Two Persistent Organic Pollutants Which Act Through Different Xenosensors ( Alpha

Total Page:16

File Type:pdf, Size:1020Kb

Two Persistent Organic Pollutants Which Act Through Different Xenosensors ( Alpha View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by HAL-Rennes 1 Two persistent organic pollutants which act through different xenosensors (alpha-endosulfan and 2,3,7,8 tetrachlorodibenzo-p-dioxin) interact in a mixture and downregulate multiple genes involved in human hepatocyte lipid and glucose metabolism. Ariane Ambolet-Camoit, Chris Ottolenghi, Alix Leblanc, Min Ji Kim, Franck Letourneur, S´ebastien Jacques, Nicolas Cagnard, Christiane Guguen-Guillouzo, Robert Barouki, Martine Aggerbeck To cite this version: Ariane Ambolet-Camoit, Chris Ottolenghi, Alix Leblanc, Min Ji Kim, Franck Letourneur, et al.. Two persistent organic pollutants which act through different xenosensors (alpha-endosulfan and 2,3,7,8 tetrachlorodibenzo-p-dioxin) interact in a mixture and downregulate multiple genes involved in human hepatocyte lipid and glucose metabolism.. Biochimie, Elsevier, 2015, 116, pp.79-91. <10.1016/j.biochi.2015.07.003>. <hal-01174215> HAL Id: hal-01174215 https://hal-univ-rennes1.archives-ouvertes.fr/hal-01174215 Submitted on 16 Sep 2015 HAL is a multi-disciplinary open access lished or not. The documents may come from archive for the deposit and dissemination of sci- teaching and research institutions in France or entific research documents, whether they are pub- abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est ´emanant des ´etablissements d'enseignement et de destin´eeau d´ep^otet `ala diffusion de documents recherche fran¸caisou ´etrangers,des laboratoires scientifiques de niveau recherche, publi´esou non, publics ou priv´es. Two persistent organic pollutants which act through different xenosensors ( alpha- endosulfan and 2,3,7,8 tetrachlorodibenzo-p-dioxin) interact in a mixture and downregulate multiple genes involved in human hepatocyte lipid and glucose metabolism Ariane Ambolet-Camoit 1, 2, ¶, Chris Ottolenghi 1, 2, 3, ¶, Alix Leblanc 1, 2, Min Ji Kim 1, 2 , Franck Letourneur 2, 4, Sébastien Jacques 2, 4, Nicolas Cagnard 2, 4, Christiane Guguen- Guillouzo 5, 6, Robert Barouki 1, 2, 3 and Martine Aggerbeck 1, 2, * 1 Inserm UMR-S 1124, Paris, France 2 Université Paris Descartes, Sorbonne Paris Cité, Paris, France 3 APHP, Hôpital Necker Enfants Malades, Service de Biochimie Métabolique, Paris, France 4 Plateforme de Génomique, Institut Cochin, Paris, France 5 Université de Rennes 1, Rennes, France 6 Inserm, UMR991, Rennes, France * Corresponding author. UMR-S 1124 INSERM, Centre universitaire des Saints-Pères, Université Paris Descartes, 45 rue des Saints-Pères 75006 Paris, France. Tel : 33 (0)142862093. E-mail address : [email protected] ¶ Both authors contributed equally to the manuscript 1 Abstract Individuals, typically, are exposed to mixtures of environmental xenobiotics affecting multiple organs and acting through different xenosensors and pathways in species and cell- type specific manners. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and α-endosulfan are Persistent Organic Pollutants (POPs) and endocrine disruptors which act through different xenosensors and accumulate in the liver. Our objective in this HEALS study was to investigate the effects of the mixture of these POPs on gene expression in a human-derived hepatocyte cell line, HepaRG. We found that, in spite of having largely uncorrelated effects, TCDD and α-endosulfan, when mixed, alter the expression of genes. The combined effects of the mixture of the POPs significantly altered the expression of 100 genes (42 up- and 58 down-regulated) whereas the same concentration of either POP alone did not alter significantly the expression of these genes. For 32 other genes, selective inhibitory crosstalk between TCDD and α-endosulfan was observed. One of the POPs inhibited the effect, on gene expression, of the other in the mixture although, when used alone, that POP did not affect expression. The expression of another 82 genes was significantly altered (up- or down- regulated) by a single POP. The addition of the second POP either increased, in the same direction, the effect on gene expression or had no further effect. At low concentrations (0.2nM TCDD and 1µM α-endosulfan), the POPs still had significant effects and the levels of expression of the corresponding proteins were found to be affected for some genes. Particularly striking was