Analysis of Social Sustainability Simulation of Rasht’S Central Pedestrian Zone Using the Space Syntax Method Pjaee, 17 (12) (2020)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Report of Field Trip (Guilan Province from 14 to 17 October 2019)
Third Plenary Conference and Field Trip of INQUA IFG 1709F Ponto-Caspian Stratigraphy and Geochronology Report of field trip (Guilan Province from 14 to 17 October 2019) First Day, 14 October 2019 Stations: (Manjil, Totkabon (Rashi cave), Rasht) On Monday, at 7:30 AM the group traveled to the Gilan province. The first station was Manjil City for visiting Manjil Dam and geology Formations (Shemshak formation) in Mnajil. Dr. Nazari from Geological Survey of Iran described that how the formations were formed and some short descriptions about its tectonic plate. The second station had been located in the Totkabon (near the Ruodbar city). After having lunch near the Rashi village, the group led by Dr. Biglari from the Ministry of Cultural Heritage, Tourism and Handicrafts moved to the Rashi cave. At 8:00 PM, the team accommodated in their Hotel and hostel in Rasht. Second day, 15 October 2019: Stations: Fuman city, Masuleh village On Tuesday, 15 October 2019, field work started at the 8:30 AM. The team traveled to near Rasht City to visit old beach deposition and to the Fuman city for visiting Qale-Rudkhan Castle that is located 25 km southwest of Fuman city. And it is built on two tips of a mount, with an area of 2.6 hectare at the elevations of 715 and 670 meters. To get to the Qale - Rudkhan Castle, the group had to climbed approximately 1000 steps. On Tuesday afternoon, team went to Masuleh for visiting old village. (Also, at night a city tour was organized by the Guilan University). -
Assessing Chlorophyll-A in the Southwestern Coastal Waters of the Caspian Sea
Journal of the Persian Gulf (Marine Science)/Vol. 5/No. 16/June 2014/14/1-14 Assessing Chlorophyll-a in the Southwestern Coastal Waters of the Caspian Sea Jamshidi, Siamak Iranian National Institute for Oceanography and Atmospheric Science, Tehran, IR Iran Received: October 2013 Accepted: April 2014 © 2014 Journal of the Persian Gulf. All rights reserved. Abstract Caspian Sea with an average depth of 27m is the largest enclosed water body in the world. Despite its enormity and valuable biotic and economic resources, investigations on the biota and seawater properties are mosaic at best. In previous studies, the monitoring of the chlorophyll-a concentrations in the Southern Caspian Sea was organized based on satellite data sets; however, vertical distribution of chlorophyll-a concentrations and its variations in deeper layers of the southern Caspian seawater are not well known. The aim of this research was to study the variations of seasonal distributions of chlorophyll-a near Anzali Port in northern Iran. Data collection was performed at 23 stations, 2 km apart, along four survey lines perpendicular to the coastline and two transects parallel to the coast every season using a research vessel. Field measurements in the study area were carried out. A portable CTD probe was applied for profiling from sea surface to bottom. Results of seasonal field measurements showed variations of the seawater properties (e.g. temperature, salinity, density and chlorophyll-a). Maximum depth of the profiling stations was more than 470 m and vertical structure of temperature in the southern Caspian Sea waters with a significant seasonal thermocline between 20-50 m depths in summer with a vertical difference of 16oC were characterized. -
