Coleoptera, Chrysomelidae)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Green-Tree Retention and Controlled Burning in Restoration and Conservation of Beetle Diversity in Boreal Forests
Dissertationes Forestales 21 Green-tree retention and controlled burning in restoration and conservation of beetle diversity in boreal forests Esko Hyvärinen Faculty of Forestry University of Joensuu Academic dissertation To be presented, with the permission of the Faculty of Forestry of the University of Joensuu, for public criticism in auditorium C2 of the University of Joensuu, Yliopistonkatu 4, Joensuu, on 9th June 2006, at 12 o’clock noon. 2 Title: Green-tree retention and controlled burning in restoration and conservation of beetle diversity in boreal forests Author: Esko Hyvärinen Dissertationes Forestales 21 Supervisors: Prof. Jari Kouki, Faculty of Forestry, University of Joensuu, Finland Docent Petri Martikainen, Faculty of Forestry, University of Joensuu, Finland Pre-examiners: Docent Jyrki Muona, Finnish Museum of Natural History, Zoological Museum, University of Helsinki, Helsinki, Finland Docent Tomas Roslin, Department of Biological and Environmental Sciences, Division of Population Biology, University of Helsinki, Helsinki, Finland Opponent: Prof. Bengt Gunnar Jonsson, Department of Natural Sciences, Mid Sweden University, Sundsvall, Sweden ISSN 1795-7389 ISBN-13: 978-951-651-130-9 (PDF) ISBN-10: 951-651-130-9 (PDF) Paper copy printed: Joensuun yliopistopaino, 2006 Publishers: The Finnish Society of Forest Science Finnish Forest Research Institute Faculty of Agriculture and Forestry of the University of Helsinki Faculty of Forestry of the University of Joensuu Editorial Office: The Finnish Society of Forest Science Unioninkatu 40A, 00170 Helsinki, Finland http://www.metla.fi/dissertationes 3 Hyvärinen, Esko 2006. Green-tree retention and controlled burning in restoration and conservation of beetle diversity in boreal forests. University of Joensuu, Faculty of Forestry. ABSTRACT The main aim of this thesis was to demonstrate the effects of green-tree retention and controlled burning on beetles (Coleoptera) in order to provide information applicable to the restoration and conservation of beetle species diversity in boreal forests. -
New Contributions to the Molecular Systematics and the Evolution of Host-Plant Associations in the Genus Chrysolina (Coleoptera, Chrysomelidae, Chrysomelinae)
A peer-reviewed open-access journal ZooKeys 547: 165–192 New(2015) contributions to the molecular systematics and the evolution... 165 doi: 10.3897/zookeys.547.6018 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research New contributions to the molecular systematics and the evolution of host-plant associations in the genus Chrysolina (Coleoptera, Chrysomelidae, Chrysomelinae) José A. Jurado-Rivera1, Eduard Petitpierre1,2 1 Departament de Biologia, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain 2 Institut Mediterrani d’Estudis Avançats, CSIC, Miquel Marquès 21, 07190 Esporles, Balearic Islands, Spain Corresponding author: José A. Jurado-Rivera ([email protected]) Academic editor: M. Schmitt | Received 15 April 2015 | Accepted 31 August 2015 | Published 17 December 2015 http://zoobank.org/AF13498F-BF42-4609-AA96-9760490C3BB5 Citation: Jurado-Rivera JA, Petitpierre E (2015) New contributions to the molecular systematics and the evolution of host-plant associations in the genus Chrysolina (Coleoptera, Chrysomelidae, Chrysomelinae). In: Jolivet P, Santiago-Blay J, Schmitt M (Eds) Research on Chrysomelidae 5. ZooKeys 547: 165–192. doi: 10.3897/zookeys.547.6018 Abstract The taxonomic circumscription of the large and diverse leaf beetle genusChrysolina Motschulsky is not clear, and its discrimination from the closely related genus Oreina Chevrolat has classically been controver- sial. In addition, the subgeneric arrangement of the species is unstable, and proposals segregating Chryso- lina species into new genera have been recently suggested. In this context, the availability of a phylogenetic framework would provide the basis for a stable taxonomic system, but the existing phylogenies are based on few taxa and have low resolution. -
