANN, the NRO, and PTI/IANA..................5 ARIN Community & Membership......................................................7 Stakeholders.............................................................................................7 ARIN the Organization..........................................................................8 ARIN Staff...................................................................................................8 ARIN Elections........................................................................................12 Part II: Services........................................................................................13 The Internet Numbering Landscape.............................................13 ARIN’S Strategic Plan..........................................................................16 Scope of ARIN Services – the things we do for you!................16 Get Involved...........................................................................................20 Acronym Quick Guide.........................................................................21 2 Part I: History How did ARIN get started? 1960s to 1980s: Internet Foundation The formation of
    [Show full text]
  • QUILT CIRCLE2020 a Letter from the President
    THE QUILT CIRCLE2020 A Letter From the President This 2020 Quilt Circle edition commemorates the 20th Anniversary of The Quilt. The fabric of our research and education (R&E) networking community has never been stronger. While our Quilt community has evolved in new and exciting ways in the past two decades, we have also been faced with a number of challenges which we take head-on and always with the spirit of collaboration. As we address the unprecedented challenges presented by the current global public health crisis due to the COVID-19 pandemic, the work of our members is more important than ever to the missions of their member communities. U.S. higher education institutions rely on R&E networks to give them a competitive edge in the most impactful scientific research initiatives which is essential in this crisis. We connect the educational institutions that support university medical centers and their associated hospitals. R&E networks also connect tens of thousands of other community anchor institutions, including K-12 schools, public libraries, local/state government, research sites, cultural institutions, public safety, and tribal lands. Being responsive and providing vital networking infrastructure and resources right now to address immediate needs is who we are and what we do. R&E networks are part of our nation’s critical infrastructure. This year’s edition of The Quilt Circle showcases several examples of the key role of R&E network members in both providing and facilitating the use-network infrastructure to further scientific discovery and collaborations at higher education institutions of all sizes.
    [Show full text]
  • Esnet: Advanced NETWORKING for SCIENCE
    ENERGY SCIENCES NETWORK ESnet: Advanced NETWORKING for SCIENCE Researchers around the world using advanced computing for scientific discovery are connected via the DOE-operated Energy Sciences Network (ESnet). By providing a reliable, high-performance communications infrastructure, ESnet facilitates the large-scale, collaborative science endeavors fundamental to Office of Science missions. Energy Sciences Network tive science. These include: sharing of massive In many ways, the dramatic achievements of 21st amounts of data, supporting thousands of collab- century scientific discovery—often involving orators worldwide, distributed data processing enormous data handling and remote collabora- and data management, distributed simulation, tion requirements—have been made possible by visualization, and computational steering, and accompanying accomplishments in high-per- collaboration with the U.S. and international formance networking. As increasingly advanced research and education (R&E) communities. supercomputers and experimental research facil- To ensure that ESnet continues to meet the ities have provided researchers with powerful requirements of the major science disciplines a tools with unprecedented capabilities, advance- new approach and a new architecture are being ments in networks connecting scientists to these developed. This new architecture includes ele- tools have made these research facilities available ments supporting multiple, high-speed national to broader communities and helped build greater backbones with different characteristics—redun- collaboration within these communities. The dancy, quality of service, and circuit oriented DOE Office of Science (SC) operates the Energy services—all the while allowing interoperation of Sciences Network (ESnet). Established in 1985, these elements with the other major national and ESnet currently connects tens of thousands of international networks supporting science.