Reproduction Characteristics of the Vimba Vimba Persa (Pallas, 1811), in Coastal Waters of the Caspian Sea
Reproduction characteristics of the Vimba vimba persa (Pallas, 1811), in coastal waters of the Caspian Sea Item Type article Authors Chaichi, A.R.; Vosoughi, G.H.; Kaymaram, F.; Jamili, S.; Fazli, H. Download date 28/09/2021 21:28:45 Link to Item http://hdl.handle.net/1834/37234 Iranian Journal of Fisheries Sciences 10(4) 585-595 2011 Reproduction characteristics of the Vimba vimba persa (Pallas, 1811), in coastal waters of the Caspian Sea Chaichi A. R. 1*; Vosoughi G. h.1; Kaymaram F.2; Jamili S.1,2; Fazli H.3 Received: October 2010 Accepted: March 2011 Abstract Some reproduction characteristics of the Caspian Vimba, Vimba vimba persa, were studied from Oct. 2008 to Sep. 2009 in coastal waters of the Caspian Sea (Mazandaran province). 994 specimens were monthly collected from 6 fish landing sites of Ramsar, Tonekabon, Chalus, Mahmood Abad, Sari and Behshahr. The fecundity was measured using 92 specimens. This species was found to have more abundance in spring (especially April and May). The samples composed of 397(42.6%) male, 537(57.4%) female; the sex ratio was M: F = 1:1.35. The advanced stages of maturity (4th & 5th) were found in April and May. The highest Gonadosomatic Index in females was in May and the lowest one was in July. The average of absolute and relative fecundities was 17198±7710 and 171.85±48.8, respectively. Keywords: Caspian Vimba, Vimba vimba persa, Fecundity, GSI, Sex ratio, Caspian Sea Downloaded from jifro.ir at 16:34 +0330 on Monday February 12th 2018 ____________________ 1- Graduate School of Marine Science & Technology, Department of Marine Biology, Science and Research, Islamic Azad University, Tehran- Iran. -
Zoning the Villages of Central District of Dena County in Terms of Sustainability of Livelihood Capitals
J. Agr. Sci. Tech. (2019) Vol. 21(5): 1091-1106 Zoning the Villages of Central District of Dena County in Terms of Sustainability of Livelihood Capitals Z. Sharifi1, M. Nooripoor1*, and H. Azadi2 ABSTRACT The sustainable livelihood approach was introduced as a sustainable rural development approach in the late 1980s with the aim of poverty alleviation in the rural communities. This approach has offered a broad framework for assessing the various dimensions of sustainability. An important component of this framework is livelihood capitals in a way that it is not possible to achieve sustainable rural livelihood with no regard to the livelihood capitals and assets in rural areas. Thus, the purpose of this descriptive-analytic survey research was zoning the villages of the Central District of Dena County in terms of the sustainability of livelihood capitals. The statistical population of this study was 2500 rural households in the Central District of Dena County, of which 300 households were selected using cluster random sampling method with appropriate allocation based on Krejcie and Morgan’s table. The research instrument was a researcher-made questionnaire whose face validity was confirmed by a panel of experts, and its reliability was confirmed in a pre-test and calculating Cronbach's alpha coefficient. Findings of the research showed that, in most studied villages, 3 capitals (social, physical, and human) were above the average and 2 capitals (financial and natural) as well as the total capital was less than average. Additionally, there was a gap and heterogeneity between the villages in terms of social, human, natural capital as well as financial capital, whereas there was a homogeneity in terms of physical and total capital as well. -
