Bangor University MASTERS by RESEARCH Investigating the Potential Susceptibility of Selected Malagasy Species to the Toxins Prod

Total Page:16

File Type:pdf, Size:1020Kb

Bangor University MASTERS by RESEARCH Investigating the Potential Susceptibility of Selected Malagasy Species to the Toxins Prod Bangor University MASTERS BY RESEARCH Investigating the potential susceptibility of selected Malagasy species to the toxins produced by Duttaphrynus melanostictus (Asian Common Toad) Marshall, Benjamin Award date: 2018 Awarding institution: Bangor University Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 27. Sep. 2021 Investigating the potential susceptibility of selected Malagasy species to the toxins produced by Duttaphrynus melanostictus (Asian Common Toad) Master of Science by Research in Biological Sciences Bangor University Benjamin Michael Marshall 2017 Supervised by Dr. Wolfgang Wüster Investigating the potential susceptibility of selected Malagasy species to the toxins produced by Duttaphrynus melanostictus (Asian Common Toad) Abstract Invasive and introduced species can pose major ecological challenges to vulnerable native wildlife. Biodiversity hotspots, in particular, require protection from this significant cause of species loss. One hotspot, Madagascar, is experiencing the accidental introduction of a potentially ecologically damaging species – the toxin carrying bufonid toad, Duttaphyrnus melanostictus. The presence of these toxic invaders drives fears that if such a species gains a foothold widespread poisoning of Malagasy predators could occur, mirroring the invasion of Australia by Rhinella marina. This includes numerous endemic and endangered species. The mechanism by which the toxin acts upon organisms has been previously identified via the study of toxin resistant versus toxin non-resistant taxa. Specific amino acid substitutions are required on the organism’s Na+/K+–ATPase for them to be resistant to bufonid toxin. This solution to combat the toxin is widely consistent across taxa providing a method to discover and predict toxin resistance or vulnerability. Here I investigate the Na+/K+–ATPase gene to detect vulnerability of a selection of Malagasy fauna to the toxics of Duttaphrynus melanostictus. It is discovered that no tested species on Madagascar have the capacity to survive ingestion of the novel toxin. The vulnerability is found in all examined species, including snakes, frogs, lizards, lemurs and tenrecs. The results suggest that the invasive Duttaphrynus melanostictus is liable to have significant impact on Malagasy fauna. i Contents Abstract ................................................................................................................................ i Contents .............................................................................................................................. ii List of Tables ...................................................................................................................... iii List of Figures .................................................................................................................... iii List of Accompanying Material ......................................................................................... iii Acknowledgements ........................................................................................................... iv Author’s Declaration ........................................................................................................... v Definitions .......................................................................................................................... vi Introduction and Background ............................................................................................ 1 The Cases of Immunity .............................................................................................................. 6 Snakes ..................................................................................................................................... 6 Insects ...................................................................................................................................... 7 Mammals.................................................................................................................................. 7 Varanids ................................................................................................................................... 8 Exceptions................................................................................................................................ 8 Past Invasions ............................................................................................................................ 8 Island Examples ....................................................................................................................... 9 The Australia Situation ........................................................................................................... 10 Madagascar and Invasions ..................................................................................................... 15 Fears and Potential Impacts .................................................................................................. 19 Methods ............................................................................................................................. 24 Results............................................................................................................................... 28 Results of PCR ......................................................................................................................... 28 Sequence Data ......................................................................................................................... 28 Snakes ................................................................................................................................... 29 Lizards .................................................................................................................................... 30 Amphibians ............................................................................................................................ 