Optimizations of in Vitro Mucus and Cell Culture Models to Better Predict in Vivo Gene Transfer in Pathological Lung Respiratory

Total Page:16

File Type:pdf, Size:1020Kb

Optimizations of in Vitro Mucus and Cell Culture Models to Better Predict in Vivo Gene Transfer in Pathological Lung Respiratory pharmaceutics Review Optimizations of In Vitro Mucus and Cell Culture Models to Better Predict In Vivo Gene Transfer in Pathological Lung Respiratory Airways: Cystic Fibrosis as an Example Rosy Ghanem 1 ,Véronique Laurent 1, Philippe Roquefort 2, Tanguy Haute 1 , Sophie Ramel 3, Tony Le Gall 1 , Thierry Aubry 2 and Tristan Montier 1,4,* 1 Univ Brest, INSERM, EFS, UMR 1078, GGB, F-29200 Brest, France; [email protected] (R.G.); [email protected] (V.L.); [email protected] (T.H.); [email protected] (T.L.G.) 2 IRDL UMR CNRS 6027, Université de Bretagne Occidentale, UFR Sciences et Techniques, 6, Avenue Victor Le Gorgeu CS 93837, CEDEX 3, 29238 Brest, France; [email protected] (P.R.); [email protected] (T.A.) 3 Centre de Ressources et de Compétences de la Mucoviscidose, Fondation Ildys, Presqu’île de Perharidy, 29680 Roscoff, France; [email protected] 4 CHRU de Brest, Service de Génétique Médicale et Biologie de la Reproduction, Centre de Référence des Maladies Rares “Maladies Neuromusculaires”, F-29200 Brest, France * Correspondence: [email protected] Abstract: The respiratory epithelium can be affected by many diseases that could be treated using aerosol gene therapy. Among these, cystic fibrosis (CF) is a lethal inherited disease characterized by airways complications, which determine the life expectancy and the effectiveness of aerosolized treatments. Beside evaluations performed under in vivo settings, cell culture models mimicking in vivo pathophysiological conditions can provide complementary insights into the potential of Citation: Ghanem, R.; Laurent, V.; gene transfer strategies. Such models must consider multiple parameters, following the rationale Roquefort, P.; Haute, T.; Ramel, S.; Le that proper gene transfer evaluations depend on whether they are performed under experimental Gall, T.; Aubry, T.; Montier, T. conditions close to pathophysiological settings. In addition, the mucus layer, which covers the Optimizations of In Vitro Mucus and epithelial cells, constitutes a physical barrier for gene delivery, especially in diseases such as CF. Cell Culture Models to Better Predict Artificial mucus models featuring physical and biological properties similar to CF mucus allow In Vivo Gene Transfer in Pathological determining the ability of gene transfer systems to effectively reach the underlying epithelium. In this Lung Respiratory Airways: Cystic review, we describe mucus and cellular models relevant for CF aerosol gene therapy, with a particular Fibrosis as an Example. Pharmaceutics emphasis on mucus rheology. We strongly believe that combining multiple pathophysiological 2021, 13, 47. https://doi.org/ features in single complex cell culture models could help bridge the gaps between in vitro and 10.3390/pharmaceutics13010047 in vivo settings, as well as viral and non-viral gene delivery strategies. Received: 1 December 2020 Keywords: cystic fibrosis; gene delivery; in vitro model; mucus; airway epithelium Accepted: 28 December 2020 Published: 31 December 2020 Publisher’s Note: MDPI stays neu- tral with regard to jurisdictional clai- 1. Introduction ms in published maps and institutio- 1.1. Cystic Fibrosis and Current Protein Treatment nal affiliations. Cystic fibrosis (CF) is one of the most common inherited genetic disorders, affecting over 70,000 people worldwide [1]. CF is induced by numerous mutations listed in a single gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) [2]. The CFTR protein is a channel that participates in the exit of chloride ions from the Copyright: © 2020 by the authors. Li- censee MDPI, Basel, Switzerland. cytoplasm. This channel also plays a key role in the regulation of another channel called This article is an open access article ENaC (epithelial sodium channel), involved in the reabsorption of sodium. Altogether, distributed under the terms and con- those channels control the correct hydration of mucus on airway epithelial cells. Alteration ditions of the Creative Commons At- or dysfunction of the CFTR channel leads thus to abnormal ion transport and mucus tribution (CC BY) license (https:// dehydration (Figure1A). Such dehydrated sticky mucus is responsible for the diminution