The Genetic and Cytogenetic Relationships Among Subgenera of Chrysolina Motschulsky, 1860 and Oreina Chevrolat, 1837 (Coleoptera: Chrysomelidae: Chrysomelinae)
International Journal of Zoology and Animal Biology ISSN: 2639-216X MEDWIN PUBLISHERS Committed to Create Value for Researchers The Genetic and Cytogenetic Relationships among Subgenera of Chrysolina Motschulsky, 1860 and Oreina Chevrolat, 1837 (Coleoptera: Chrysomelidae: Chrysomelinae) Petitpierre E* Review Article Department of Biology, University of Balearic Islands, 07122 Palma de Mallorca, Spain Volume 4 Issue 3 Received Date: May 03, 2021 Eduard Petitpierre, Department of Biology, University of Balearic *Corresponding author: Published Date: May 28, 2021 Islands, 07122 Palma de Mallorca, Spain, Email: [email protected] DOI: 10.23880/izab-16000305 Abstract Molecular phylogenetic analyses mainly based on mtDNA and nuDNA sequences and/or, secondarily, on chromosomes and Chrysolina and 19 of its closely related genus Oreina, belonging phylogeneticplant trophic affiliations,trees showed have monophyly been obtained of Chrysolina-Oreina in 84 species of, with four main clades of subgenera with high support values. to 42 of the 70 described subgeneraChrysolinopsis of the former andand toTaeniochrysea all of the seven, and ones the of second the latter. those Bayesian of Chrysomorpha and Maximum, Euchrysolina likelihood, Melasomoptera and Synerga. The third is much large and composed of three subclades of subgenera, Chrysocrosita and ErythrochrysaThe first clade, Colaphosomaincludes subgenera and Maenadochrysa , and Centoptera, Fasta, the subgenera of Oreina and Timarchoptera. These p plants, at the root of the core of Chrysolina subgenerathree main ofclades Oreina enclose most species with 2n=24(Xy ) male chromosomes and an ancientCh. trophic Timarchoptera affiliation) withhaemochlora Lamiaceae, a ♂ . However, a host shift from Lamiaceae to Asteraceae was detected in all but one and another from Lamiaceae to Apiaceae in Oreina s. -
Genetic and Environmental Sources of Variation in the Autogenous Chemical Defense of a Leaf Beetle
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by RERO DOC Digital Library J Chem Ecol (2007) 33:2011–2024 DOI 10.1007/S10886-007-9351-9 Genetic and Environmental Sources of Variation in the Autogenous Chemical Defense of a Leaf Beetle Y. Triponez & R. E. Naisbit & J. B. Jean-Denis & M. Rahier & N. Alvarez Received: 2 April 2007 /Revised: 26 June 2007 /Accepted: 20 August 2007 / Published online: 21 September 2007 # Springer Science + Business Media, LLC 2007 Abstract Chemical defense plays a central role for many herbivorous insects in their interactions with predators and host plants. The leaf beetle genus Oreina (Coleoptera, Chrysomelidae) includes species able to both sequester pyrrolizidine alkaloids and autogenously produce cardenolides. Sequestered compounds are clearly related to patterns of host-plant use, but variation in de novo synthesized cardenolides is less obviously linked to the environment. In this study, intraspecific variation in cardenolide composition was examined by HPLC–MS analysis in 18 populations of Oreina speciosa spanning Europe from the Massif Central to the Balkans. This revealed the defense secretion to be a complex blend of up to 42 compounds per population. There was considerable geographical variation in the total sample of 50 compounds detected, with only 14 found in all sites. The environmental and genetic influences on defense chemistry were investigated by correlation with distance matrices based on habitat factors, host-plant use, and genetics (sequence data from COI, COII, and 16s rRNA). This demonstrated an influence of both genetics and host- plant use on the overall blend of cardenolides and on the presence of some of the individual compounds. -
