Species Composition, Emergence, and Habitat Preferences of Trichoptera of the Sagehen Creek Basin, California, USA

Total Page:16

File Type:pdf, Size:1020Kb

Species Composition, Emergence, and Habitat Preferences of Trichoptera of the Sagehen Creek Basin, California, USA Great Basin Naturalist Volume 49 Number 2 Article 5 4-30-1989 Species composition, emergence, and habitat preferences of Trichoptera of the Sagehen Creek Basin, California, USA Nancy A. Erman University of California, Berkeley Follow this and additional works at: https://scholarsarchive.byu.edu/gbn Recommended Citation Erman, Nancy A. (1989) "Species composition, emergence, and habitat preferences of Trichoptera of the Sagehen Creek Basin, California, USA," Great Basin Naturalist: Vol. 49 : No. 2 , Article 5. Available at: https://scholarsarchive.byu.edu/gbn/vol49/iss2/5 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. SPECIES COMPOSITION, EMERGENCE, AND HABITAT PREFERENCES OF TRICHOPTERA OF THE SAGEHEN CREEK BASIN, CALIFORNIA, USA Nancy A. Erman 1 Abstract. —An extensive study of larvae and adult Trichoptera of the Sagehen Creek basin. Sierra Nevada, California, USA, revealed 77 species representing 14 families and 41 genera. Twenty-six species were restricted to small water bodies (spring sources, seeps, spring streams, temporary ponds, and intermittent streams); 27 were restricted to Sagehen Creek, a second-order stream, and the mouths of two large spring streams. Similarity between species caught at black lights and those in emergence traps was 43%. There were two major peaks in adult emergence by species, midsummer and late summer-fall. A few species emerged during winter or throughout most of the year. The species composition of the community showed affinity with Oregon, the Great Basin, and the Rocky Mountains but very little similarity with the California Coast Range. Four of the most abundant species in the basin have very restricted distributions. Ecological separation of several groups of closely related species could be explained by major differences in larval habitats or by different emergence periods. Trichoptera from the Sierra Nevada of Cali- The primary objectives of the present study fornia have been collected and described in were to determine the species composition, papers over the last several decades, but no emergence periods, and habitat preferences comprehensive studies of species abundance of the Trichoptera community of the Sagehen and distribution exist for the Sierra Nevada or Creek basin. As the study progressed, sec- for any part of it. The Sagehen Creek basin on ondary objectives emerged, such as a com- the east side of the Sierra Nevada has been the parison of collecting methods, development site of a University of California field station of emergence collection techniques for re- and of numerous aquatic biology studies since mote areas, and examination of some taxo- 1951. Trichoptera from this watershed have nomic problems. been critical to several svstematic (i.e., Den- ning Wiggins 1970, 1973, 1977, Parker and Study Area Wiggins 1985) and behavioral studies (Erman 1981, 1984, 1986, 1987). Other aquatic inver- Sagehen Creek basin is on the east side of tebrate work in the Sagehen Creek basin is the northern Sierra Nevada, Nevada and extensive. A comprehensive list of the stone- Sierra counties, California, and on the west- flies was published by Sheldon and Jewett ern edge of the Great Basin in the Lahontan (1967) and updated by R. Baumann, W. Shep- drainage. It includes 2,700 hectares from its ard, B. Stark, and S. Szczytko for the first headwaters (elevation 2,256 m) to its end in North American Plecoptera Conference in Stampede Reservoir (elevation 1,804 m). 1985 (unpublished). Plecoptera material from Mean annual precipitation is 93 cm, most of the Sagehen Creek basin has contributed to which falls as snow. Mean annual temperature many systematic (Jewett 1966, Surdick 1981, at the field station measuring station (1,943 m) Szczytko and Stewart 1979, 1984) and ecologi- is 4.9 C, and temperatures below freezing can cal studies (Sheldon 1969, 1972, 1980). occur in any mouth. Within the Sagehen Creek The Turbellaria have been studied (Kenk basin is a wide diversity of aquatic habitats. 1970, 1972) as has the amphipod genus Stygo- In addition to the second-order, spring-fed bromas (Holsinger 1974); and the Cricotopus- Sagehen Creek, there are many permanent, Nostoc relationship was first described in constant-temperature springs (3.5-9 C) and Sagehen Creek (Brock 1960). The aquatic in- spring streams of various sizes and physical- vertebrate community and secondary produc- chemical conditions, several minerotrophic tion in peatlands have been examined (Erman peatlands (fens) in different stages of evolution and Erman 1975). (Erman 1976, Bartolome et al. in press), a Department of Forestry and Resouree Management. Universitj ol < ialifornia, Berkeley. California 91720 186 April 1989 Erman: California Trichoptera 187 small cirque pond at