the 80-90% inhibition, by the mixture, of the expression of a number of genes of several hepatic intermediary metabolic pathways (glycerolipid metabolism, FXR/RXR activation, glycolysis/gluconeogenesis, retinoid and bile acid biosynthesis), whereas each pollutant alone had only a moderate effect. Keywords: dioxin, pesticides, HepaRG, mixture, metabolism, microarray 2 1. Introduction Environmental exposure to toxic chemicals for most individuals involves mixtures of compounds and extended periods of exposure. Humans are exposed not only to pesticides (estimated use exceeding 3 billion tons per year worldwide), mainly through food consumption, but also to a variety of other environmental xenobiotics, many of them being endocrine disrupters, which may have a variety of detrimental effects on human health [1, 2]. Epidemiological studies often associate occupational exposure to these compounds with an increase in the incidence of various pathologies, including cancers, neuro-degenerative disorders, reduced fertility and the metabolic syndrome which can lead to type 2 diabetes [3- 10]. Although concerns about the adverse effects of mixtures of chemicals and their potential interactions are increasing, especially for vulnerable populations, most studies on the effects of pollutants to date have focused on exposure to a single compound or to a mixture of compounds that act through the same signaling pathway. Only a few studies [11-19] have addressed the toxicity of mixtures of contaminants which act through different xenosensors, even though combinations of different chemicals, especially at low levels of exposure, probably have significant effects on human health [20, 21]. In this study, part of the HEALS exposome European project, we investigated the effects of a mixture of two endocrine disruptors, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and α-endosulfan, which act via different signalling pathways, accumulate in the liver and may have non-cancerogenic toxic hepatic effects in humans [22-25]. TCDD is one of the most potent ligands of the aryl hydrocarbon receptor (AhR) and a classical one with little metabolism and a half-life of about 7 years in humans, which triggers several biological responses [1]. Alpha-endosulfan is the major isomer of an organochlorine insecticide known to act through two different signalling pathways, the pregnane X receptor (PXR) [26, 27] or the estrogen receptor α (ER α) [12, 28]. Although endosulfan use has been banned in many 3 countries, it is still in use in China and India and decades of agricultural use have built up soil reservoirs [17]. Endosulfan sulfate, which is a major metabolite of α-endosulfan is as toxic as the parent compound and more persistent with a half-life of months to years in soils, sediments and water [22, 23]. Moreover, since dioxins are by-products of chlorinated compounds, both pollutants can be associated during pesticide manufacturing. In vivo , pollutant induced toxic effects on the liver arise from direct effects on hepatocytes and from extra-hepatic factors. Among extra-hepatic factors that may alter hepatocyte function, the disruption of the endocrine system [29, 30] or pollutant induced modification of the environment of the organ may affect hepatic physiology. This may be due to the release of pro-inflammatory cytokines into the systemic circulation, the activation of hormonal or oxidative stress responses and hypoxia [31-37]. The objective of this study was to investigate the effects, related specifically to hepatocyte cell functions, of the mixture of TCDD and α-endosulfan, by studying global gene expression in a human-derived hepatocyte cell line, HepaRG. To our knowledge, few studies have explored the effects on global gene expression of a combination of two Persistent Organic Pollutants (POPs), which act through different xenosensors, using a human liver cell model. HepaRG cells were chosen for the study because, after differentiation, they express high levels of several xenobiotic metabolizing enzymes and xenosensors [38] and, to date, it is the human cell line that most closely resembles human hepatocytes [39, 40]. A recent transcriptomic study, using five carcinogens, revealed that the HepaRG model was better suited for understanding the biological effects of exposure to the chemicals as compared to the HepG2 hepatocarcinoma cell line which has a low metabolic capacity and reduced PXR level [41-43]. Several other studies also have concluded that the