Convex Segmentochora Dr. Richard Klitzing
[email protected] updated version (June 2015) of preprint (August 2001), published in: Symmetry: Culture and Science, Vol. 11, Nos. 1-4, 139-181, 2000 Abstract Polytopes with all vertices both (A) on a (hyper-) sphere and (B) on a pair of parallel (hyper-) planes, and further (C) with all edges of equal length I will call segmentotopes. Moreover, in dimensions 2, 3 and 4 names like segmentogon, segmentohedron, and segmentochoron could be used. In this article the convex segmentotopes up to dimension 4 are listed. 1 Introduction About 150 years of highdimensional research on polytopes have passed. The regular ones are well-known since those days: in 1852 L. Schlaefli completed his monograph on polyschemes. About 20 years after N. Johnson in 1966 had published the set of convex polyhedra with regular faces, Mrs. R. Blind had done the corresponding research in higher dimensions for polytopes with regular facets. The convex uniform ones of dimension 4 are readily listed on the website http://member.aol.com/_ht_b/Polycell/uniform.html1, and the complete list of all uniform ones of dimension 4 is still ongoing (J. Bowers and G. Olshevsky). Sure, polychora, i.e. polytopes of dimension 4, are not so easy to visualize. This is especially due to the fact that for this attempt the 4th dimension has to be projected somehow into the span of the other 3 directions. One possibility, to do this, works rather well for figures with just one edge length. It shows the 4th dimension as a contraction.