31 Mammals................................................................................................................................ 32 Isoelectric Point ....................................................................................................................... 32 Literature Search...................................................................................................................... 33 Discussion......................................................................................................................... 36 Herpetofauna ............................................................................................................................ 37 Snakes ................................................................................................................................... 37 Lizards .................................................................................................................................... 42 Amphibians ............................................................................................................................ 45 Chelonians ............................................................................................................................. 48 Crocodiles .............................................................................................................................. 49 Mammals ................................................................................................................................... 50 Carnivora................................................................................................................................ 50 Lemurs ................................................................................................................................... 52 Tenrecs .................................................................................................................................. 53 Implications and Behavioural Adaptations............................................................................. 54 Conclusions ...................................................................................................................... 58 References ........................................................................................................................ 59 Appendix ........................................................................................................................... 97 ii List of Tables Table 1 - Species count and endemism of Madagascar, excluding introductions. Figures from Table 1 in Goodman and Benstead (2005). (Does not include estimations of amphibians from Vieites et al. (2009) and Perl et al. (2014)). ........................................ 2 Table 2 - H1-H2 extracellular
Recommended publications
  • Predation Upon Mantella Aurantiaca in the Torotorofotsy Wetlands, Central-Eastern Madagascar
    Herpetology Notes, volume 2: 95-97 (2009) (published online on 10 July 2009) Predation upon Mantella aurantiaca in the Torotorofotsy wetlands, central-eastern Madagascar Olga Jovanovic1*, Miguel Vences1, Goran Safarek2, Falitiana C.E. Rabemananjara3, Rainer Dolch4 Abstract. Malagasy poisonous frogs of genus Mantella are small, diurnal frogs with skin glands containing alkaloids and characterised by aposematic colouration. Due to their noxiousness and warning colouration, it is thought that they do not have many natural predators. Until now, only one successful and one aborted predation on Mantella frogs were reported. Herein, we account about two successful predations on M. aurantiaca in Torotorofotsy wetland, in central-eastern Madagascar. The first predation was observed by lizard Zoonosaurus sp. and the second predation by a snake probably belonging to Thamnosophis lateralis. Both predators did not seem to mind the taste of the M. aurantiaca and ingested it. Keywords. Amphibia: Mantellidae, poison frogs, Thamnosophis, Zoonosaurus Only little is known about predation on poisonous genus Melanophryniscus of southeastern South America, frogs in general, in particular for those containing in Malagasy poison frogs of the genus Mantella (family skin alkaloids. Until now, there are around 30 reports Mantellidae) of Madagascar, and the myobatrachid published on predation on poisonous frogs, mostly genus Pseudophryne of Australia (Daly, Highet and belonging to the families Bufonidae and Leptodactylidae Myers, 1984; Daly et al., 2002). All of
    [Show full text]
  • Species Diversity of Snakes in Pachmarhi Biosphere Reserve
    & Herpeto gy lo lo gy o : h C it u n r r r e O Fellows, Entomol Ornithol Herpetol 2014, 4:1 n , t y R g e o l s o e Entomology, Ornithology & Herpetology: DOI: 10.4172/2161-0983.1000136 a m r o c t h n E ISSN: 2161-0983 Current Research ResearchCase Report Article OpenOpen Access Access Species Diversity of Snakes in Pachmarhi Biosphere Reserve Sandeep Fellows* Asst Conservator of forest, Madhya Pradesh Forest Department (Information Technology Wing), Satpura Bhawan, Bhopal (M.P) Abstract Madhya Pradesh (MP), the central Indian state is well-renowned for reptile fauna. In particular, Pachmarhi Biosphere Reserve (PBR) regions (Districts Hoshangabad, Betul and Chindwara) of MP comprises a vast range of reptiles, especially herpetofauna yet unexplored from the conservation point of view. Earlier inventory herpetofaunal study conducted in 2005 at MP and Chhattisgarh (CG) reported 6 snake families included 39 species. After this preliminary report, no literature existing regarding snake diversity of this region. This situation incited us to update the snake diversity of PBR regions. From 2010 to 2012, we conducted a detailed field study and recorded 31 species of 6 snake families (Boidae, Colubridae, Elapidae, Typhlopidea, Uropeltidae, and Viperidae) in Hoshanagbad District (Satpura Tiger Reserve) and PBR regions. Besides, we found the occurrence of Boiga forsteni and Coelognatus helena monticollaris (Colubridae), which was not previously reported in PBR region. Among the recorded, 9 species were Lower Risk – least concerned (LR-lc), 20 were of Lower Risk – near threatened (LR-nt), 1 is Endangered (EN) and 1 is vulnerable (VU) according to International Union for Conservation of Nature (IUCN) status.