HepaRG cell line is an excellent in vitro model to study human drug metabolism [39, 44-46] as well as being a relevant model for studying glucose, lipid and 4 lipoprotein metabolism [47, 48]. The use of the HepaRG cell line, which also exhibits stable and inducible enzyme expression over long periods (weeks), and has reduced variability, thus avoids many of the difficulties associated with the use of human hepatocytes such as scarce availability, complicated isolation procedures, variability, rapid dedifferentiation precluding long term use and cost [49-52]. This study was designed to provide information on the combined effects of TCDD and the pesticide α-endosulfan on genome-wide gene expression in one of the
Recommended publications
  • Factors Influencing Pesticide Resistance in Psylla Pyricola Foerster and Susceptibility Inits Mirid
    AN ABSTRACT OF THE THESIS OF: Hugo E. van de Baan for the degree ofDoctor of Philosopbv in Entomology presented on September 29, 181. Title: Factors Influencing Pesticide Resistance in Psylla pyricola Foerster and Susceptibility inits Mirid Predator, Deraeocoris brevis Knight. Redacted for Privacy Abstract approved: Factors influencing pesticide susceptibility and resistance were studied in Psylla pyricola Foerster, and its mirid predator, Deraeocoris brevis Knight in the Rogue River Valley, Oregon. Factors studied were at the biochemical, life history, and population ecology levels. Studies on detoxification enzymes showed that glutathione S-transferase and cytochrome P-450 monooxygenase activities were ca. 1.6-fold higherin susceptible R. brevis than in susceptible pear psylla, however, esterase activity was ca. 5-fold lower. Esterase activity was ca. 18-fold higher in resistant pear psylla than in susceptible D. brevis, however, glutathione S-transferase and cytochrome P-450 monooxygenase activities were similar. Esterases seem to be a major factor conferring insecticideresistance in P. Pvricola. Although the detoxification capacities of P. rivricola and D. brevis were quite similar, pear psylla has developed resistance to many insecticides in the Rogue River Valley, whereas D. brevis has remained susceptible. Biochemical factors may be important in determining the potential of resistance development, however, they are less important in determining the rate at which resistance develops. Computer simulation studies showed that life history and ecological factors are probably of greater importancein determining the rate at which resistance develops in P. pvricola and D. brevis. High fecundity and low immigration of susceptible individuals into selected populations appear to be major factors contributing to rapid resistance development in pear psylla compared with D.
    [Show full text]
  • Federal Register/Vol. 71, No. 80/Wednesday, April 26
    Federal Register / Vol. 71, No. 80 / Wednesday, April 26, 2006 / Proposed Rules 24615 section for a location to examine the Definition August 2, 1996, that are associated with regulatory evaluation. (h) For the purposes of this AD, an HPT actions proposed herein were module exposure is when the 1st stage HPT previously counted as reassessed at the List of Subjects in 14 CFR Part 39 rotor and 2nd stage HPT rotor are removed time of the completed Reregistration from the HPT case, making the 2nd stage Eligibility Decision (RED), Report of the Air transportation, Aircraft, Aviation HPT vanes and 2nd stage HPT air seal safety, Safety. Food Quality Protection Act (FQPA) assembly accessible in the HPT case. Tolerance Reassessment Progress and The Proposed Amendment Alternative Methods of Compliance Risk Management Decision (TRED), or Federal Register action. Under the authority delegated to me (i) The Manager, Engine Certification by the Administrator, the Federal Office, has the authority to approve DATES: Comments must be received on alternative methods of compliance for this or before June 26, 2006. Aviation Administration proposes to AD if requested using the procedures found amend 14 CFR part 39 as follows: in 14 CFR 39.19. ADDRESSES: Submit your comments, identified by docket identification (ID) PART 39—AIRWORTHINESS Related Information number EPA–HQ–OPP–2005–0459, by DIRECTIVES (j) None. one of the following methods: • Issued in Burlington, Massachusetts, on Federal eRulemaking Portal: http:// 1. The authority citation for part 39 April 19, 2006. www.regulations.gov. Follow the on-line continues to read as follows: instructions for submitting comments.