creativecommons.org/licenses/by/ of mucociliary clearance (MCC), leading to a mucosal accumulation. This mucus stagnation 4.0/). provides a propitious environment for bacterial colonization and infections, inducing Pharmaceutics 2021, 13, 47. https://doi.org/10.3390/pharmaceutics13010047 https://www.mdpi.com/journal/pharmaceutics Pharmaceutics 2021, 13, x 2 of 25 Pharmaceutics 2021, 13, 47 2 of 25 tion (Figure 1A). Such dehydrated sticky mucus is responsible for the diminution of mu- cociliary clearance (MCC), leading to a mucosal accumulation. This mucus stagnation pro- vides a propitious environment for bacterial colonization and infections, inducing related chronicrelated inflammation. chronic inflammation. In the CF In context, the CF poly context,nuclear polynuclear neutrophils neutrophils accumulation accumulation in the mu- in custhe is mucus responsible is responsible for the forproduction the production and th ande excretion the excretion of lysosomal of lysosomal enzymes enzymes which which di- rectlydirectly contribute contribute to totissue tissue remodeling remodeling [3,4]. [3,4 ].The The remodeling remodeling of of secretory secretory cells cells induces induces an an overproductionoverproduction of of mucin, mucin, the the main main constituen constituentt of of mucus, mucus, leading leading to to severe severe consequences consequences forfor the the respiratory respiratory exchanges exchanges [5]. [5]. Figure 1. Schematic representation of the respiratory system and the use of an aerosol to target the pulmonary epithelium. Figure 1. Schematic representation of the respiratory system and the use of an aerosol to target the pulmonary epithelium. (A) The upper and lower respiratory tract with an emphasis on a bronchial section constituted by mucous glands and smooth (A) The upper and lower respiratory tract with an emphasis on a bronchial section constituted by mucous glands and muscles. In the case of cystic fibrosis (CF), sticky mucus is overproduced and creates a bronchial plug. (B) Pseudostratified smooth muscles. In the case of cystic fibrosis (CF), sticky mucus is overproduced and creates a bronchial plug. (B) Pseu- dostratifiedairway epithelium airway epithelium composed composed of goblet, of ciliated, goblet, andciliated, basal and cells. basal The cells. mucosa The mucosa is covered is covered with airways with airways surface surface liquid liquid(ASL) (ASL) which which contains contains two layers, two layers, a periciliary a periciliary liquid liquid layer directlylayer directly in contact in contact with the with cilia the and cilia mucus and mucus layer. CFlayer. mucus CF mucusis colonized is colonized with opportunistic with opportunistic bacteria bacteria such as suchStaphylococcus as Staphylococcus aureus aureusand Pseudomonas and Pseudomonas aeruginosa aeruginosa. These. These bacteria bacteria form a formbiofilm a biofilm participating participating in the in viscous the viscous anddense and dense aspect aspect of the of CF the mucus. CF mucus. When When nanoparticles nanoparticles (NPs) (NPs) such such as lipoplexesas lipoplexes are areaerosolized, aerosolized, they they have have to crossto cross the the mucus mucus barrier barrier before before reaching reaching the the epithelial epithelial cells cells to deliver to deliver therapeutic therapeutic compounds compounds such suchas acids as acids nucleic nucleic construction. construction. Today,Today, pulmonary pulmonary complications complications are are the the pr primaryimary cause cause of of CF-related CF-related morbidity morbidity and and mortality.mortality. Similar Similar manifestations manifestations exist exist in inthe the gastrointestinal gastrointestinal and and genital genital tracts tracts but butare, are,at present,at present, dealt dealt with with by bysymptomatic symptomatic treatmen treatmentsts such such as as supplementary supplementary pancreatic pancreatic en- en- zymeszymes [6]. [6]. During During the the last last decade, decade, new new dr drugsugs have have been been developed developed regarding regarding the the CFTR CFTR mutations.mutations. Ivacaftor Ivacaftor (Kalydeco (Kalydeco®®),), a aCFTR CFTR potentiator potentiator channel, channel, is is indicated indicated for for the the G551D G551D mutation.mutation. This This potentiator cancan be be associated associated with with correctors correctors such such as lumacaftor as lumacaftor (Orkambi (Or-®) kambior tezacaftor®) or tezacaftor (Symdeko (Symdeko®) for