the head of the basin that solved have been or will be sent to the Royal dries completely about two out of three years, Ontario Museum, Toronto, Canada. and temporary streams that exist each year for varying time periods. Results and Discussion Species Habitats and Distribution Methods A total of 77 species representing 14 families and 41 genera were collected in the Adults were collected with emergence basin (Table 1). Limnephilidae was the most traps, black lights, hand nets, and fish traps. abundantly represented family with 32 spe- Emergence traps were of two types: one, a cies, followed by Rhyacophilidae with 13 spe- 1 X 1-m base pyramidal trap with collecting cies. Larval habitats were determined for bottle (80% alcohol) that was emptied at one- most species and are given in Table 1. Habi- or two-week intervals; the other, a smaller tats could not be determined for 12 species folding trap that could be easily moved to caught only by black light and for whom larvae more remote sites. During the six years of the were unknown. study over 800 one- or two-week emergence Twenty-six species occurred in one small trap samples were collected in 22 locations in water body or a combination of spring the basin, including spring sources, spring sources, spring seeps, spring streams, tempo- streams (first-order streams), an intermittent rary ponds, and intermittent streams but not stream, and Sagehen Creek. Fish traps, used in Sagehen Creek. At least one-third of the in other studies, were closed screen boxes, species in the basin, then, were restricted to open only on the ends. They extended above smaller aquatic habitats. Conversely, at least the water and were emptied from the hinged 27 other species, approximately another one- top (see Erman and Leidy 1975). They were third, were confined to Sagehen Creek and/or useful for collecting both larval and adult cad- near the mouths of the two largest spring disflies. Black lights were used in the vicinity streams only. Twelve species were found in of the U.C. field station. One black light was both general habitat groups, though they may run intermittently in the same location (about have shown a preference for one or the other. 30 m from the nearest water) at the field sta- Fifteen species from six families showed a tion from as early as April to as late as October variety of adaptations for life in variable habi- from 1980 to spring 1987. This light was not a tats at the land-water interface and are dis- trap; specimens were sampled at approxi- cussed in more detail elsewhere (Erman 1981, mately half-hour to one-hour intervals on 111 1986, 1987). Larvae of Clostoeca disjuncta nights. Other portable black lights were used were never found in permanent water. Adults in remote areas. Hand-netting and sweep- of Hesperophylax designatus and Wormaldia netting of vegetation were done at many pachita emerged from an intermittent stream aquatic sites in the basin. just days before it dried completely. Lim- Larvae were collected with kick screens, nephilus peltus left permanent spring streams Surber-type samplers, and scoops. They were and pupated in damp moss; in laboratory rear- also collected by hand-picking. The objective ing studies it could not emerge if left in per- of the combination of sampling techniques manent water. A few species (i.e., Goeracea was to collect, if possible, all Trichoptera spe- oregona, Allomyia cidoipes, Lepidostoma er- cies in the basin and to determine the larval manae) were limited to one or a few springs. habitats of all species collected. To that end, The distribution of the species in springs and many larvae were also reared. Quantitative their requirements will be discussed further sampling was not an objective; however, for in a future paper, the result of a separate study comparative purposes, the emergence traps on Sierra Nevada springs. provided data on relative abundance of spe- Species Abundance cies. A reference collection of most species will Relative abundance of species given in be placed in the California Academy of Sci- Table 1 is based roughly (a) on number of ences, Golden Gate Park, San Francisco. adults caught during the study, (b) on distri- Some of the more rare species and those for bution in numbers of habitats based on emer- which taxonomic questions have yet to be re- gence trapping, and (c) on an assessment of 188 Cheat Basin Naturalist Vol. 49, No. 2 larval abundances. The ratings shown are, of emergence, and attraction to light, affect trap- necessity, somewhat subjective. The 10 spe- ping success and could be considered on a cies designated as abundant were either species-by-species basis. The objective of this caught in very high numbers at black lights study, however, was not to study reasons for and were present as larvae in large numbers in trapping success but to collect all species pos- Sagehen Creek (7 species), or were caught in sible, and no attempt was made to quantify high numbers in emergence traps and in trapping effort for each technique.