    [Show full text]
  • Blumgart Et Al 2017- Herpetological Survey Nosy Komba
    Journal of Natural History ISSN: 0022-2933 (Print) 1464-5262 (Online) Journal homepage: http://www.tandfonline.com/loi/tnah20 Herpetological diversity across intact and modified habitats of Nosy Komba Island, Madagascar Dan Blumgart, Julia Dolhem & Christopher J. Raxworthy To cite this article: Dan Blumgart, Julia Dolhem & Christopher J. Raxworthy (2017): Herpetological diversity across intact and modified habitats of Nosy Komba Island, Madagascar, Journal of Natural History, DOI: 10.1080/00222933.2017.1287312 To link to this article: http://dx.doi.org/10.1080/00222933.2017.1287312 Published online: 28 Feb 2017. Submit your article to this journal Article views: 23 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tnah20 Download by: [BBSRC] Date: 21 March 2017, At: 02:56 JOURNAL OF NATURAL HISTORY, 2017 http://dx.doi.org/10.1080/00222933.2017.1287312 Herpetological diversity across intact and modified habitats of Nosy Komba Island, Madagascar Dan Blumgart a, Julia Dolhema and Christopher J. Raxworthyb aMadagascar Research and Conservation Institute, BP 270, Hellville, Nosy Be, Madagascar; bDivision of Vertebrate Zoology, American, Museum of Natural History, New York, NY, USA ABSTRACT ARTICLE HISTORY A six month herpetological survey was undertaken between March Received 16 August 2016 and September 2015 on Nosy Komba, an island off of the north- Accepted 17 January 2017 west coast of mainland Madagascar which has undergone con- KEYWORDS fi siderable anthropogenic modi cation. A total of 14 species were Herpetofauna; conservation; found that have not been previously recorded on Nosy Komba, Madagascar; Nosy Komba; bringing the total island diversity to 52 (41 reptiles and 11 frogs).
    [Show full text]
  • Quantifying the Conservation Value of Plantation Forests for a Madagascan Herpetofauna
    Herpetological Conservation and Biology 14(1):269–287. Submitted: 6 March 2018; Accepted: 28 March 2019; Published: 30 April 2019. QUANTIFYING THE CONSERVATION VALUE OF PLANTATION FORESTS FOR A MADAGASCAN HERPETOFAUNA BETH EVANS Madagascar Research and Conservation Institute, Nosy Komba, Madagascar current address: 121 Heathway, Erith, Kent DA8 3LZ, UK, email: [email protected] Abstract.—Plantations are becoming a dominant component of the forest landscape of Madagascar, yet there is very little information available regarding the implications of different forms of plantation agriculture for Madagascan reptiles and amphibians. I determined the conservation value of bamboo, secondary, open-canopy plantation, and closed-canopy plantation forests for reptiles and amphibians on the island of Nosy Komba, in the Sambirano region of north-west Madagascar. Assistants and I conducted 220 Visual Encounter Surveys between 29 January 2016 and 5 July 2017 and recorded 3,113 reptiles (32 species) and 751 amphibians (nine species). Closed-canopy plantation supported levels of alpha diversity and community compositions reflective of natural forest, including several threatened and forest-specialist species. Open-canopy plantation exhibited diminished herpetofaunal diversity and a distinct community composition dominated by disturbance-resistant generalist species. Woody tree density and bamboo density were positively correlated with herpetofaunal species richness, and plantation species richness, plantation species density, sapling density, and the proportion of wood ground cover were negatively associated with herpetofaunal diversity. I recommend the integration of closed-canopy plantations on Nosy Komba, and across wider Madagascar, to help mitigate the negative effects of secondary forest conversion for agriculture on Madagascan herpetofauna; however, it will be necessary to retain areas of natural forest to act as sources of biodiversity for agroforestry plantations.