Mayors for Peace Member Cities 2021/10/01 平和首長会議 加盟都市リスト
Mayors for Peace Member Cities 2021/10/01 平和首長会議 加盟都市リスト ● Asia 4 Bangladesh 7 China アジア バングラデシュ 中国 1 Afghanistan 9 Khulna 6 Hangzhou アフガニスタン クルナ 杭州(ハンチォウ) 1 Herat 10 Kotwalipara 7 Wuhan ヘラート コタリパラ 武漢(ウハン) 2 Kabul 11 Meherpur 8 Cyprus カブール メヘルプール キプロス 3 Nili 12 Moulvibazar 1 Aglantzia ニリ モウロビバザール アグランツィア 2 Armenia 13 Narayanganj 2 Ammochostos (Famagusta) アルメニア ナラヤンガンジ アモコストス(ファマグスタ) 1 Yerevan 14 Narsingdi 3 Kyrenia エレバン ナールシンジ キレニア 3 Azerbaijan 15 Noapara 4 Kythrea アゼルバイジャン ノアパラ キシレア 1 Agdam 16 Patuakhali 5 Morphou アグダム(県) パトゥアカリ モルフー 2 Fuzuli 17 Rajshahi 9 Georgia フュズリ(県) ラージシャヒ ジョージア 3 Gubadli 18 Rangpur 1 Kutaisi クバドリ(県) ラングプール クタイシ 4 Jabrail Region 19 Swarupkati 2 Tbilisi ジャブライル(県) サルプカティ トビリシ 5 Kalbajar 20 Sylhet 10 India カルバジャル(県) シルヘット インド 6 Khocali 21 Tangail 1 Ahmedabad ホジャリ(県) タンガイル アーメダバード 7 Khojavend 22 Tongi 2 Bhopal ホジャヴェンド(県) トンギ ボパール 8 Lachin 5 Bhutan 3 Chandernagore ラチン(県) ブータン チャンダルナゴール 9 Shusha Region 1 Thimphu 4 Chandigarh シュシャ(県) ティンプー チャンディーガル 10 Zangilan Region 6 Cambodia 5 Chennai ザンギラン(県) カンボジア チェンナイ 4 Bangladesh 1 Ba Phnom 6 Cochin バングラデシュ バプノム コーチ(コーチン) 1 Bera 2 Phnom Penh 7 Delhi ベラ プノンペン デリー 2 Chapai Nawabganj 3 Siem Reap Province 8 Imphal チャパイ・ナワブガンジ シェムリアップ州 インパール 3 Chittagong 7 China 9 Kolkata チッタゴン 中国 コルカタ 4 Comilla 1 Beijing 10 Lucknow コミラ 北京(ペイチン) ラクノウ 5 Cox's Bazar 2 Chengdu 11 Mallappuzhassery コックスバザール 成都(チォントゥ) マラパザーサリー 6 Dhaka 3 Chongqing 12 Meerut ダッカ 重慶(チョンチン) メーラト 7 Gazipur 4 Dalian 13 Mumbai (Bombay) ガジプール 大連(タァリィェン) ムンバイ(旧ボンベイ) 8 Gopalpur 5 Fuzhou 14 Nagpur ゴパルプール 福州(フゥチォウ) ナーグプル 1/108 Pages -
Mid-Term Plan for Conservation of the Anzali Wetland for 2020 – 2030
Japan International Department of Environment Cooperation Agency Gilan Provincial Government Islamic Republic of Iran Mid‐term Plan for Conservation of the Anzali Wetland for 2020 ‐ 2030 May 2019 Anzali Wetland Ecological Management Project ‐ Phase II Department of Environment Japan International Gilan Provincial Government Cooperation Agency Islamic Republic of Iran MID-TERM PLAN FOR CONSERVATION OF THE ANZALI WETLAND FOR 2020 – 2030 (Prepared under The Anzali Wetland Ecological Management Project - Phase II) May 2019 NIPPON KOEI CO., LTD. Exchange Rate JPY 100 = IRR 38,068 USD 1 = IRR 42,000 (as of 23 May, 2019) Source: Central Bank of the Islamic Republic of Iran Preface The Mid-term Plan for Conservation of the Anzali Wetland for 2020 – 2030 (Mid-term Plan) was prepared as a final product of the Anzali Wetland Ecological Management Project - Phase II (Phase II Project). The Phase II Project was a 5-year technical cooperation project of the Japan International Cooperation Agency (JICA) between May 2014 and May 2019. JICA has supported Iranian government on conservation of the Anzali Wetland since 2003 through “The Study on Integrated Management for Ecosystem Conservation of the Anzali Wetland (2003-2005)” (Master Plan Study) and “Anzali Wetland Ecological Management Project (2007-2008, 2011-2012)” (Phase I Project). The Mid-term Plan will succeed the previous Master Plan for 2005 - 2019, which was prepared under the Master Plan Study. In the 1st year of the Phase II Project, actual implementation status of the Master Plan was reviewed and an Action Plan for 5 years, which is the last 5-year of the Master Plan and period of the Phase II Project, was prepared to facilitate the conservation activity of the Anzali Wetland. -