Recommended publications
  • ARTHROPOD COMMUNITIES and PASSERINE DIET: EFFECTS of SHRUB EXPANSION in WESTERN ALASKA by Molly Tankersley Mcdermott, B.A./B.S
    Arthropod communities and passerine diet: effects of shrub expansion in Western Alaska Item Type Thesis Authors McDermott, Molly Tankersley Download date 26/09/2021 06:13:39 Link to Item http://hdl.handle.net/11122/7893 ARTHROPOD COMMUNITIES AND PASSERINE DIET: EFFECTS OF SHRUB EXPANSION IN WESTERN ALASKA By Molly Tankersley McDermott, B.A./B.S. A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Biological Sciences University of Alaska Fairbanks August 2017 APPROVED: Pat Doak, Committee Chair Greg Breed, Committee Member Colleen Handel, Committee Member Christa Mulder, Committee Member Kris Hundertmark, Chair Department o f Biology and Wildlife Paul Layer, Dean College o f Natural Science and Mathematics Michael Castellini, Dean of the Graduate School ABSTRACT Across the Arctic, taller woody shrubs, particularly willow (Salix spp.), birch (Betula spp.), and alder (Alnus spp.), have been expanding rapidly onto tundra. Changes in vegetation structure can alter the physical habitat structure, thermal environment, and food available to arthropods, which play an important role in the structure and functioning of Arctic ecosystems. Not only do they provide key ecosystem services such as pollination and nutrient cycling, they are an essential food source for migratory birds. In this study I examined the relationships between the abundance, diversity, and community composition of arthropods and the height and cover of several shrub species across a tundra-shrub gradient in northwestern Alaska. To characterize nestling diet of common passerines that occupy this gradient, I used next-generation sequencing of fecal matter. Willow cover was strongly and consistently associated with abundance and biomass of arthropods and significant shifts in arthropod community composition and diversity.
    [Show full text]
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • List of Animal Species with Ranks October 2017
    Washington Natural Heritage Program List of Animal Species with Ranks October 2017 The following list of animals known from Washington is complete for resident and transient vertebrates and several groups of invertebrates, including odonates, branchipods, tiger beetles, butterflies, gastropods, freshwater bivalves and bumble bees. Some species from other groups are included, especially where there are conservation concerns. Among these are the Palouse giant earthworm, a few moths and some of our mayflies and grasshoppers. Currently 857 vertebrate and 1,100 invertebrate taxa are included. Conservation status, in the form of range-wide, national and state ranks are assigned to each taxon. Information on species range and distribution, number of individuals, population trends and threats is collected into a ranking form, analyzed, and used to assign ranks. Ranks are updated periodically, as new information is collected. We welcome new information for any species on our list. Common Name Scientific Name Class Global Rank State Rank State Status Federal Status Northwestern Salamander Ambystoma gracile Amphibia G5 S5 Long-toed Salamander Ambystoma macrodactylum Amphibia G5 S5 Tiger Salamander Ambystoma tigrinum Amphibia G5 S3 Ensatina Ensatina eschscholtzii Amphibia G5 S5 Dunn's Salamander Plethodon dunni Amphibia G4 S3 C Larch Mountain Salamander Plethodon larselli Amphibia G3 S3 S Van Dyke's Salamander Plethodon vandykei Amphibia G3 S3 C Western Red-backed Salamander Plethodon vehiculum Amphibia G5 S5 Rough-skinned Newt Taricha granulosa
    [Show full text]
  • Morphometries of Two Californian Populations of Gumaga Nigricula (Mclachlan 1871) (Trichoptera: Sericostomatidae)12