    [Show full text]
  • Morphological Comparison of Ryukyu Mouse Mus Caroli
    Zoological Studies 42(2): 258-267 (2003) Morphological Comparison of Ryukyu Mouse Mus caroli (Rodentia: Muridae) Populations from Okinawajima and Taiwan Masaharu Motokawa1,*, Liang-Kong Lin2 and Junko Motokawa3 1The Kyoto University Museum, Kyoto 606-8501, Japan 2Laboratory of Wildlife Ecology, Department of Biology, Tunghai University, Taichung, Taiwan 407, R.O.C. 3Department of Zoology, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan (Accepted January 14, 2003) Masaharu Motokawa, Liang-Kong Lin and Junko Motokawa (2003) Morphological comparison of Ryukyu mouse Mus caroli (Rodentia: Muridae) populations from Okinawajima and Taiwan. Zoological Studies 42(2): 258-267. We performed univariate, bivariate, and multivariate analyses of 4 external and 17 cranial morphome- tric characters in the Ryukyu mouse, Mus caroli Bonhote, 1902 (Mammalia: Rodentia: Muridae), using 177 specimens collected from Okinawajima in the central Ryukyus and from Taiwan. There were clear morphologi- cal differences between populations from Okinawajima and Taiwan. The univariate and bivariate analyses indi- cated that the Okinawajima population differs from the Taiwan population by a shorter tail, smaller ear and audi- tory bulla, less robust incisors, larger molar row, narrower cranium in the orbital region, and longer postpalatal region. Principal component and canonical discriminant analyses based on cranial variables also suggested morphological divergence between the 2 populations. http://www.sinica.edu.tw/zool/zoolstud/42.2/258.pdf Key words: Mus caroli, M. formosanus, Taxonomy, Morphometric analyses, Allometry. The Ryukyu mouse, Mus caroli, is distrib- ognize it as a valid species (e.g., Lin and Lin uted in the Ryukyu Archipelago (Japan), Taiwan, 1983). Hainan, and southern China to the Malay Another name included in M.
    [Show full text]
  • Report on Biodiversity and Tropical Forests in Indonesia
    Report on Biodiversity and Tropical Forests in Indonesia Submitted in accordance with Foreign Assistance Act Sections 118/119 February 20, 2004 Prepared for USAID/Indonesia Jl. Medan Merdeka Selatan No. 3-5 Jakarta 10110 Indonesia Prepared by Steve Rhee, M.E.Sc. Darrell Kitchener, Ph.D. Tim Brown, Ph.D. Reed Merrill, M.Sc. Russ Dilts, Ph.D. Stacey Tighe, Ph.D. Table of Contents Table of Contents............................................................................................................................. i List of Tables .................................................................................................................................. v List of Figures............................................................................................................................... vii Acronyms....................................................................................................................................... ix Executive Summary.................................................................................................................... xvii 1. Introduction............................................................................................................................1- 1 2. Legislative and Institutional Structure Affecting Biological Resources...............................2 - 1 2.1 Government of Indonesia................................................................................................2 - 2 2.1.1 Legislative Basis for Protection and Management of Biodiversity and
    [Show full text]
  • Correlates of Eye Colour and Pattern in Mantellid Frogs
    SALAMANDRA 49(1) 7–17 30Correlates April 2013 of eyeISSN colour 0036–3375 and pattern in mantellid frogs Correlates of eye colour and pattern in mantellid frogs Felix Amat 1, Katharina C. Wollenberg 2,3 & Miguel Vences 4 1) Àrea d‘Herpetologia, Museu de Granollers-Ciències Naturals, Francesc Macià 51, 08400 Granollers, Catalonia, Spain 2) Department of Biology, School of Science, Engineering and Mathematics, Bethune-Cookman University, 640 Dr. Mary McLeod Bethune Blvd., Daytona Beach, FL 32114, USA 3) Department of Biogeography, Trier University, Universitätsring 15, 54286 Trier, Germany 4) Zoological Institute, Division of Evolutionary Biology, Technical University of Braunschweig, Spielmannstr. 8, 38106 Braunschweig, Germany Corresponding author: Miguel Vences, e-mail: [email protected] Manuscript received: 18 March 2013 Abstract. With more than 250 species, the Mantellidae is the most species-rich family of frogs in Madagascar. These frogs are highly diversified in morphology, ecology and natural history. Based on a molecular phylogeny of 248 mantellids, we here examine the distribution of three characters reflecting the diversity of eye colouration and two characters of head colouration along the mantellid tree, and their correlation with the general ecology and habitat use of these frogs. We use Bayesian stochastic character mapping, character association tests and concentrated changes tests of correlated evolu- tion of these variables. We confirm previously formulated hypotheses of eye colour pattern being significantly correlated with ecology and habits, with three main character associations: many tree frogs of the genus Boophis have a bright col- oured iris, often with annular elements and a blue-coloured iris periphery (sclera); terrestrial leaf-litter dwellers have an iris horizontally divided into an upper light and lower dark part; and diurnal, terrestrial and aposematic Mantella frogs have a uniformly black iris.