the®) homozygote for the homozygote F508del mutation.F508del mutation. More recently, More arecently, tritherapy, a tritherapy,namely, elexacaftor-tezacaftor-ivacaftor namely, elexacaftor-tezacaftor-ivacaftor (Trikafta® ),(Trikafta showed®), an showed FEV1 (forced an FEV1 expiratory (forced expiratoryvolume) higher volume) than higher 10% benefit than 10% for patientsbenefit withfor patients a single with F508del a single allele F508del [7]. Unfortunately, allele [7]. Unfortunately,these molecules these are mutation-dependentmolecules are mutation and-dependent are sometimes and are responsible sometimes for responsible several side foreffects several (such side as effects hepatitis, (such abdominal as hepatitis, pain) abdominal [8]. Even pain) though [8]. Even pharmacology though pharmacology
Recommended publications
  • An Sirna Screen Identifies RSK1 As a Key Modulator of Lung Cancer
    Oncogene (2011) 30, 3513–3521 & 2011 Macmillan Publishers Limited All rights reserved 0950-9232/11 www.nature.com/onc ORIGINAL ARTICLE An siRNA screen identifies RSK1 as a key modulator of lung cancer metastasis R Lara1,7, FA Mauri2, H Taylor3, R Derua4, A Shia3, C Gray5, A Nicols5, RJ Shiner2, E Schofield6, PA Bates6, E Waelkens4, M Dallman3, J Lamb3, D Zicha5, J Downward7, MJ Seckl1 and OE Pardo1 1Department of Oncology, Hammersmith Campus, Cyclotron Building, London, UK; 2Histopathology Imperial College London, Hammersmith Campus, London, UK; 3Division of Cell and Molecular Biology, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK; 4Labo Proteı¨ne Fosforylatie en Proteomics, Katholieke Universiteit Leuven, Leuven, Belgium; 5Light Microscopy Department, London Research Institute, London, UK; 6Biomolecular Modelling Laboratory, London Research Institute, London, UK and 7Signal Transduction Laboratory, Cancer Research UK, London Research Institute, London, UK We performed a kinome-wide siRNA screen and identified Introduction 70 kinases altering cell migration in A549 lung cancer cells. In particular, ribosomal S6 kinase 1 (RSK1) Lung cancer is the most common cancer killer with silencing increased, whereas RSK2 and RSK4 down- a 5-year survival rate o5%. Non-small cell lung cancer regulation inhibited cell motility. In a secondary collagen- (NSCLC) accounts for 80% of cases of which adeno- based three-dimensional invasion screen, 38 of our hits carcinoma represents the majority. Most patients cross-validated, including RSK1 and RSK4. In two further present with metastatic lesions and are incurable. Hence, lung cancer cell lines, RSK1 but not RSK4 silencing a better understanding of the biological processes showed identical modulation of cell motility.
    [Show full text]
  • Infections of the Respiratory Tract
    F70954-07.qxd 12/10/02 7:36 AM Page 71 Infections of the respiratory 7 tract the nasal hairs and by inertial impaction with mucus- 7.1 Pathogenesis 71 covered surfaces in the posterior nasopharynx (Fig. 11). 7.2 Diagnosis 72 The epiglottis, its closure reflex and the cough reflex all reduce the risk of microorganisms reaching the lower 7.3 Management 72 respiratory tract. Particles small enough to reach the tra- 7.4 Diseases and syndromes 73 chea and bronchi stick to the respiratory mucus lining their walls and are propelled towards the oropharynx 7.5 Organisms 79 by the action of cilia (the ‘mucociliary escalator’). Self-assessment: questions 80 Antimicrobial factors present in respiratory secretions further disable inhaled microorganisms. They include Self-assessment: answers 83 lysozyme, lactoferrin and secretory IgA. Particles in the size range 5–10 µm may penetrate further into the lungs and even reach the alveolar air Overview spaces. Here, alveolar macrophages are available to phagocytose potential pathogens, and if these are overwhelmed neutrophils can be recruited via the This chapter deals with infections of structures that constitute inflammatory response. The defences of the respira- the upper and lower respiratory tract. The general population tory tract are a reflection of its vulnerability to micro- commonly experiences upper respiratory tract infections, bial attack. Acquisition of microbial pathogens is which are often seen in general practice. Lower respiratory tract infections are less common but are more likely to cause serious illness and death. Diagnosis and specific chemotherapy of respiratory tract infections present a particular challenge to both the clinician and the laboratory staff.