    [Show full text]
  • Understanding the Impact of Network Infrastructure Changes Using Large-Scale Measurement Platforms
    Understanding the Impact of Network Infrastructure Changes using Large-Scale Measurement Platforms Vaibhav Bajpai Understanding the Impact of Network Infrastructure Changes using Large-Scale Measurement Platforms by Vaibhav Bajpai A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Computer Science Dissertation Committee: Prof. Dr. Jürgen Schönwälder Jacobs University Bremen, Germany Dr. Kinga Lipskoch Jacobs University Bremen, Germany Prof. Dr. Filip De Turck University of Ghent, Belgium Date of Defense: May 30, 2016 DECLARATION I, hereby declare that I have written this PhD thesis independently, unless where clearly stated otherwise. I have used only the sources, the data and the support that I have clearly mentioned. This PhD thesis has not been submitted for conferral of degree elsewhere. I confirm that no rights of third parties will be infringed by the publication of this thesis. Bremen, Germany, May 30, 2016 Vaibhav Bajpai This thesis is dedicated to my mom for her love, endless support and encouragement ACKNOWLEDGMENTS I would like to express my gratitude to my supervisor Jürgen Schönwälder for providing me constant feedback and support throughout the entire duration of my doctoral research. I would also like to thank my thesis committee consisting of Jürgen Schönwälder, Kinga Lipskoch and Filip De Turck for guiding and supporting my doctoral research. I am grateful to my co-authors: Steffie Jacob Eravuchira, Saba Ahsan, Radek Krejˇcí,Jörg Ott and Jürgen Schönwälder with whom I learned to be a productive collaborator. Special thanks to: Sam Crawford, Philip Eardley, Trevor Burbridge, Arthur Berger, Daniel Karrenberg, Robert Kisteleki, Al Morton, Frank Bulk, Dan Wing and Andrew Yourtchenko for providing valuable and constructive feedback for improving my manuscripts.
    [Show full text]
  • THE INGHAM COUNTY NE.WS Section 2 and Diu Ll, I Gue11h 'Lhnl'u Tl Good Hally Is 'Mnlhi!L''• Lltllll Hpitl· Wny Lo Do If You Lceep Pu Ttlng CJ',' Something Orr, Mr
    ' I INGHAM COUNTY Ninety-second No, 42 THE Year~ MASON, MICHIGAN. THURSDAY, OCTOBER 18, 1951 3 Sections - 20 Pagc11 Hunters Shoot FIREWORKS AND SWORD-PLAY, TOO /~ Charity Dri~e Rice Oparates a Squash Ranch Halloween Program ~Q Council Names More Birds as Leaders· Start Is Growing Bigger ··-~-· I Ralph Hall as Pressure Eases Mn~on f{lwllnlnn~ rtl'e piilllnJl "'1'11" r1rrh J'iH'> WPifl slrlllorl 19 11onwwhr••r. nrounrl !11400 into the yenrs ngn I o MIJlplnnt the dnngrl­ On Canvassing Monday Opening Reduces pol In Hlflfl'e 1he enmtnlllllty'~ hlg­ g-rHI Hnllowccn pur•! y. llUH nnrl <'OII~Iy horscplny whlclt Prcssm·e on Pheasrmts, then wrrs lhl' Halloween c11stom Chief of Police AI n meeting 'I~IC~r!ny nl~rht Red Fenthe1· Campaign Hags Show Big I ncreasc thry s.11rl that the rutnunl party B11smcss mrn nnd Yotlnl:"stcl s Is Opened Out-County G1·oup Insurance Proglfllll flnH' hPCil showing- KlgnA of pctci­ have r•cnchcrl an implleri agree­ Tu Haisc Local Quotas Fcwcr huntc1s, mole buds rng- rml, Tlw flrrll:"rnrn outhnorl Jnr ment lhnt Halloween fun wlll be May Be Offered Employeoa and Ideal weather marked the this yr1n Hlinulrl 1 cvivc it In n big' cnntlnt•d to Athletic field uml lh,ll Instead of Sick Leaves wny, ·they dcclr11 cd the! o will he no sonpmg ol wln­ fi1 st three days of the bird sea· The pn 1ty will he IJCid the nlll'ht clows or trlrolt nncl lrel\t Rllll! son, Consc1 vat1on Officer of Wcdnnlldny, Octobc1 3t, nt Waltc1 Mutchler 1cportcd.