    [Show full text]
  • Question of the Day Archives: Monday, December 5, 2016 Question: Calcium Oxalate Is a Widespread Toxin Found in Many Species of Plants
    Question Of the Day Archives: Monday, December 5, 2016 Question: Calcium oxalate is a widespread toxin found in many species of plants. What is the needle shaped crystal containing calcium oxalate called and what is the compilation of these structures known as? Answer: The needle shaped plant-based crystals containing calcium oxalate are known as raphides. A compilation of raphides forms the structure known as an idioblast. (Lim CS et al. Atlas of select poisonous plants and mushrooms. 2016 Disease-a-Month 62(3):37-66) Friday, December 2, 2016 Question: Which oral chelating agent has been reported to cause transient increases in plasma ALT activity in some patients as well as rare instances of mucocutaneous skin reactions? Answer: Orally administered dimercaptosuccinic acid (DMSA) has been reported to cause transient increases in ALT activity as well as rare instances of mucocutaneous skin reactions. (Bradberry S et al. Use of oral dimercaptosuccinic acid (succimer) in adult patients with inorganic lead poisoning. 2009 Q J Med 102:721-732) Thursday, December 1, 2016 Question: What is Clioquinol and why was it withdrawn from the market during the 1970s? Answer: According to the cited reference, “Between the 1950s and 1970s Clioquinol was used to treat and prevent intestinal parasitic disease [intestinal amebiasis].” “In the early 1970s Clioquinol was withdrawn from the market as an oral agent due to an association with sub-acute myelo-optic neuropathy (SMON) in Japanese patients. SMON is a syndrome that involves sensory and motor disturbances in the lower limbs as well as visual changes that are due to symmetrical demyelination of the lateral and posterior funiculi of the spinal cord, optic nerve, and peripheral nerves.
    [Show full text]
  • Endosulfan Sulfate Hazard Summary Identification
    Common Name: ENDOSULFAN SULFATE CAS Number: 1031-07-8 RTK Substance number: 2988 DOT Number: UN 2761 Date: May 2002 ------------------------------------------------------------------------- ------------------------------------------------------------------------- HAZARD SUMMARY WORKPLACE EXPOSURE LIMITS The following information is based on Endosulfan: The following exposure limits are for Endosulfan: * Endosulfan Sulfate can affect you when breathed in and may be absorbed through the skin. NIOSH: The recommended airborne exposure limit is 3 * High exposure to Endosulfan Sulfate may cause 0.1 mg/m averaged over a 10-hour workshift. headache, giddiness, blurred vision, nausea, vomiting, diarrhea, and muscle weakness. Severe poisoning may ACGIH: The recommended airborne exposure limit is 3 cause convulsions and coma. 0.1 mg/m averaged over an 8-hour workshift. * Repeated and high exposures may affect the heart causing irregular heartbeats (arrhythmia). * The above exposure limits are for air levels only. When * CONSULT THE NEW JERSEY DEPARTMENT OF skin contact also occurs, you may be overexposed, even HEALTH AND SENIOR SERVICES HAZARDOUS though air levels are less than the limits listed above. SUBSTANCE FACT SHEET ON ENDOSULFAN. WAYS OF REDUCING EXPOSURE IDENTIFICATION * Where possible, enclose operations and use local exhaust Endosulfan Sulfate is a sand-like powder which is not ventilation at the site of chemical release. If local exhaust produced or used commercially. It occurs from the precursor ventilation or enclosure is not used, respirators should be Endosulfan, which is used as a pesticide. worn. * Wear protective work clothing. REASON FOR CITATION * Wash thoroughly immediately after exposure to * Endosulfan Sulfate is on the Hazardous Substance List Endosulfan Sulfate and at the end of the workshift.