    [Show full text]
  • Development of Carbon Dots As Fluorescent Probes for Fluorescence in Situ Hybridisation (FISH) Application
    Development of Carbon Dots as Fluorescent Probes for Fluorescence In Situ Hybridisation (FISH) Application By Phyllis Jacqueline Nishi A thesis submitted to the Faculty of Engineering, Computing and Science Swinburne University of Technology Sarawak In fulfilment of the requirements for the degree of Master of Science by Research 2019 Abstract Fluorescence in situ hybridisation (FISH) is an important bioimaging technique in molecular cytogenetics that utilises fluorescent probes that can bind specifically to a target nucleic acid sequence of a DNA or RNA. It is important that the fluorophores used to fluorescently tag probes are bright, small-sized, non-toxic and come in various colours. Thus, there is a need for new and alternative fluorescent labels to be developed to improve the performance of FISH. This thesis explores on the synthesis and application of carbon dots (CDs) as a class of versatile fluorescent label in FISH. The synthetic method for the production of CDs for use as fluorescent probes in FISH was described. CDs were synthesised by hydrothermal treatment of a carbon source in concentrated phosphoric acid solution. In this work, carboxymethylcellulose (CMC) was selected as the starting precursor and then converted into CDs with carboxylic functional groups. The optical properties and characterisation of the synthesised CDs were carried out. An amine-functionalised oligonucleotide probe was designed to detect and localise glyceraldehyde 3-phosphate dehydrogenase (GAPDH) mRNA in human adult low calcium high temperature keratinocytes (HaCaT) cell line. CDs were neutralised, isolated and dried before conjugated with the GAPDH oligonucleotide probe via carbodiimide crosslinker chemistry. The conjugated CD-GAPDH probe were applied for in situ hybridisation in fixed HaCaT cell line.
    [Show full text]
  • Effects of Calcium on Intestinal Mucin: Implications for Cystic Fibrosis
    27. Takcbayi~shi.S.. (;robe. II . von B;~ssca~t/.D. H.. and rliormnn. 11. Ultrastruc- prepnratlon.) tural a\pects of veihel .llteratlon\ In homoc!\t~nur~a.V~rcha\r'r Arch. Aht. .A 33 Wong. P. W. K.. Scliworl. V . and Komro~er.(i. M.: The b~os!nthc\~\of P;~thol Anat . 1154- 4 (1071). c)st:~thlonrnc In pntlcntc s~thhornoc!\tinur~,~. Ped~at.Rer . 2- 149 (196x1. 28. T:~ndler. H. T.. I:rlandson. R. A,, and Wbnder. E. 1.. Rihol1;lvln and mou\c 34 'The authors would l~kcto thank K. Curleq, N. Becker, and k.Jaros~u\ for thcir hepatic cell structure and funct~on.hmer. J. Pnthol.. 52 69 (1968). techn~cal:Is\l\tancc and Dr\. B. Chomet. Orville T B:llle!. and Mar) B. 29. Ti~nikawa, L.: llltrastructurnl A\pect\ of the I iver and Its I)~sordcr\(Igaker Buschman for the~ruggehtlona In the ~ntcrpretation\of braln and Iner electron Shoin. I.td.. Tok!o. 1968). micrograph\. 30. Uhlendorl, B. W.. Concrl!. E. R.. and Mudd. S. H.: tlomoc!st~nur~a:Studle, In 35 Th~sstud! &a\ \upported b! Publrc Health Servlcc Kese;~rch Grant no. KO1 tissue culture. Pediat. Kes.. 7: 645 (1073). N5OX532NlN and a grant from the Illino~\Department of Mental llealth. 31. Wong. P. W. K.. and Fresco. R.: T~\suec!\tathlon~nc in mice trei~tedw~th 36 Requests for reprint\ should be i~ddressed to: Paul W. K. Wong. M.D.. cystelne and homoser~ne.Pedlat. Res . 6 172 (1972) Department of Ped~atric.Prcsh!tcr~an-St.