水収支シミュレーション(Mike She を用いる)の構築と、その計算結果である表 流水および地下水に関する時系列データを入力して構築した利水計算モデル(Mike Basin を用 いる)に関して説明する。
セフィードルード川流域総合水資源管理調査 ファイナルレポート 第7章 水収支解析・利水計算モデルの構築 第7章 水収支解析・利水計算モデルの構築 本章においては、水収支シミュレーション(MIKE SHE を用いる)の構築と、その計算結果である表 流水および地下水に関する時系列データを入力して構築した利水計算モデル(MIKE BASIN を用 いる)に関して説明する。 7.1 モデルの概要及び構築条件・手順 本検討で使用される水収支モデル(MIKE SHE)は、決定論的(次のステップが必ず一つに選択され る)アルゴリズムのプログラムで構築された物理学ベースの分布型モデルであり、蒸発散、表面流 出、中間流出、地下流出、河川流出及び、それらの相互作用を含む水循環の主要な現象を表現す る機能を有している。また、水の適正配分を検討するために、MIKE BASIN を使用して、水収支 モデルのデータ、河川構造物、水需要データなどを入力して利水計算モデルを構築した。7.1.1 節 にセフィードルードモデル(水収支解析モデルと利水計算モデル)の役割と両モデルの関係を説 明する。 7.1.1 セフィードルードモデルの機構 セフィードルード川流域の水収支モデル(MIKE SHE)によって、自然状態の表流水量(Runoff)、地 下涵養水量(Recharge)を算出し、利水計算モデル(MIKE BASIN)はその値を境界条件として使用す る。地下涵養水は表層を通過し地下に浸透する水のことであり、そのため表層についての詳細な 情報が必要になる。 セフィードルードの水収支モデルにおいては、一辺 2040m のメッシュで東西に 165 および南北に 210 個に区切り、これら個々のメッシュに物理的データを入力している。入力データは、様々な フォーマットで属性付けられており、それらデータの空間的配置の変更が容易になるように、シ ミュレーション実施時に、初めてデータが各数値メッシュに自動的に入力される仕様となってい る。 河川網については、地形図および調査団が購入した ASTER のデジタルエレベーションマップを使 用して作成した。水収支および利水計算モデルの流域間の流水の移動は、主にこの河川網を通じ て行われる。水収支モデルでは、河道の流れについては、MIKE11 の機能を使用しており、任意 の地点において各メッシュから流入してきた流水の量が算出できるため、流量観測地点における 観測値と計算値を比較することでキャリブレーションが実施される。双モデル共に地下水の流域 間のやりとりは行われない。 以上の現象の表現については、調査の目的や、データの有効性、モデル構築にかける時間等に応 じて、現象毎に異なったレベルの空間分布や詳細さを設定することが重要である。つまり、物理 モデルの適用においては複雑性と計算時間のバランスを考慮する必要があり、時には簡易的な数 値処理手法を選択することが実用的なモデルの構築につながる。セフィードルードモデルの場合 は、計算の集計結果が小流域 R 毎に保存されるが、65 個の小流域 R に関する 30 年間の計算時間 は合計約 6 時間程度になる。 また、水収支モデルで算出した表流水・地下涵養水に関する時系列データは、利水計算モデルで ある MIKE BASIN の入力データとなる。利水計算においても水収支モデルと同様に 65 個のダム 建設・計画地点上流域である小流域 R 毎に結果が算出され、各小流域 R の水の移動は河道を通じ て行われる。なお、利水計算モデルは GIS ソフトの ARCMAP の画面上にスキーマティックに構 築できる。具体的には、流域、河道、ダムおよび水利用者等のモジュールを画面に貼り付け、そ -
Ecological Study of Phytoplankton of the Anzali Lagoon (N Iran) and Its Outflow Into the Caspian Sea
Czech Phycology, Olomouc, 4: 145-154, 2004 145 Ecological study of phytoplankton of the Anzali lagoon (N Iran) and its outflow into the Caspian Sea Ekologická studie fytoplanktonu laguny Anzali (severní Irán) a jejího vtoku do Kaspického moře Zohreh R a m e z a n p o o r International Sturgeon Research Institute. P. O. Box: 41635 – 3464 Rasht – Iran, e-mail: [email protected] Abstract A study of phytoplankton communities of western regions of the Anzali lagoon, rivers flowing from the lagoon, and Anzali Harbor (navigation channel), located in the southern coast of the Caspian Sea was carried out. Samples were collected monthly at nine sites from May 1992 to April 1993 from the surface, 1 m, 5 m and from the final depths of each sampling site using Ruttner sampler with 1 lit. volume. Water and air temperature, - 3- - 2- turbidity, pH, Cl , PO4 , NO3 , SO4 and salinity were measured. Phytoplankton samples were fixed in 4% formaldehyde solution and then identified and counted using inverted microscope. A total of 97 taxa of phytoplankton were identified during the studied period. Phytoplankton species and environmental variables confirmed that the western part of the Anzali Lagoon has fresh water and eutrophic character. However, alkalinity in this region was high and high amount of sulfate at this region indicates the influence of the Caspian Sea in the area. As the Harbor is under combined influence of the Caspian Sea and freshwater rivers, it showed mostly estuarine phytoplankton communities with some species of marine origin. Few sources of pollution were identified that reduced the species diversity and alternatively some other species became dominant. -
Astacus Leptodactylus) Based on Microsatellite DNA Loci