    [Show full text]
  • Growth of the Internet
    Growth of the Internet K. G. Coffman and A. M. Odlyzko AT&T Labs - Research [email protected], [email protected] Preliminary version, July 6, 2001 Abstract The Internet is the main cause of the recent explosion of activity in optical fiber telecommunica- tions. The high growth rates observed on the Internet, and the popular perception that growth rates were even higher, led to an upsurge in research, development, and investment in telecommunications. The telecom crash of 2000 occurred when investors realized that transmission capacity in place and under construction greatly exceeded actual traffic demand. This chapter discusses the growth of the Internet and compares it with that of other communication services. Internet traffic is growing, approximately doubling each year. There are reasonable arguments that it will continue to grow at this rate for the rest of this decade. If this happens, then in a few years, we may have a rough balance between supply and demand. Growth of the Internet K. G. Coffman and A. M. Odlyzko AT&T Labs - Research [email protected], [email protected] 1. Introduction Optical fiber communications was initially developed for the voice phone system. The feverish level of activity that we have experienced since the late 1990s, though, was caused primarily by the rapidly rising demand for Internet connectivity. The Internet has been growing at unprecedented rates. Moreover, because it is versatile and penetrates deeply into the economy, it is affecting all of society, and therefore has attracted inordinate amounts of public attention. The aim of this chapter is to summarize the current state of knowledge about the growth rates of the Internet, with special attention paid to the implications for fiber optic transmission.
    [Show full text]
  • 1117 M. Stahl Obsoletes Rfcs: 1062, 1020, 997, 990, 960, 943, M
    Network Working Group S. Romano Request for Comments: 1117 M. Stahl Obsoletes RFCs: 1062, 1020, 997, 990, 960, 943, M. Recker 923, 900, 870, 820, 790, 776, 770, 762, SRI-NIC 758, 755, 750, 739, 604, 503, 433, 349 August 1989 Obsoletes IENs: 127, 117, 93 INTERNET NUMBERS Status of this Memo This memo is an official status report on the network numbers and the autonomous system numbers used in the Internet community. Distribution of this memo is unlimited. Introduction This Network Working Group Request for Comments documents the currently assigned network numbers and gateway autonomous systems. This RFC will be updated periodically, and in any case current information can be obtained from Hostmaster at the DDN Network Information Center (NIC). Hostmaster DDN Network Information Center SRI International 333 Ravenswood Avenue Menlo Park, California 94025 Phone: 1-800-235-3155 Network mail: [email protected] Most of the protocols used in the Internet are documented in the RFC series of notes. Some of the items listed are undocumented. Further information on protocols can be found in the memo "Official Internet Protocols" [40]. The more prominent and more generally used are documented in the "DDN Protocol Handbook" [17] prepared by the NIC. Other collections of older or obsolete protocols are contained in the "Internet Protocol Transition Workbook" [18], or in the "ARPANET Protocol Transition Handbook" [19]. For further information on ordering the complete 1985 DDN Protocol Handbook, contact the Hostmaster. Also, the Internet Activities Board (IAB) publishes the "IAB Official Protocol Standards" [52], which describes the state of standardization of protocols used in the Internet.