A Study on the Genus Chrysolina MOTSCHULSKY, 1860, with A
Genus Vol. 12 (2): 105-235 Wroc³aw, 30 VI 2001 A study on the genus Chrysolina MOTSCHULSKY, 1860, with a checklist of all the described subgenera, species, subspecies, and synonyms (Coleoptera: Chrysomelidae: Chrysomelinae) ANDRZEJ O. BIEÑKOWSKI Zelenograd, 1121-107, Moscow, K-460, 103460, Russia e-mail: [email protected] ABSTRACT. A checklist of all known Chrysolina species is presented. Sixty five valid subgenera, 447 valid species and 251 valid subspecies are recognized. The following new synonymy is established: Chrysolina (Apterosoma MOTSCHULSKY) (=Caudatochrysa BECHYNÉ), Ch. (Synerga WEISE) (=Chrysonotum J. SAHLBERG), Ch. (Sulcicollis J. SAHLBERG) (=Minckia STRAND), Ch. (Bittotaenia MOTSCHULSKY) (=Gemellata J. SAHLBERG, partim), Ch. (Hypericia BEDEL) (=Gemellata J. SAHLBERG, partim), Ch. (Ovosoma MOTSCHULSKY) (=Gemellata J. SAHLBERG, partim, =Byrrhiformis J. SAHLBERG, partim), Ch. (Colaphoptera MOTSCHULSKY) (=Byrrhiformis J. SAHLBERG, partim), Ch. aeruginosa poricollis MOTSCHULSKY (=lobicollis FAIRMAIRE), Ch. apsilaena DACCORDI (=rosti kubanensis L.MEDVEDEV et OKHRIMENKO), Ch. fastuosa biroi CSIKI (=fastuosa jodasi BECHYNÉ, 1954), Ch. differens FRANZ (=trapezicollis BECHYNÉ), Ch. difficilis ussuriensis JACOBSON (=pubitarsis BECHYNÉ), Ch. difficilis yezoensis MATSUMURA (=exgeminata BECHYNÉ, =nikinoja BECHYNÉ), Ch. marginata marginata LINNAEUS (=finitima BROWN), Ch. pedestris GEBLER (=pterosticha FISCHER DE WALDHEIM), Ch. reitteri saxonica DACCORDI (=diluta KRYNICKI). Ch. elbursica LOPATIN is treated as a subspecies of Ch. tesari ROUBAL, Ch. unicolor alaiensis LOPATIN - as Ch. dieckmanni alaiensis, and Ch. poretzkyi JACOBSON as a subspecies of Ch. subcostata GEBLER. Ch. peninsularis BECHYNÉ is a distinct species, but a subspecies of Ch. aeruginosa, Ch. brahma TAKIZAWA is a good species, not a synonym of Ch. lia JACOBSON (= freyi BECHYNÉ), and Ch. dzhungarica JACOBSON is a good species, not a synonym of Ch. -
Literature on the Chrysomelidae from CHRYSOMELA Newsletter, Numbers 1-41 October 1979 Through April 2001 May 18, 2001 (Rev
Literature on the Chrysomelidae From CHRYSOMELA Newsletter, numbers 1-41 October 1979 through April 2001 May 18, 2001 (rev. 1)—(2,635 citations) Terry N. Seeno, Editor The following citations appeared in the CHRYSOMELA process and rechecked for accuracy, the list undoubtedly newsletter beginning with the first issue published in 1979. contains errors. Revisions and additions are planned and will be numbered sequentially. Because the literature on leaf beetles is so expansive, these citations focus mainly on biosystematic references. They Adobe Acrobat® 4.0 was used to distill the list into a PDF were taken directly from the publication, reprint, or file, which is searchable using standard search procedures. author’s notes and not copied from other bibliographies. If you want to add to the literature in this bibliography, Even though great care was taken during the data entering please contact me. All contributors will be acknowledged. Abdullah, M. and A. Abdullah. 1968. Phyllobrotica decorata de Gratiana spadicea (Klug, 1829) (Coleoptera, Chrysomelidae, DuPortei, a new sub-species of the Galerucinae (Coleoptera: Chrysomel- Cassidinae) em condições de laboratório. Rev. Bras. Entomol. idae) with a review of the species of Phyllobrotica in the Lyman 30(1):105-113, 7 figs., 2 tabs. Museum Collection. Entomol. Mon. Mag. 104(1244-1246):4-9, 32 figs. Alegre, C. and E. Petitpierre. 1982. Chromosomal findings on eight Abdullah, M. and A. Abdullah. 1969. Abnormal elytra, wings and species of European Cryptocephalus. Experientia 38:774-775, 11 figs. other structures in a female Trirhabda virgata (Chrysomelidae) with a summary of similar teratological observations in the Coleoptera. -