Archive of SID Iranian Journal of Animal Biosystematics (IJAB) Vol.14, No.1, 15-27, 2018 ISSN: 1735-434X (print); 2423-4222 (online) DOI: 10.22067/ijab.v14i1.54723 Population molecular analysis among the narrow-clawed crayfish (Astacus leptodactylus) based on microsatellite DNA loci Khoshkholgh, M.1* and Nazari, S. 2 1Department of Fisheries, School of Natural Resources, Guilan university, P.O. Box 1144 Sowmehsara, Iran 2Shahid Motahary Cold-water Fishes Genetic and Breeding Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Yasuj, Iran (Received: 15 October 2017; Accepted: 10 February 2018) The genetic variation of narrow-clawed crayfish (Astacus leptodactylus, Eschscholtz, 1823) from Caspian Sea including two sites (Astara and Kiashahr), Aras region, Anzali lagoon and three rivers (Chafrood, Masuleh, and Siah Darvishan) was evaluated and their genetic variation on the basis of DNA microsatellite loci was estimated. DNA from pleopods of 194 specimens extracted and was examined with six microsatellite markers. Genetic differences between the populations were discerned by pairwise comparison based on allelic distribution. The average numbers of alleles per locus ranged from 2 to 10, while the average observed heterozygosity (Ho) at various loci varied between 0.222 to 0.732, implying that a midway level of genetic variation. Among seven populations Siah Darvishan population displayed the highest level of variability in terms of heterozygosity. Tests of Hardy-Weinberg showed that the microsatellite loci deviated significantly in most populations indicating deficit of heterozygote. The results indicate that some of the above populations are significantly differentiated from one another based on pairwise FST estimates. -
Integration of Genetic Algorithm and Multiple Kernel Support Vector Regression for Modeling Urban Growth
Computers, Environment and Urban Systems 65 (2017) 28–40 Contents lists available at ScienceDirect Computers, Environment and Urban Systems journal homepage: www.elsevier.com/locate/ceus Integration of genetic algorithm and multiple kernel support vector regression for modeling urban growth Hossein Shafizadeh-Moghadam a,⁎, Amin Tayyebi b, Mohammad Ahmadlou c, Mahmoud Reza Delavar c,d, Mahdi Hasanlou c a Department of GIS and Remote Sensing, Tarbiat Modares University, Tehran, Iran b Geospatial Big Data Engineer, Monsanto, MO, United States c School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran d Center of Excellence in Geomatic Engineering in Disaster Management, School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran article info abstract Article history: There are two main issues of concern for land change scientists to consider. First, selecting appropriate and inde- Received 30 November 2016 pendent land cover change (LCC) drivers is a substantial challenge because these drivers usually correlate with Received in revised form 10 April 2017 each other. For this reason, we used a well-known machine learning tool called genetic algorithm (GA) to select Accepted 10 April 2017 the optimum LCC drivers. In addition, using the best or most appropriate LCC model is critical since some of them Available online xxxx are limited to a specific function, to discover non-linear patterns within land use data. In this study, a support vec- tor regression (SVR) was implemented to model LCC as SVRs use various linear and non-linear kernels to better Keywords: Land cover change identify non-linear patterns within land use data. -
Highlights: Trip Overview