    [Show full text]
  • New Zealand's High Speed Research Network
    Report prepared for the Ministry of Business, Innovation and Employment New Zealand’s high speed research network: at a critical juncture David Moore, Linda Tran, Michael Uddstrom (NIWA) and Dean Yarrall 05 December 2018 About Sapere Research Group Limited Sapere Research Group is one of the largest expert consulting firms in Australasia and a leader in provision of independent economic, forensic accounting and public policy services. Sapere provides independent expert testimony, strategic advisory services, data analytics and other advice to Australasia’s private sector corporate clients, major law firms, government agencies, and regulatory bodies. Wellington Auckland Level 9, 1 Willeston St Level 8, 203 Queen St PO Box 587 PO Box 2475 Wellington 6140 Auckland 1140 Ph: +64 4 915 7590 Ph: +64 9 909 5810 Fax: +64 4 915 7596 Fax: +64 9 909 5828 Sydney Canberra Melbourne Suite 18.02, Level 18, 135 GPO Box 252 Level 8, 90 Collins Street King St Canberra City ACT 2601 Melbourne VIC 3000 Sydney NSW 2000 Ph: +61 2 6267 2700 GPO Box 3179 GPO Box 220 Fax: +61 2 6267 2710 Melbourne VIC 3001 Sydney NSW 2001 Ph: +61 3 9005 1454 Ph: +61 2 9234 0200 Fax: +61 2 9234 0201 Fax: +61 2 9234 0201 For information on this report please contact: Name: David Moore Telephone: +64 4 915 5355 Mobile: +64 21 518 002 Email: [email protected] Page i Contents Executive summary ..................................................................................................... vii 1. Introduction ...................................................................................................... 1 2. NRENs are essential to research data exchange .............................................. 2 2.1 A long history of NRENs ....................................................................................... 2 2.1.1 Established prior to adoption of TCP/IP ............................................
    [Show full text]
  • The Internet and Isi: Four Decades of Innovation
    THE INTERNET AND ISI: FOUR DECADES OF INNOVATION ROD BECKSTROM President and Chief Executive Officer Internet Corporation for Assigned Names and Numbers (ICANN) 40th Anniversary of USC Information Sciences Institute 26 April 2012 As prepared for delivery It’s an honor to be here today to mark the 40th anniversary of the University of Southern California’s Information Sciences Institute. Thank you to Herb Schorr for inviting me to speak with you today and participate in the day’s events. When he steps down he will leave some very large shoes to fill. When I received Herb’s invitation, I seized upon it as an opportunity to come before you to express the sincere gratitude that my colleagues and I feel for the work and support of ISI. When I think of ICANN and its development, and all we have accomplished, I never forget that we stand upon the shoulders of giants, many of whom contributed to my remarks today. In fact, I owe a special debt of gratitude to Bob Kahn, who has been a mentor to me. I am honored that he took the time to walk through a number of details in the history I have been asked to relate. The organizers asked me to speak about the history of ISI and ICANN. They also invited me to talk a bit about the future of the Internet. In my role as President and CEO of ICANN, I have many speaking engagements that are forward looking. They are opportunities to talk about ICANN’s work and how it will usher in the next phase in the history of the global, unified Internet that many of you have helped to create.
    [Show full text]
  • Proceedings of ~He Ninth
    Proceedings of ~he Ninth In~erne~ Engineering Task Force March 1-3, 1988 in San Diego Edited by Phillip Gross Allison Mankin May 1988 NINTH IETF The MITRECorporation Washington CsI Operations 7525 Colshire Drive McLean, Virginia 22102 TABLE OF CONTENTS Page 1.0 CHAIRMAN’S INTRODUCTION 2.0 IETF ATTENDEES 3.0 FINAL AGENDA 4.0 MEETING NOTES 4.1 Tuesday, March 1 4.2 Wednesday, March 2 4.3 Thursday, March 3 11 5.0 WORKING GROUP REPORTS 17 5.1 Authentication 17 5.2 EGP3 18 5.3 Performance and Congestion Control 19 5.4 Short-term Routing 21 5.5 Open Routing 25 5.6 Open SPF IGP 25 5.7 Host Requirements 28 5.8 ISO Technical Issues 29 5.9 Internet Management Information Base (MIB) 35 5.10 IETF CMIP-Based Net Management (NETMAN) 38 5.11 SNMP Extensions 4O TABLE OF CONTENTS (Continued) Page 6.0 PRESENTATION SLIDES 41 6.1 Report on the New NSFnet--Hans-Werner Braun, UMich 42 6.2 Report on the New NSFnet (Cont.)