    Morphometries of two Californian populations of Gumaga nigricula (McLachlan 1871) (Trichoptera: Sericostomatidae)12 Jorge A. Santiago-Blay3 J. Agrie, Univ. RR. 80(3):157-167 (1996) ABSTRACT Eighty Gumaga nigricula larvae from Hopland Spring and Big Sulphur Creek, northern California, USA, were studied to quantify possible dissimi­ larities among them. The populations are statistically different in two meris- tic characters: number of setae on the anterior margin of the pronotum and number of pleural sclerites on abdominal segment VIII. They also appear to be different in a continuous character, head width/length ratio. In all cases, specimens from Big Sulphur Creek have statistically significant higher val­ ues. These data are congruent with the hypothesis that there is biologically significant genetic isolation between these populations. Key words: Morphometries, Gumaga, Trichoptera, morphology, systematics, ecological indicator RESUMEN Morfometría en dos poblaciones california ñas de Gumaga nigricula (McLachlan 1871) {Trichoptera: Sericostomatidae) Ochenta larvas de Gumaga nigricula provenientes del Hopland Spring y del Big Sulphur Creek en el norte de California, Estados Unidos, se estudia­ ron para cuantificar las posibles diferencias entre ellas. Estas poblaciones son estadísticamente diferentes en dos características merísticas: el nú­ mero de cerdas en el margen anterior del pronoto y el número de escleritos pleurales en el segmento abdominal VIH. Estas poblaciones también pare­ cen ser diferentes en la característica continua, cociente ancho/largo de la 'Manuscript submitted to Editorial Board 15 February 1995, 2I wish to thank V. R. Resh for providing laboratory facilities, literature, and speci­ mens for this study. J. R. Wood also provided specimens, excellent advice, and a preview of the conclusions of his doctoral dissertation on the taxonomic question addressed in this study.
    [Show full text]
  • Publications of Glenn B
    Publications: Glenn B. Wiggins, Curator Emeritus, Entomology 2010 Wiggins, G.B. “No small matters. Introducing Biological Notes on an Old Farm: Exploring Common Things in the Kingdoms of Life.” ROM Magazine, 42(2): 29- 31. * 2009 Wiggins, G.B. Biological Notes on an Old Farm: Exploring Common Things in the Kingdoms of Life. Royal Ontario Museum, Toronto. 2008 Wiggins, G.B. and D.C. Currie. “Trichoptera Families.” In An Introduction to the Aquatic Insects of North America, edited by R.W. Merritt, K.W. Cummins, and M.B. Berg. Kendall/Hunt, Dubuque, Iowa (4th edition, revised). 2007 Wiggins, G.B. “Architects under water.” American Entomologist, 53(2): 78-85. 2005b Wiggins, G.B. “Review: Vernal pools, natural history and conservation by Elizabeth A. Colburn.” Journal of the North American Benthological Society, 24(4): 1009-1013. 2005a Vineyard, R.N., G.B. Wiggins, H.E. Frania, and P.W. Schefter. “The caddisfly genus Neophylax (Trichoptera: Uenoidae).” Royal Ontario Museum Contributions in Science, 2: 1-141. * 2004b Wiggins, G.B. Caddisflies: The Underwater Architects. University of Toronto Press. 2004a Wiggins, G.B. “Caddisflies: glimpses into evolutionary history.” Rotunda, 38(2): 32-39. 2002 Wiggins, G.B. “Biogeography of amphipolar caddisflies in the subfamily Dicosmoecinae (Trichoptera, Limnephilidae).” Mitteilungen aus dem Museum für Naturkunde in Berlin, Deutsche Entomologische Zeitschrift, 49(2002) 2: 227- 259. 2001 Wiggins, G.B. “Construction behavior for new pupal cases by case-making caddis larvae: Further comment. (Trichoptera: Integripalpia).” Braueria, 28: 7-9. 1999b Gall, W.K. and G.B. Wiggins. “Evidence bearing on a sister-group relationship between the families Phryganeidae and Plectrotarsidae (Trichoptera).” Proceedings of the Ninth International Symposium on Trichoptera, Chiang Mai, Thailand, 1998, edited by H.