Ecological Interactions Between Two Species of Leaf Beetle, a Rust Fungus, and Their Host Plant
Ecological interactions between two species of leaf beetle, a rust fungus, and their host plant Gregory Röder Thesis presented the 3rd April 2007 in presence of Prof. Martine Rahier, University of Neuchâtel (CH) Supervisor Dr. Brigitte Mauch-Mani, University of Neuchâtel (CH) Examiner Prof. Heinz Müller-Schärer, University of Fribourg (CH) Examiner Dr. Paul Hatcher, University of Reading (UK) Examiner Faculty of science Laboratory of evolutionary entomology Gregory Röder Résumé mars 2007 RESUME Les champignons parasites et les insectes herbivores sont connus pour leur influence négative sur les populations de plantes, affectant leur reproduction, leur croissance, leur survie, et interférant dans leurs relations avec d’autres espèces. En fournissant un logement, une protection et une source de nourriture pour de nombreux organismes, les végétaux représentent un élément essentiel des écosystèmes terrestres dans lesquels ils permettent la rencontre d’organismes aussi différents que des champignons pathogènes et des insectes phytophages. Les relations triangulaires qui naissent de cette proximité peuvent être directes ou indirectes lorsque la plante hôte joue le rôle de médiateur. Les insectes peuvent se nourrir du champignon ou de l’une de ses parties, comme le mycélium ou les structures reproductrices, et de ce fait réduire l’ampleur de l’infection ou de la transmission de la maladie. En revanche, d’autres espèces sont susceptibles de véhiculer des spores infectieuses et d’inoculer de nouvelles plantes. Ici, les champignons et les insectes s’influencent directement, positivement ou négativement, mais leurs relations deviennent indirectes lorsqu’ils engendrent des perturbations chez leur hôte. Une attaque fongique est susceptible de produire des changements dans la qualité de la plante hôte, mais aussi d’y activer des résistances qui peuvent également agir sur les insectes, grâce à des mécanismes de défenses croisés. -
Tilbury Power Station Essex, Invertebrate Survey Report (June 2008)
TILBURY POWER STATION ESSEX, INVERTEBRATE SURVEY REPORT (JUNE 2008). REPORT BY COLIN PLANT ASSOCIATES (UK) DOCUMENT REF: APPENDIX 10.J Commissioned by Bioscan (UK) Ltd The Old Parlour Little Baldon Farm Little Baldon OX44 9PU TILBURY POWER STATION, ESSEX INVERTEBRATE SURVEY FINAL REPORT (incorporating analysis of aquatic assemblage) JUNE 2008 Report number BS/2235/07rev2 Colin Plant Associates (UK) Consultant Entomologists 14 West Road Bishops Stortford Hertfordshire CM23 3QP 01279-507697 [email protected] 1 INTRODUCTION AND SCOPE OF THE SURVEY 1.1 Introduction 1.1.1 Colin Plant Associates (UK) were commissioned by Bioscan (UK) Ltd on behalf of RWE npower to undertake an assessment of invertebrate species at Tilbury Power Station between May and October 2007 inclusive. This document is the final report of that survey. 