    [Show full text]
  • Print This Article
    VOLUME 3 ISSUE 1 DECEMBER 2008 MADAGASCAR CONSERVATION & DEVELOPMENT INVESTING FOR A SUSTAINABLE NATURAL ENVIRONMENT FOR FUTURE GENERATIONS OF HUMANS, ANIMALS AND PLANTS OF MADAGASCAR IN THIS ISSUE Taboos & Social Contracts Bats & Bushmeat in Madagascar Endemic Plants in the Mandena Mining Area Radio for Sustain- able Development MADAGASCAR CONSERVATION & DEVELOPMENT VOLUME 3 | ISSUE 1 — DECEMBER 2008 PAGE 2 TABLE OF CONTENTS EDITORIAL 2 Editorial by Wilmé, L. and Waeber, P. O. 5 Foreword by Camara, C. Image in Action 85 Impressum The attachment that we feel to Madagascar compels us to talk ARTICLES about it – its richness, its values, its people and about life lessons 7 Taboos and social contracts: Tools for ecosystem learned and taught. As these experiences may differ in many management – lessons from the Manambolomaty aspects, a journal is the ideal place for sharing our common Lakes RAMSAR site, western Madagascar. Rabearivony J., ideas, as well as expressing our divergent thoughts and theories. Fanameha, E, Mampiandra, J. and Thorstom R. It is also a conduit for the exchange and transmission of our 17 Three flying fox (Pteropodidae: Pteropus rufus) ideas and perspectives to the world. Thus, it is the ambition roosts, three conservation challenges in southeastern of this journal to talk about Madagascar – it’s natural richness Madagascar. Rahaingodrahety, V. N., Andriafidison, D., and its conservation, about development and challenges in the Ratsimbazafy, J., Racey, P. A. and Jenkins, R. K. B. country, and more generally about components and facets of 22 Bats as bushmeat in Madagascar. Jenkins, R. K. B and conservation and development. Racey, P.
    [Show full text]
  • Acrantophis Madagascariensis (Duméril & Bibron, 1844) and A
    Kent Academic Repository Full text document (pdf) Citation for published version Gardner, Charlie J. and McDonnell, Naidi and Ellis, Charlotte and Jasper, Louise D. (2017) Observations of aquatic behaviour in Malagasy ground boas Acrantophis madagascariensis (Duméril & Bibron, 1844) and A. dumerili Jan, 1860. Herpetology Notes, 10 . pp. 271-273. DOI Link to record in KAR https://kar.kent.ac.uk/84414/ Document Version Author's Accepted Manuscript Copyright & reuse Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions for further reuse of content should be sought from the publisher, author or other copyright holder. Versions of research The version in the Kent Academic Repository may differ from the final published version. Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the published version of record. Enquiries For any further enquiries regarding the licence status of this document, please contact: [email protected] If you believe this document infringes copyright then please contact the KAR admin team with the take-down information provided at http://kar.kent.ac.uk/contact.html 1 Observations of aquatic behaviour in Malagasy ground boas 2 Acrantophis madagascariensis (Duméril & Bibron, 1844) and A. 3 dumerili Jan, 1860 4 5 Charlie J. GardnerI, Naidi McDonnellII, Charlotte EllisII and Louise D. JasperIII 6 7 8 I Durrell Institute of Conservation and Ecology, University of Kent, Canterbury, CT2 7NR, 9 UK 10 II Operation Wallacea, Wallace House, Old Bolingbroke, Spilsby, Lincolnshire, PE23 4EX, 11 UK 12 III Independent Researcher 13 14 Madagascar possesses a diverse snake fauna comprising over 90 species in four families 15 (Jenkins et al.
    [Show full text]
  • Ancestral Reconstruction of Diet and Fang Condition in the Lamprophiidae: Implications for the Evolution of Venom Systems in Snakes
    Journal of Herpetology, Vol. 55, No. 1, 1–10, 2021 Copyright 2021 Society for the Study of Amphibians and Reptiles Ancestral Reconstruction of Diet and Fang Condition in the Lamprophiidae: Implications for the Evolution of Venom Systems in Snakes 1,2 1 1 HIRAL NAIK, MIMMIE M. KGADITSE, AND GRAHAM J. ALEXANDER 1School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg. PO Wits, 2050, Gauteng, South Africa ABSTRACT.—The Colubroidea includes all venomous and some nonvenomous snakes, many of which have extraordinary dental morphology and functional capabilities. It has been proposed that the ancestral condition of the Colubroidea is venomous with tubular fangs. The venom system includes the production of venomous secretions by labial glands in the mouth and usually includes fangs for effective delivery of venom. Despite significant research on the evolution of the venom system in snakes, limited research exists on the driving forces for different fang and dental morphology at a broader phylogenetic scale. We assessed the patterns of fang and dental condition in the Lamprophiidae, a speciose family of advanced snakes within the Colubroidea, and we related fang and dental condition to diet. The Lamprophiidae is the only snake family that includes front-fanged, rear-fanged, and fangless species. We produced an ancestral reconstruction for the family and investigated the pattern of diet and fangs within the clade. We concluded that the ancestral lamprophiid was most likely rear-fanged and that the shift in dental morphology was associated with changes in diet. This pattern indicates that fang loss, and probably venom loss, has occurred multiple times within the Lamprophiidae.