    [Show full text]
  • Comprehensive Conservation Plan Benton Lake National Wildlife
    Glossary accessible—Pertaining to physical access to areas breeding habitat—Environment used by migratory and activities for people of different abilities, es- birds or other animals during the breeding sea- pecially those with physical impairments. son. A.D.—Anno Domini, “in the year of the Lord.” canopy—Layer of foliage, generally the uppermost adaptive resource management (ARM)—The rigorous layer, in a vegetative stand; mid-level or under- application of management, research, and moni- story vegetation in multilayered stands. Canopy toring to gain information and experience neces- closure (also canopy cover) is an estimate of the sary to assess and change management activities. amount of overhead vegetative cover. It is a process that uses feedback from research, CCP—See comprehensive conservation plan. monitoring, and evaluation of management ac- CFR—See Code of Federal Regulations. tions to support or change objectives and strate- CO2—Carbon dioxide. gies at all planning levels. It is also a process in Code of Federal Regulations (CFR)—Codification of which the Service carries out policy decisions the general and permanent rules published in the within a framework of scientifically driven ex- Federal Register by the Executive departments periments to test predictions and assumptions and agencies of the Federal Government. Each inherent in management plans. Analysis of re- volume of the CFR is updated once each calendar sults helps managers decide whether current year. management should continue as is or whether it compact—Montana House bill 717–Bill to Ratify should be modified to achieve desired conditions. Water Rights Compact. alternative—Reasonable way to solve an identi- compatibility determination—See compatible use.
    [Show full text]
  • (Trichoptera: Limnephilidae) in Western North America By
    AN ABSTRACT OF THE THESIS OF Robert W. Wisseman for the degree of Master ofScience in Entomology presented on August 6, 1987 Title: Biology and Distribution of the Dicosmoecinae (Trichoptera: Limnsphilidae) in Western North America Redacted for privacy Abstract approved: N. H. Anderson Literature and museum records have been reviewed to provide a summary on the distribution, habitat associations and biology of six western North American Dicosmoecinae genera and the single eastern North American genus, Ironoquia. Results of this survey are presented and discussed for Allocosmoecus,Amphicosmoecus and Ecclisomvia. Field studies were conducted in western Oregon on the life-histories of four species, Dicosmoecusatripes, D. failvipes, Onocosmoecus unicolor andEcclisocosmoecus scvlla. Although there are similarities between generain the general habitat requirements, the differences or variability is such that we cannot generalize to a "typical" dicosmoecine life-history strategy. A common thread for the subfamily is the association with cool, montane streams. However, within this stream category habitat associations range from semi-aquatic, through first-order specialists, to river inhabitants. In feeding habits most species are omnivorous, but they range from being primarilydetritivorous to algal grazers. The seasonal occurrence of the various life stages and voltinism patterns are also variable. Larvae show inter- and intraspecificsegregation in the utilization of food resources and microhabitatsin streams. Larval life-history patterns appear to be closely linked to seasonal regimes in stream discharge. A functional role for the various types of case architecture seen between and within species is examined. Manipulation of case architecture appears to enable efficient utilization of a changing seasonal pattern of microhabitats and food resources.
    [Show full text]
  • User Manual Beta Sdam Aw.Pdf
    User Manual for a Beta Streamflow Duration Assessment Method for the Arid West of the United States Version 1.0 March 1, 2021 Prepared by Raphael Mazor1, Brian Topping2, Tracie-Lynn Nadeau2,3, Ken M. Fritz4, Julia Kelso5, Rachel Harrington6, Whitney Beck2, Kenneth McCune1, Heili Lowman1, Aaron Allen7, Robert Leidy8, James T. Robb9, and Gabrielle C. L. David10. 1 Southern California Coastal Water Research Project. Costa Mesa, CA 2 U.S. Environmental Protection Agency—Office of Wetlands, Oceans, and Watersheds. Washington, D.C. 3 U.S. Environmental Protection Agency—Region 10. Portland, OR 4 U.S. Environmental Protection Agency—Office of Research and Development. Cincinnati, OH 5 Oak Ridge Institute of Science and Education (ORISE) Fellow at U.S. Environmental Protection Agency—Office of Wetlands, Oceans, and Watersheds. Washington, D.C. 6 U.S. Environmental Protection Agency—Region 8. Denver, CO 7 U.S. Army Corps of Engineers–South Pacific Division. Los Angeles, CA 8 U.S. Environmental Protection Agency—Region 9. San Francisco, CA. 9 U.S. Army Corps of Engineers – South Pacific Division. Sacramento, CA 10 U.S. Army Corps of Engineers—Engineer Research and Development Center Cold Regions Research and Engineering Laboratory. Hanover, NH. Suggested citation: Mazor, R.D., Topping, B., Nadeau, T.-L., Fritz, K.M., Kelso, J., Harrington, R., Beck, W., McCune, K., Lowman, H., Allen, A., Leidy, R., Robb, J.T., and David, G.C.L. 2021. User Manuel for a Beta Streamflow Duration Assessment Method for the Arid West of the United States. Version 1.0. Document No. EPA- 800-5-21001 Cover images The top row shows the biological indicators included in the streamflow duration assessment method for the Arid West: number of hydrophytic plant species, such as seep monkey flowers; abundance of aquatic invertebrates, such as black fly larvae; evidence of mayfly, stonefly, and caddisfly taxa, such as a larva or pupal case of Dicosmoecus gilvipes (photo credit: California Department of Fish and Wildlife’s Aquatic Bioassessment Lab); and algal cover on the streambed.