--Jacob Rekhter, IBM 62 6.3 Status of the Adopt-A-GW Program--Bob Enger, Contel 84 6.4 Status of the Adopt-A-GW Program (Cont.)--Phill Gross, MITRE 98 6.5 BBN Report--Mike Brescia, BBN 105 6.6 BBN Report (Cont.)--Marianne (Gardner) Lepp, 121 6.7 Domain Working Group--Mark Lottor, SRI-NIC 126 6.8 EGP3 Working Group--Marianne (Gardner) Lepp, BBN 129 6.9 Open Systems Internet Operations Center WG--Jeff Case, UTK 131 6.10 Authentication WG--Marty Schoffstall, RPI 136 6.11 Performance/Congestion Control--Coleman Blake, MITRE 138 6.12 OSI Technical Issues WG--Ross Callon, BBN 141 6.13 OSI Technical Issues WG (Cont.)--Rob Hagens, UWisc 151 6.14 OSI
    [Show full text]
  • Active Network Encapsulation Protocol (ANEP)
    Page 1 of 11 Active Networks Group D. Scott Alexander Request for Comments: DRAFT Bob Braden Category: Experimental Carl A. Gunter Alden W. Jackson Angelos D. Keromytis Gary J. Minden David Wetherall Active Network Encapsulation Protocol (ANEP) Status of this Memo This memo defines an Experimental Protocol for the Internet community. This memo does not specify an Internet standard of any kind. Discussion and suggestions for improvement are requested. Distribution of this memo is unlimited. Abstract This document specifies a mechanism for encapsulating Active Network frames for transmission over different media. The suggested format allows use of an existing network infrastructure (such as IP [RFC791] or IPv6 [RFC1883]) or transmission over the link layer. In order to support ongoing research, the proposed mechanism is as generic and extensible as possible. This mechanism allows co-existence of different execution environments and proper demultiplexing of received packets. 1. Introduction An active network node is capable of dynamically loading and executing programs, written in a variety of languages. These programs are carried in the payload of an active network frame. The program is executed by a receiving node in the environment specified by the ANEP. Various options can be specified in the ANEP header, such as authentication, confidentiality, or integrity. This document describes the syntax and semantics of ANEP. The details of handling the contents of an active frame are left up to the individual implementations/environments. Active Networks Project [Page 1] RFC DRAFT July 1997 http://seclab.uiuc.edu/cgunter/dist/ANEP.txt 4/22/2011 Page 2 of 11 2. Terminology packet - an ANEP header plus the payload active node - a network element that can evaluate active packets TLV - acronym for Type/Length/Value constructs basic header - the first two elements of the ANEP header 3.
    [Show full text]
  • Atp 6-02.45 Techniques for Tactical Signal Support To
    ATP 6-02.45 TECHNIQUES FOR TACTICAL SIGNAL SUPPORT TO THEATER OPERATIONS NOVEMBER 2019 DISTRIBUTION RESTRICTION: Approved for public release, distribution is unlimited. This publication supersedes FMI 6-02.45, dated 5 July 2007. Headquarters, Department of the Army This publication is available at the Army Publishing Directorate site (https://armypubs.army.mil/), and the Central Army Registry site (https://atiam.train.army.mil/catalog/dashboard). *ATP 6-02.45 Army Techniques Publication Headquarters No. 6-02.45 Department of the Army Washington, DC, 07 November 2019 Techniques for Tactical Signal Support to Theater Operations Contents Page PREFACE.................................................................................................................... iii INTRODUCTION .......................................................................................................... v Chapter 1 THE OPERATIONAL ENVIRONMENT .................................................................... 1-1 The Information Environment .................................................................................... 1-1 The Tactical Network ................................................................................................. 1-3 Chapter 2 ECHELONS ABOVE CORPS TACTICAL NETWORK ARCHITECTURE .............. 2-1 Section I –Network Architecture and Transport Capabilities ............................. 2-1 Colorless Core Architecture....................................................................................... 2-1 Network Transport Capabilities
    [Show full text]