1.2 Terrestrial Invertebrate Survey methodology 1.2.1 The minimum survey effort recommended by Brooks (Brooks, 1993. ‘Guidelines for invertebrate site surveys’. British Wildlife 4: 283-286) was taken as a basic requirement for the present survey. Daytime sampling of terrestrial invertebrate species was undertaken in all areas by direct observation, by sweep netting and by using a beating tray. In addition, a suction sampler was deployed and a number of pitfall and pan traps were set. 1.2.2 Sweep-netting. A stout hand-held net is moved vigorously through vegetation to dislodge resting insects. The technique may be used semi-quantitatively by timing the number of sweeps through vegetation of a similar type and counting selected groups of species. This technique is effective for many invertebrates, including several beetle families, most plant bug groups and a large number of other insects that live in vegetation of this type. -
Literature Cited in Chrysomela from 1979 to 2003 Newsletters 1 Through 42
Literature on the Chrysomelidae From CHRYSOMELA Newsletter, numbers 1-42 October 1979 through June 2003 (2,852 citations) Terry N. Seeno, Past Editor The following citations appeared in the CHRYSOMELA process and rechecked for accuracy, the list undoubtedly newsletter beginning with the first issue published in 1979. contains errors. Revisions will be numbered sequentially. Because the literature on leaf beetles is so expansive, Adobe InDesign 2.0 was used to prepare and distill these citations focus mainly on biosystematic references. the list into a PDF file, which is searchable using standard They were taken directly from the publication, reprint, or search procedures. If you want to add to the literature in author’s notes and not copied from other bibliographies. this bibliography, please contact the newsletter editor. All Even though great care was taken during the data entering contributors will be acknowledged. Abdullah, M. and A. Abdullah. 1968. Phyllobrotica decorata DuPortei, Cassidinae) em condições de laboratório. Rev. Bras. Entomol. 30(1): a new sub-species of the Galerucinae (Coleoptera: Chrysomelidae) with 105-113, 7 figs., 2 tabs. a review of the species of Phyllobrotica in the Lyman Museum Collec- tion. Entomol. Mon. Mag. 104(1244-1246):4-9, 32 figs. Alegre, C. and E. Petitpierre. 1982. Chromosomal findings on eight species of European Cryptocephalus. Experientia 38:774-775, 11 figs. Abdullah, M. and A. Abdullah. 1969. Abnormal elytra, wings and other structures in a female Trirhabda virgata (Chrysomelidae) with a Alegre, C. and E. Petitpierre. 1984. Karyotypic Analyses in Four summary of similar teratological observations in the Coleoptera. Dtsch. Species of Hispinae (Col.: Chrysomelidae). -
General Introduction
Patterns of arthropod distribution and determinants of arthropod assemblage composition in a natural West African savannah Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Karsten Mody aus Mannheim Würzburg 2003 Eingereicht am: 25.04.2003................................................................. Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. Rainer Hedrich............................................ Gutachter: Prof. Dr. K. Eduard Linsenmair.................................. Gutachter: Prof. Dr. Bert Hölldobler............................................. Tag des Promotionskolloquiums: ..................................................................................... Doktorurkunde ausgehändigt am: ..................................................................................... From large to small scales - and vice versa? or How does it affect an African caterpillar when I go to work by car? Frontside (top): Planet Earth showing Antarctica at bottom, and Africa and Madagascar at centre (arrow indicates Côte d’Ivoire). From: Drury 1998, modified. Frontside (bottom): Chrysopsyche imparilis, an African caterpillar, meeting a Camponotus ant on Combretum fragrans. Table of Contents I. General Introduction......................................................................................................1 II. Ökologische Gemeinschaften und Verständnis von Biodiversität: Welche Faktoren strukturieren artenreiche Arthropodengemeinschaften?...................................9 -