    [Show full text]
  • Spotlight on Market Access Actionable Understandings from AIS Health’S In-Depth Coverage
    Spotlight on Market Access Actionable understandings from AIS Health’s in-depth coverage September 16, 2019 Recent Situations Stress That Data Is More Important Than Ever to FDA, Drug Uptake 2 Clinical Trials by Indication: Q2 2019 A pair of drugmakers and the FDA found themselves in the news lately, but it’s safe to say it wasn’t for the reasons they would prefer. Both situations Reality Check: PCSK9 Inhibitors 8 stress the importance of data needed to secure product approvals, and, per- haps, payer and provider uptake. On Aug. 6, the FDA put out a statement addressing “data accuracy issues” with Zolgensma (onasemnogene abeparvovec-xioi), a new gene ther- apy to treat spinal muscular atrophy in people less than 2 years old who have bi-allelic mutations in the survival motor neuron 1 gene, including those who are presymptomatic when diagnosed. The one-time therapy has the distinction of being the most expensive drug in the world, with a price tag of $2.1 million. The FDA approved the drug from AveXis, Inc. on May 24 (SMA 7/1/19, p. 6). On June 28, AveXis — which was acquired by Novartis AG last year — notified the agency that there was “a data manipulation issue that impacts the accuracy of certain data from product testing performed in animals sub- mitted in the biologics license application (BLA) and reviewed by the FDA.” continued on p. 3 Report Reveals That Almost 100 RM/AT Products Are in Phase III Clinical Trials This past quarter saw two new gene therapies: Novartis AG subsidiary AveXis, Inc.’s Zolgensma (onasemnogene abeparvovec-xioi) received FDA approval May 24 for the treatment of spinal muscular atrophy (SMA 7/1/19, p.
    [Show full text]
  • In Vitro Modelling of the Mucosa of the Oesophagus and Upper Digestive Tract
    21 Review Article Page 1 of 21 In vitro modelling of the mucosa of the oesophagus and upper digestive tract Kyle Stanforth1, Peter Chater1, Iain Brownlee2, Matthew Wilcox1, Chris Ward1, Jeffrey Pearson1 1NUBI, Newcastle University, Newcastle upon Tyne, UK; 2Applied Sciences (Department), Northumbria University, Newcastle upon Tyne, UK Contributions: (I) Conception and design: All Authors; (II) Administrative support: All Authors; (III) Provision of study materials or patients: All Authors; (IV) Collection and assembly of data: All Authors; (V) Data analysis and interpretation: All Authors; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. Correspondence to: Kyle Stanforth. NUBI, Medical School, Framlington Place, Newcastle University, NE2 4HH, Newcastle upon Tyne, UK. Email: [email protected]. Abstract: This review discusses the utility and limitations of model gut systems in accurately modelling the mucosa of the digestive tract from both an anatomical and functional perspective, with a particular focus on the oesophagus and the upper digestive tract, and what this means for effective in vitro modelling of oesophageal pathology. Disorders of the oesophagus include heartburn, dysphagia, eosinophilic oesophagitis, achalasia, oesophageal spasm and gastroesophageal reflux disease. 3D in vitro models of the oesophagus, such as organotypic 3D culture and spheroid culture, have been shown to be effective tools for investigating oesophageal pathology. However, these models are not integrated with modelling of the upper digestive tract—presenting an opportunity for future development. Reflux of upper gastrointestinal contents is a major contributor to oesophageal pathologies like gastroesophageal reflux disease and Barratt’s oesophagus, and in vitro models are essential for understanding their mechanisms and developing solutions.