    [Show full text]
  • Food and Chemical Toxicology 64 (2014) 1–9
    Food and Chemical Toxicology 64 (2014) 1–9 Contents lists available at ScienceDirect Food and Chemical Toxicology journal homepage: www.elsevier.com/locate/foodchemtox Taurine reverses endosulfan-induced oxidative stress and apoptosis in adult rat testis ⇑ Hamdy A.A. Aly a,b, , Rasha M. Khafagy c a Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia b Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt c Physics Department, Girls College for Arts, Science and Education, Ain Shams University, Cairo, Egypt article info abstract Article history: The present study was aimed to investigate the mechanistic aspect of endosulfan toxicity and its protec- Received 26 March 2013 tion by taurine in rat testes. Pre-treatment with taurine (100 mg/kg/day) significantly reversed the Accepted 11 November 2013 decrease in testes weight, and the reduction in sperm count, motility, viability and daily sperm produc- Available online 19 November 2013 tion in endosulfan (5 mg/kg/day)-treated rats. Sperm chromatin integrity and epididymal L-carnitine were markedly decreased by endosulfan treatment. Endosulfan significantly decreased the level of serum Keywords: testosterone and testicular 3b-HSD, 17b-HSD, G6PDH and LDH-X. Sperm Dwm and mitochondrial cyto- Endosulfan chrome c content were significantly decreased after endosulfan. Testicular caspases-3, -8 and -9 activities Taurine were significantly increased but taurine showed significant protection from endosulfan-induced apopto- Sperm Apoptosis sis. Oxidative stress was induced by endosulfan treatment as evidenced by increased H2O2 level and LPO Oxidative stress and decreased the antioxidant enzymes SOD, CAT and GPx activities and GSH content.
    [Show full text]
  • Results from Monitoring Endosulfan and Dieldrin in Wide Hollow Creek, Yakima River Drainage, 2005-06
    A D e p a r t m e n t o f E c o l o g y R e p o r t Results from Monitoring Endosulfan and Dieldrin in Wide Hollow Creek, Yakima River Drainage, 2005-06 Abstract Endosulfan and dieldrin were monitored in Wide Hollow Creek near Yakima from July 2005 through June 2006. Wide Hollow Creek is on the federal Clean Water Act Section 303(d) list as water quality limited for historically exceeding aquatic life and/or human health water quality criteria for these pesticides. Results showed that endosulfan no longer qualifies for 303(d) listing. Dieldrin, however, was consistently above human health criteria and should therefore remain listed. Data were also obtained on endosulfan sulfate and aldrin. By Art Johnson and Chris Burke Publication No. 06-03-038 September 2006 Waterbody No. WA-37-1047 Publication Information This report is available on the Department of Ecology’s website at www.ecy.wa.gov/biblio/0603038.html Data for this project are available on Ecology’s Environmental Information Management (EIM) website at www.ecy.wa.gov/eim/index.htm. Search User Study ID, AJOH0053. Ecology’s Study Tracker Code for this study is 06-001. For more information contact: Publications Coordinator Environmental Assessment Program P.O. Box 47600 Olympia, WA 98504-7600 E-mail: [email protected] Phone: (360) 407-6764 Authors: Art Johnson and Chris Burke Watershed Ecology Section Environmental Assessment Program Washington State Department of Ecology E-mail: [email protected], [email protected] Phone: 360-407-6766, 360-407-6139 Address: PO Box 47600, Olympia WA 98504-7600 Any use of product or firm names in this publication is for descriptive purposes only and does not imply endorsement by the author or the Department of Ecology.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,486,374 B2 Tamarkin Et Al