Highlights: Trip Overview: St. Thaddeus Monastery Iran is truly one of the worlds beautiful countries, not just in nature but in its culture and variety of ethnic groups inhabiting Masuleh Village it. Compared to trekking in other countries in the region, Iran Alamout Castel offers better serviced trekking routes making trekking easy and Persepolis (UNESCO World Heritage Sites) comfortable. Trekking in Iran has captured the imaginations of Services: mountaineers and explorers for more than 1000 years. The B / B, H / B, F / B (Based on Your Choice) lifestyle and habits of the inhabitants of the mountain regions Hotels: has not changed for generations, the village people offer a 3 Stars, 4 Stars, 5 Stars or Camp huge sense of hospitability and welcome trekkers and (Based on The Program) mountaineers alike. 2nd floor, NO 40, Shahid Beheshti Ave, Tehran, Iran Tel: +98 21 88 46 07 55 / +98 21 88 46 09 78 Fax: +98 21 88 46 10 32 Email: [email protected] / [email protected] www.pitotour.net Day 1: Pre reserve symbol of Iran high up in the the Arasbaran forest near Kaleybar City. It was also one of the last regional Day 2 Tabriz: Morning arrival Tabriz, meet the Guide and strongholds to fall to Arab invaders in the 9th Century. transfer to the Hotel. After that drive to Jolfa Border, to O/N in Kaleybar visit two of the best churches in iran. St Stepanos Monastery and St. Thaddeus Monastery. The Saint Day 5 Kaleybar - Sareyn: Drive to Sareyn through Ahar. Thaddeus Monastery is an ancient Armenian monastery Sareyn, is a city and the capital of Sareyn County, in located in the mountainous area of Iran's West Ardabil Province, Iran. -
Heavy Metals Phytoremediation by Aquatic Plants (Hyrocotyle Ranocloides, Ceratophyllum Demersum) of Anzali Lagoon
Int. J.Mar.Sci.Eng., 2(4), 249-254, Autumn 2012 ISSN 2251-6743 © IAU Heavy metals phytoremediation by aquatic plants (Hyrocotyle ranocloides, Ceratophyllum demersum) of Anzali lagoon 1*L. VahdatiRaad; 2H. Khara 1 Department of Marine Biology, Graduate School of Marine Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran 2 Department of Fisheries, Faculty of Natural Resources, Islamic Azad University of Lahijan Branch, P.O. Box 1616, Lahijan, Iran Received 10 August 2012; Revised 29 August 2012; Accepted 28 September 2012 ABSTRACT: Wetlands are often considered sinks for contaminants, and Aquatic plants have been shown to play important roles in wetland biogeochemistry through their active and passive circulation of elements. In this research, in order to evaluate the concentration level of heavy metals released by the urban, industrial and agricultural activities at the margin of the rivers flowing into Anzali lagoon, as well as finding lead and cadmium accumulated in two plant species quoted below, a sampling has been made on two kinds of aquatic plants in the lagoon at three randomized stations based on the density of the plant coverage. In this project two regional aquatic plant species asHyrocotyleranocloides, Ceratophyllumdemersumhave been investigated for absorption of lead and cadmium. Results show an average concentration of lead in Ceratophyllum being 53.11 ppm, for Hydrocotyle 77.8 ppm, and of cadmium in Ceratophyllum being 4.46 ppm and for Hydrocotyle 6.28 ppm. According to results, lead has been the most abundant between these two metals inside plant organs regardless the specie. The statistic test gives the results under the confidence level 95% proving the amount of the absorption being significant in the stem of Hydrocotyle plant rather than in the root or the leaf compared with other species.