    [Show full text]
  • Annual Report 2012 English
    Annual Report 2012 Annual Report 2012 The Mohamed bin Zayed Species Conservation Fund provides financial support to species conservation projects worldwide. In 2012, The Mohamed bin Zayed Species Conservation Fund supported 217 projects in 75 countries with more than $1.5m. More than $1.36m was granted to species listed as Critically Endangered, Endangered, or Vulnerable by the IUCN Red List. Your Highness In 2012 the Fund has been able to greatly aid the global effort to conserve the diversity of life by continuing its success and giving $1.5m to more than 200 projects worldwide. Since its inception, the Fund has now disbursed more than $8.7m to targeted species conservation work, implemented through nearly 825 projects in more than 125 countries across six continents. The impact of the Fund continues to amaze me. Among the more than 200 projects supported in 2012, the financial support provided by the Fund helped train a pilot in Kenya who is now patrolling rhino habitat for poachers; it helped locate the breeding grounds of a sea bird previously thought to be extinct; it aided in the discovery of several new tree species in Mexico and many new species of spiders in India; it protected the habitat of a butterfly in Nepal and that of a cave-dwelling amphibian in Croatia. The stories of success are replicated across many species, in many locations across the globe. In 2012, the Fund received more than 1,500 grant applications – a statistic clearly indicating the global urgency of species conservation and the popularity of the Fund.
    [Show full text]
  • The Spectacular Sea Anemone 438 by U
    THE AUSTRAL IAN MUSEUM will be 150 years old in March 1977. TAMS has its 5th birthday at the same time. Like all healthy five year olds, TAMS is full of fun, eager to learn about the world and constantly on the go! 1977 is a celebration year. Members enjoy a full and varied programme, are entitled to a discount at the Museum bookshop and have reciprocal rights with many other Societies in Australia and overseas. Join the Society today. THE AUSTRALIAN MUSEUM SOCIETY 6-8 College Street, Sydney 2000 Telephone: 33-5525 from 1st February, 1977 AUSTRAliAN NATURAl HISTORY DECEMBER 1976 VOLUME 18 NUMBER 12 PUBLISHED QUARTERLY BY THE AUSTRALIAN MUSEUM, 6-8 COLLEGE STREET, SYDNEY PRESIDENT, MICHAEL PITMAN DIRECTOR, DESMOND GRIFFIN A SATELLITE VIEW OF AUSTRALIA 422 BY J.F . HUNTINGTON A MOST SUCCESSFUL INVASION 428 THE DIVERSITY OF AUSTRALIA'S SKINKS BY ALLEN E. GREER BOTANAVITI 434 TH E ELUSIVE FIJIAN FROGS BY JOHN C. PERNETTA AND BARRY GOLDMAN THE SPECTACULAR SEA ANEMONE 438 BY U. ERICH FRIESE PEOPLE, PIGS AND PUNISHMENT 444 BY O.K . FElL COVER: The sea anemone, Adamsia pal/iata, lives ·com­ IN REVIEW mensally with the hermit crab, Pagurus prideauxi. (Photo: AUSTRALIAN BIRDS AND OTHER ANIMALS 448 U. E. Friese) A nnual Subscriptio n : $4 .50-Australia; $A5-Papua New Guinea; $A6-other E DITOR/DESIGNE R countr ies. Single copies : $1 ($1.40 posted Australia); $A 1.45-Papua New NANCY SMITH Guinea; $A 1.70-other countries. Cheque or money order p ayable to The ASSISTANT EDITOR Australian Museum should be sent to The Secretary, The Australian Museum, ROBERT STEWART PO Box A285, Sydney South 2000.
    [Show full text]