    USOO8486374B2 (12) United States Patent (10) Patent No.: US 8,486,374 B2 Tamarkin et al. (45) Date of Patent: Jul. 16, 2013 (54) HYDROPHILIC, NON-AQUEOUS (56) References Cited PHARMACEUTICAL CARRIERS AND COMPOSITIONS AND USES U.S. PATENT DOCUMENTS 1,159,250 A 11/1915 Moulton 1,666,684 A 4, 1928 Carstens (75) Inventors: Dov Tamarkin, Maccabim (IL); Meir 1924,972 A 8, 1933 Beckert Eini, Ness Ziona (IL); Doron Friedman, 2,085,733. A T. 1937 Bird Karmei Yosef (IL); Alex Besonov, 2,390,921 A 12, 1945 Clark Rehovot (IL); David Schuz. Moshav 2,524,590 A 10, 1950 Boe Gimzu (IL); Tal Berman, Rishon 2,586.287 A 2/1952 Apperson 2,617,754 A 1 1/1952 Neely LeZiyyon (IL); Jorge Danziger, Rishom 2,767,712 A 10, 1956 Waterman LeZion (IL); Rita Keynan, Rehovot (IL); 2.968,628 A 1/1961 Reed Ella Zlatkis, Rehovot (IL) 3,004,894 A 10/1961 Johnson et al. 3,062,715 A 11/1962 Reese et al. 3,067,784. A 12/1962 Gorman (73) Assignee: Foamix Ltd., Rehovot (IL) 3,092.255. A 6, 1963 Hohman 3,092,555 A 6, 1963 Horn 3,141,821 A 7, 1964 Compeau (*) Notice: Subject to any disclaimer, the term of this 3,142,420 A 7/1964 Gawthrop patent is extended or adjusted under 35 3,144,386 A 8/1964 Brightenback U.S.C. 154(b) by 1180 days. 3,149,543 A 9, 1964 Naab 3,154,075 A 10, 1964 Weckesser 3,178,352 A 4, 1965 Erickson (21) Appl.
    [Show full text]
  • Systematic Review of Exposure to Bisphenol a Alternatives and Its Effects on Reproduction and Thyroid Endocrine System in Zebrafish
    applied sciences Review Systematic Review of Exposure to Bisphenol A Alternatives and Its Effects on Reproduction and Thyroid Endocrine System in Zebrafish Jiyun Lee 1,2 , Kyong Whan Moon 1,2 and Kyunghee Ji 3,* 1 Department of Health and Safety Convergence Science, Graduate School at Korea University, Seoul 02841, Korea; [email protected] (J.L.); [email protected] (K.-W.M.) 2 BK21 FOUR R&E Center for Learning Health System, Graduate School at Korea University, Seoul 02841, Korea 3 Department of Occupational and Environmental Health, Yongin University, Yongin 17092, Korea * Correspondence: [email protected]; Tel.: +82-31-8020-2747 Abstract: Bisphenol A (BPA), which is widely used for manufacturing polycarbonate plastics and epoxy resins, has been banned from use in plastic baby bottles because of concerns regarding endocrine disruption. Substances with similar chemical structures have been used as BPA alternatives; however, limited information is available on their toxic effects. In the present study, we reviewed the endocrine disrupting potential in the gonad and thyroid endocrine system in zebrafish after exposure to BPA and its alternatives (i.e., bisphenol AF, bisphenol C, bisphenol F, bisphenol S, bisphenol SIP, and bisphenol Z). Most BPA alternatives disturbed the endocrine system by altering the levels of genes and hormones involved in reproduction, development, and growth in zebrafish. Changes in gene expression related to steroidogenesis and sex hormone production were more prevalent in males than in females. Vitellogenin, an egg yolk precursor produced in females, was also detected in males, confirming that it could induce estrogenicity. Exposure to bisphenols in the parental Citation: Lee, J.; Moon, K.W.; Ji, K.