    [Show full text]
  • The Respiratory System
    Respiratory Rehabilitation Program The Respiratory System Every cell in the body needs oxygen to survive. The respiratory system provides a way for oxygen to enter the body. It also provides a way for carbon dioxide, the waste product of cells, to leave the body. The respiratory system is made up of 2 sections: the upper respiratory tract and the lower respiratory tract mouth and nose larynx or voice box trachea The Upper Respiratory Tract Mouth and Nose Air enters the body through your mouth and nose. The air is warmed, moistened and filtered by mucous secretions and hairs in the nose. Larynx or Voice Box The larynx sits at the top of the trachea. It contains your vocal cords. Each time you breathe in or inhale, the air passes through the larynx, down the trachea and into the lungs. When you breathe out or exhale, the air moves from your lungs, up your trachea and out through your nose and mouth. When you speak, the vocal cords tighten up and move closer together. Air from the lungs is forced between them and causes them to vibrate. This produces sound. Your tongue, lips and teeth form words out of these sounds. Trachea The trachea is the tube that connects the mouth and nose to your lungs. It is also called the windpipe. The Lower Respiratory Tract Inside Lungs Outside Lungs bronchial tubes alveoli diaphragm (muscle) Bronchial Tubes The trachea splits into 2 bronchial tubes in your lungs. These are called the left bronchus and right bronchus. The bronchus tubes keep branching off into smaller and smaller tubes called bronchi.
    [Show full text]
  • RESPIRATORY TRACT INFECTIONS Peter Zajac, DO, FACOFP, Author Amy J
    OFP PATIENT EDUCATION HANDOUT RESPIRATORY TRACT INFECTIONS Peter Zajac, DO, FACOFP, Author Amy J. Keenum, DO, PharmD, Editor • Ronald Januchowski, DO, FACOFP, Health Literacy Editor HOME MANAGEMENT INCLUDES: • Drinking plenty of clear fuids and rest. Vitamin-C may help boost your immune system. Over-the-counter pain relievers such as acetaminophen and ibuprofen can be helpful for fevers and to ease any aches. Saline (salt) nose drops, lozenges, and vapor rubs can also help symptoms when used as directed by your physician. • A cool mist humidifer can make breathing easier by thinning mucus. • If you smoke, you should try to stop smoking for good! Avoid second-hand smoking also. • In most cases, antibiotics are not recommended because they are only effective if bacteria caused the infection. • Other treatments, that your Osteopathic Family Physician may prescribe, include Osteopathic Manipulative Therapy (OMT). OMT can help clear mucus, Respiratory tract infections are any relieve congestion, improve breathing and enhance comfort, relaxation, and infection that affect the nose, sinuses, immune function. and throat (i.e. the upper respiratory tract) or airways and lungs (i.e. the • Generally, the symptoms of a respiratory tract infection usually pass within lower respiratory tract). Viruses are one to two weeks. the main cause of the infections, but • To prevent spreading infections, sneeze into the arm of your shirt or in a tissue. bacteria can cause some. You can Also, practice good hygiene such as regularly washing your hands with soap and spread the infection to others through warm water. Wipe down common surfaces, such as door knobs and faucet handles, the air when you sneeze or cough.
    [Show full text]
  • Mechanistic Insight Into Taxol-Induced Cell Death
    Oncogene (2008) 27, 4580–4591 & 2008 Macmillan Publishers Limited All rights reserved 0950-9232/08 $30.00 www.nature.com/onc ORIGINAL ARTICLE Mechanistic insight into taxol-induced cell death F Impens1,2, P Van Damme1,2, H Demol1,2, J Van Damme1,2, J Vandekerckhove1,2 and K Gevaert1,2 1Department of Medical Protein Research, VIB, Ghent, Belgium and 2Department of Biochemistry, Ghent University, Ghent, Belgium We analysed the involvement of proteases during taxol- One class of chemotherapeutic drugs that induce such mediated cell death of human A549 non-small-cell lung alternative forms of PCD is microtubule-stabilizing carcinoma cells using a proteomics approach that specifi- agents with their prototypical representative taxol cally targets protein N termini and further detects newly (paclitaxel). Taxol and derivatives are used as potent formed N termini that are the result of protein processing. drugs against several solid tumors. Although their Our analysis revealed 27 protease-mediated cleavages, cytotoxic mechanism depends on cell type, concentra- which we divided in sites C-terminal to aspartic acid (Asp) tion and exposure duration, in most studies with and sites C-terminal to non-Aspresidues, as the result of clinically relevant taxol concentrations (10–200 nM), caspase and non-caspase protease activities, respectively. apoptosis is induced by blocking the mitotic spindle Remarkably, some of the former were insensitive to potent and a G2/M arrest (Schiff and Horwitz, 1980; Torres pancaspase inhibitors, and we therefore suggest that and Horwitz, 1998; Blagosklonny and Fojo, 1999; Zhao previous inhibitor-based studies that report on the caspase- et al., 2005).