    [Show full text]
  • Dna Barcodes, Partitioned Phylogenetic Models, And
    LARGE DATASETS AND TRICHOPTERA PHYLOGENETICS: DNA BARCODES, PARTITIONED PHYLOGENETIC MODELS, AND THE EVOLUTION OF PHRYGANEIDAE By PAUL BRYAN FRANDSEN A dissertation submitted to the Graduate School-New Brunswick Rutgers, The State University of New Jersey In partial fulfillment of the requirements For the degree of Doctor of Philosophy Graduate Program in Entomology Written under the direction of Karl M. Kjer And approved by _____________________________________ _____________________________________ _____________________________________ _____________________________________ New Brunswick, New Jersey OCTOBER 2015 ABSTRACT OF THE DISSERTATION Large datasets and Trichoptera phylogenetics: DNA barcodes, partitioned phylogenetic models, and the evolution of Phryganeidae By PAUL BRYAN FRANDSEN Dissertation Director: Karl M. Kjer Large datasets in phylogenetics—those with a large number of taxa, e.g. DNA barcode data sets, and those with a large amount of sequence data per taxon, e.g. data sets generated from high throughput sequencing—pose both exciting possibilities and interesting analytical problems. The analysis of both types of large datasets is explored in this dissertation. First, the use of DNA barcodes in phylogenetics is investigated via the generation of phylogenetic trees for known monophyletic clades. Barcodes are found to be useful in shallow scale phylogenetic analyses when given a well-supported scaffold on which to place them. One of the analytical challenges posed by large phylogenetic datasets is the selection of appropriate partitioned models of molecular evolution. The most commonly used model partitioning strategies can fail to characterize the true variation of the evolutionary process and this effect can be exacerbated when applied to large datasets. A new, scalable algorithm for the automatic selection ! ii! of partitioned models of molecular evolution is proposed with an eye toward reducing systematic error in phylogenomics.
    [Show full text]
  • 2002 Benthic Sites with Data Types Available for Each Site
    APPENDIX A 2002 Benthic Sites with Data Types Available for Each Site 04-1422-022.1 King County 2002 Benthic Macroinvertebrate Data Analyses FINAL August 2004 A-1 APPENDIX A - 2002 Benthic Sites with Data Types Available for Each Site Land WQ Hydrology Benthic Use Habitat Station WQ Station Hydrology Watershed Site Code Site Name Data Data Data Code Data Code Data Green-Duwamish 09BLA0675 Black 0675 x x x Green-Duwamish 09BLA0716 Black 0716 x x x Green-Duwamish 09BLA0722 Black 0722 x x x A326 x Green-Duwamish 09BLA0756 Black 0756 x x x Green-Duwamish 09BLA0768 Black 0768 x x x 03B x Green-Duwamish 09BLA0768 Black 0768 Replicate x x x 03B x Green-Duwamish 09BLA0771 Black 0771 x x x Green-Duwamish 09BLA0772 Black 0772 x x x Green-Duwamish 09BLA0813 Black 0813 x x x Green-Duwamish 09BLA0817 Black 0817 x x x Green-Duwamish 09BLA0817 Black 0817 Replicate x x x Green-Duwamish 09COV1165 Covington Basin 1165 x x x Green-Duwamish 09COV1418 Covington Basin 1418 x x x C320 x Green-Duwamish 09COV1753 Covington Basin 1753 x x x Green-Duwamish 09COV1798 Covington Basin 1798 x x x Green-Duwamish 09COV1862 Covington Basin 1862 x x x Green-Duwamish 09COV1864 Covington Basin 1864 x x x Green-Duwamish Covington Basin Soos 03 x x Green-Duwamish 09DEE2163 Deep/Coal Basin 2163 x x x Green-Duwamish 09DEE2208 Deep/Coal Basin 2208 x x x Green-Duwamish 09DEE2211 Deep/Coal Basin 2211 x x x Green-Duwamish 09DEE2266 Deep/Coal Basin 2266 x x x Green-Duwamish 09DEE2294 Deep/Coal Basin 2294 x x x Green-Duwamish 09DEE2294 Deep/Coal Basin 2294 Replicate x x x Green-Duwamish
    [Show full text]
  • Nabs 2004 Final