    [Show full text]
  • Public Health Statement for Endosulfan
    PUBLIC HEALTH STATEMENT Endosulfan Division of Toxicology and Human Health Sciences August 2015 This Public Health Statement summarizes the Division of Toxicology and Human Health Science’s findings on endosulfan, tells you about it, the effects of exposure, and describes what you can do to limit that exposure. The U.S. Environmental Protection Agency (EPA) identifies the most serious hazardous waste sites in the nation. These sites make up the National Priorities List (NPL) and are sites targeted for long-term federal clean-up activities. U.S. EPA has found endosulfan in at least 176 of the 1,699 current or former NPL sites. The total number of NPL sites evaluated for endosulfan is not known. But the possibility remains that as more sites are evaluated, the sites at which endosulfan is found may increase. This information is important because exposure these future sites may be sources of exposure, and exposure to endosulfan may be harmful. If you are exposed to endosulfan, many factors determine whether you’ll be harmed. These include how much you are exposed to (dose), how long you are exposed (duration), and how you are exposed (route of exposure). You must also consider the other chemicals you are exposed to and your age, sex, diet, family traits, lifestyle, and state of health. WHAT IS ENDOSULFAN? Endosulfan is a restricted-use pesticide that is particularly effective against aphids, fruit worms, beetles, leafhoppers, moth larvae, and white flies on a wide variety of crops. It is not approved for residential use. It is sold as a mixture of two different forms of the same chemical (referred to as α- and β-endosulfan).
    [Show full text]
  • Endosulfan Final Review Report and Regulatory Decision
    ENDOSULFAN FINAL REVIEW REPORT AND REGULATORY DECISION JUNE 2005 Volume II. Occupational Health & Safety technical report Endocrine Disruption technical report TABLE OF CONTENTS 9. OH&S ASSESSMENT TECHNICAL REPORT.......................................................................... 108 9.1 BACKGROUND........................................................................................................................ 108 9.2 DERMAL ABSORPTION........................................................................................................... 108 9.2.1 In vivo studies..................................................................................................................................108 9.2.2 In vitro studies .................................................................................................................................109 9.2.3 Dermal absorption factor for exposure to concentrates and spray mixtures....................................110 9.2.4 Dermal absorption factor for re-entry exposure ..............................................................................110 9.3 OCCUPATIONAL EXPOSURE STUDIES.................................................................................... 111 9.3.1 Parameters used in exposure studies................................................................................................112 9.4 OCCUPATIONAL RISK ASSESSMENT ..................................................................................... 134 9.4.1 Margin of Exposure .........................................................................................................................134
    [Show full text]
  • Thom Ulovlulitu