Ravikumar -- 1830
JoTT BOOK REVIEW 1(2): 131-132 Research on Chrysomelidae seed beetles group appears as a sister group to the chrysomelid subfamily Sagrinae in Vol. 1 Edited by Pierre Jolivet, Jorge Santiago-Blay & phylogenetic trees, they too have been taken Michael Schmitt as a subfamily (Subfamily Bruchinae) under Brill Publishers, Leiden, The Netherlands, 2008, 430pp. Chrysomelidae. While discussing the host-plant relationship among bruchines, they have referred to host-plant shifts. They Reviewed by K.K. Verma say: these shifts toward chemically dissimilar host-plants have HIG 1/327, Housing Board Colony, Borsi, Durg, Chhattisgarh 491001, also likely involved the development of several key India. Email: [email protected] innovations (e.g. new detoxification abilities) to circumvent extant plant defences .. They point out that considerable This collective/edited book is the first volume in a proposed work is required in the future to better understand the evolution series intended to present a composite picture of progress in of host-plant associations in bruchines. The authors have the study of the Chrysomelidae, a large family of beetles with emphasized the use of male genitalic features when defining more than 40,000 recorded species to which more are or revising taxonomic groups. continually being added as new species are discovered and In Section 2 Scholler in his paper: Comparative morphology described. of sclerites used by Camptosomatan leaf beetles for formation The book contains 8 sections: Phylogeny and Molecular of extrachorion ., describes variations in the sclerotised Biology, Morphology and Anatomy, Palaeontology, Relations plates in the rectal lining of females with their microsculpture to Plants, Biological and Ecological Studies, Taxonomy and in a number of different species, and hopes that the pattern of Faunistics, Population Biology, and Parasitology. -
Pyrrolizidine Alkaloids of Probable Host-Plant Origin in the Pronotal and Elytral Sécrétion of the Leaf Beetle Oreina Cacaliae
Entomol. exp. appl. 49: 55-58 (1988) © Kluwer Académie Publishers, Dordrecht - Printed in the Netherlands 55 Pyrrolizidine alkaloids of probable host-plant origin in the pronotal and elytral sécrétion of the leaf beetle Oreina cacaliae J. M. Pasteels', M. Rowell-Rahier^, T. Randoux^, J. C. Braekman^ & D. Daloze^ ^Laboratoire de Biologie Animale et Cellulaire, University of Brussels, B-1050 Brussels, Belgium; ^Zoologisches Institut, CH-405I Basel, Switzerland; ^Laboratoire de Chimie Bio-organique, University of Brussels, Belgium Key words: pyrrolizidine alkaloids, seneciphylline N-oxide, Oreina, Chrysomelidae, leaf beetles, défensive sécrétion, séquestration, hostplant influence, Adenostyles leucophylla Abstract Oreina cacaliae (Coleoptera, Chrysomelidae) produces in its elytral and pronotal défensive sécrétion seneciphylline Noxide together with small amounts of another pyrrolizidine alkaloid tentatively identified as senecionine Noxide. This is a strong departure from the chemical composition of the défensive sécrétions in related species, characterized by complex mixtures of cardenolides, synthesized by the beetles from cholestérol. It is suggested that O. cacaliae sequesters the alkaloids from its hostplant, Adenostyles leucophylla. Other spécimens of O. cacaliae from far distant populations feeding on Senecio nemorensis, Petasites paradoxus or P. album also produced pyrrolizidine alkaloids, but not O. speciosissima feeding on the same food plants and producing cardenolides. In addition to pyrrolizidine alkaloids, O. cacaliae secrètes