    CURRENT AND SELECTED BIBLIOGRAPHIES ON BENTHIC BIOLOGY 2004 Published August, 2005 North American Benthological Society 2 FOREWORD “Current and Selected Bibliographies on Benthic Biology” is published annu- ally for the members of the North American Benthological Society, and summarizes titles of articles published during the previous year. Pertinent titles prior to that year are also included if they have not been cited in previous reviews. I wish to thank each of the members of the NABS Literature Review Committee for providing bibliographic information for the 2004 NABS BIBLIOGRAPHY. I would also like to thank Elizabeth Wohlgemuth, INHS Librarian, and library assis- tants Anna FitzSimmons, Jessica Beverly, and Elizabeth Day, for their assistance in putting the 2004 bibliography together. Membership in the North American Benthological Society may be obtained by contacting Ms. Lucinda B. Johnson, Natural Resources Research Institute, Uni- versity of Minnesota, 5013 Miller Trunk Highway, Duluth, MN 55811. Phone: 218/720-4251. email:[email protected]. Dr. Donald W. Webb, Editor NABS Bibliography Illinois Natural History Survey Center for Biodiversity 607 East Peabody Drive Champaign, IL 61820 217/333-6846 e-mail: [email protected] 3 CONTENTS PERIPHYTON: Christine L. Weilhoefer, Environmental Science and Resources, Portland State University, Portland, O97207.................................5 ANNELIDA (Oligochaeta, etc.): Mark J. Wetzel, Center for Biodiversity, Illinois Natural History Survey, 607 East Peabody Drive, Champaign, IL 61820.................................................................................................................6 ANNELIDA (Hirudinea): Donald J. Klemm, Ecosystems Research Branch (MS-642), Ecological Exposure Research Division, National Exposure Re- search Laboratory, Office of Research & Development, U.S. Environmental Protection Agency, 26 W. Martin Luther King Dr., Cincinnati, OH 45268- 0001 and William E.
    [Show full text]
  • Monitoring Wilderness Stream Ecosystems
    United States Department of Monitoring Agriculture Forest Service Wilderness Stream Rocky Mountain Ecosystems Research Station General Technical Jeffrey C. Davis Report RMRS-GTR-70 G. Wayne Minshall Christopher T. Robinson January 2001 Peter Landres Abstract Davis, Jeffrey C.; Minshall, G. Wayne; Robinson, Christopher T.; Landres, Peter. 2001. Monitoring wilderness stream ecosystems. Gen. Tech. Rep. RMRS-GTR-70. Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 137 p. A protocol and methods for monitoring the major physical, chemical, and biological components of stream ecosystems are presented. The monitor- ing protocol is organized into four stages. At stage 1 information is obtained on a basic set of parameters that describe stream ecosystems. Each following stage builds upon stage 1 by increasing the number of parameters and the detail and frequency of the measurements. Stage 4 supplements analyses of stream biotic structure with measurements of stream function: carbon and nutrient processes. Standard methods are presented that were selected or modified through extensive field applica- tion for use in remote settings. Keywords: bioassessment, methods, sampling, macroinvertebrates, production The Authors emphasize aquatic benthic inverte- brates, community dynamics, and Jeffrey C. Davis is an aquatic ecolo- stream ecosystem structure and func- gist currently working in Coastal Man- tion. For the past 19 years he has agement for the State of Alaska. He been conducting research on the received his B.S. from the University long-term effects of wildfires on of Alaska, Anchorage, and his M.S. stream ecosystems. He has authored from Idaho State University. His re- over 100 peer-reviewed journal ar- search has focused on nutrient dy- ticles and 85 technical reports.
    [Show full text]