    THOMULOVLULITU US009737386B2 (12 ) United States Patent ( 10 ) Patent No. : US 9 ,737 , 386 B2 Weyer ( 45) Date of Patent: Aug . 22 , 2017 ( 54 ) DOSAGE PROJECTILE FOR REMOTELY F42B 12 /46 (2006 .01 ) TREATING AN ANIMAL A61K 9 / 00 ( 2006 . 01 ) A61K 9 /48 (2006 .01 ) (71 ) Applicant : SmartVet Pty Ltd , Fig Tree Pocket, (52 ) U . S . CI. Queensland ( AU ) ??? . .. .. .. .. A610 7700 ( 2013 . 01 ) ; A61K 8 /0241 (2013 .01 ) ; A61K 8 / 062 ( 2013 .01 ) ; A61K 8 / 585 ( 72 ) Inventor : Grant Weyer , Noosa Heads (AU ) ( 2013 .01 ) ; A61K 8 /8152 ( 2013 .01 ) ; A61K 8 / 895 ( 2013 . 01 ) ; A610 19 /00 ( 2013 .01 ) ; F42B ( 73 ) Assignee : SmartVet Pty Ltd , Brisbane , 12 / 40 (2013 .01 ) ; F42B 12 / 46 ( 2013 .01 ) ; A61K Queensland (AU ) 9 /0017 ( 2013 .01 ) ; A61K 9 / 4858 ( 2013 . 01 ) ; A61K 2800 / 412 ( 2013 .01 ) ; A61K 2800 /49 ( * ) Notice : Subject to any disclaimer , the term of this ( 2013 .01 ) patent is extended or adjusted under 35 (58 ) Field of Classification Search U . S . C . 154 (b ) by 0 days. CPC . .. .. A61K 2800 /49 ; A61K 8 / 064 ; A61K 2800 /596 ; A61K 8 /0241 ; A61K 8 /895 ; (21 ) Appl. No. : 14 /890 ,230 A61K 2800 / 412 ; A61K 8 / 891; A61K 8 /8152 ; A61K 8 / 585 ; A61K 8 / 062 ; A610 ( 22 ) PCT Filed : May 8 , 2014 19 / 00 See application file for complete search history . ( 86 ) PCT No. : PCT/ AU2014 / 000501 $ 371 ( c ) ( 1 ) , ( 56 ) References Cited ( 2 ) Date : Nov. 10 , 2015 U . S . PATENT DOCUMENTS 6 ,524 , 286 B1 2 /2003 Helms et al . (87 ) PCT Pub . No .: WO2014 /179831 2010 /0203122 AL 8 / 2010 Weyer et al.
    [Show full text]
  • Estrogenic Effects in Vitro and in Vivo of the Fungicide Fenarimol Helle Raun Andersen A,∗, Eva C
    Toxicology Letters 163 (2006) 142–152 Estrogenic effects in vitro and in vivo of the fungicide fenarimol Helle Raun Andersen a,∗, Eva C. Bonefeld-Jørgensen b, Flemming Nielsen a, Kirsten Jarfeldt c, Magdalena Niepsuj Jayatissa b, Anne Marie Vinggaard c a Department of Environmental Medicine, Institute of Public Health, University of Southern Denmark, Winsløwparken 17, Dk-5000 Odense C, Denmark b Department of Environmental and Occupational Medicine, Institute of Public Health, Vennelyst Boulevard 6, Bldg. 260, Universitetsparken, University of Aarhus, Dk-8000 Aarhus C, Denmark c Danish Institute for Food and Veterinary Research, Department of Toxicology and Risk Assessment, Mørkhøj Bygade 19, Dk-2860 Søborg, Denmark Received 9 June 2005; received in revised form 7 October 2005; accepted 9 October 2005 Available online 1 December 2005 Abstract The fungicide fenarimol has the potential to induce endocrine disrupting effects via several mechanisms since it possesses both estrogenic and antiandrogenic activity and inhibits aromatase activity in cell culture studies. Hence, the integrated response of fenarimol in vivo is not easy to predict. In this study, we demonstrate that fenarimol is also estrogenic in vivo, causing significantly increased uterine weight in ovariectomized female rats. In addition, mRNA levels of the estrogen responsive gene lactoferrin (LF) were decreased in uteri, serum FSH levels were increased, and T3 levels decreased in fenarimol-treated animals. To our knowledge, only two other pesticides (o,p-DDT and methoxychlor) have previously been reported to induce an estrogenic response in the rodent uterotrophic bioassay. A pronounced xenoestrogenicity in serum samples from rats treated with fenarimol and estradiol benzoate (E2B) separately or in combination was observed, demonstrating the usefulness of this approach for estimating the integrated internal exposure to xenoestrogens.
    [Show full text]