    [Show full text]
  • Nomina Histologica Veterinaria, First Edition
    NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria.
    [Show full text]
  • Curriculum Vitae
    Curriculum Vitae PERSONAL INFORMATION Ulrike Schara WORK EXPERIENCE 1991- 1997 Education in Paediatrics Paediatric Outpatient Centre,City Hospital Gelsenkirchen. (Germany) Paediatric Outpatient Centre. City Hospital Gelsenkirchen.<br/>Childrens Hospital, Ruhr University Bochum<br/> 1998- 2002 Senior Neuropediatrics Children&apos;s University Hospital Bochum (Germany) . 2002- 2003 Head of Neuropediatrics Children&apos;s University Hospital Bochum (Germany) 2004- 2006 Head of Neuropediatrics Children&apos;s Hospital, City of Neuss (Germany) 2007- Present Head of the Neuropaediatric Outpatient Centre and Consultant for Neuropaediatrics University of Essen (Germany) EDUCATION AND TRAINING 1991- 2012 MD, Professor Ruhr University of Bochum, Germany University of Essen (Germany) ADDITIONAL INFORMATION Expertise Publications Publcations of the past 5 years 1.Rudnik-Schöneborn S, Tölle D, Senderek J, Eggermann K, Elbracht M, Kornak U, von der Hagen M, Kirschner J, Leube B, Müller-Felber W, Schara U, von Au K, Wieczorek D, Bußmann C, Zerres K. Diagnostic algorithms in Charcot-Marie-Tooth neuropathies: experiences from a German genetic laboratory on the basis of 1206 index patients. Clin Genet. 2016 Jan;89(1):34-43 2.Byrne S, Jansen L, U-King-Im JM, Siddiqui A, Lidov HG, Bodi I, Smith L, Mein R, Cullup T, Dionisi-Vici C, Al-Gazali L, Al-Owain M, Bruwer Z, Al Thihli K, El-Garhy R, Flanigan KM, Manickam K, Zmuda E, Banks W, Gershoni-Baruch R, Mandel H, Dagan E, Raas-Rothschild A, Barash H, Filloux F, Creel D, Harris M, Hamosh A, Kölker S, Ebrahimi-Fakhari D, Hoffmann GF, Manchester D, Boyer PJ, Manzur AY, Lourenco CM, Pilz DT, Kamath A, Prabhakar P, Rao VK, Rogers RC, Ryan MM, Brown NJ, McLean CA, Said E, Schara U, Stein A, Sewry C, Travan L, Wijburg FA, Zenker M, Mohammed S, Fanto M, Gautel M, Jungbluth H.
    [Show full text]
  • Immunoprophylaxis of Influenza Using AAV Vector Delivery of Cross
    Immunoprophylaxis of Influenza using AAV Vector Delivery of Cross-Subtype Neutralizing Single Domain Antibodies JOANNE MARIE M. DEL ROSARIO Thesis submitted for the degree of Doctor of Philosophy Infection and Immunity University College London 2020 To Chris, as fate would have it. To Teki, thank you for everything. 2 DECLARATION I, Joanne Marie M. Del Rosario, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. __________________________ 3 ABSTRACT Cross-subtype neutralizing single domain antibodies against influenza present new opportunities for immunoprophylaxis and pandemic preparedness. Their simple modular structure and single open reading frame format are highly amenable to gene therapy-mediated delivery. R1a-B6, an alpaca-derived single domain antibody (nanobody), that is capable of potent cross-subtype neutralization in vitro of H1N1, H5N1, H2N2, and H9N2 influenza viruses, through binding to a highly conserved epitope in the influenza hemagglutinin stem region, was previously described. To evaluate the potential of R1a-B6 for immunoprophylaxis via adeno-associated viral (AAV) vector delivery, it was reformatted as Fc fusions of mouse IgG1 (ADCC-) and IgG2a (ADCC+) isotypes. This is also to extend R1a-B6’s half-life and to assess the requirement for ADCC for efficacy of R1a-B6 in vitro and in vivo. It was found that reformatted R1a-B6 of either mouse IgG isotype retained its potent binding and neutralization activity against different Group I influenza A subtypes in vitro. The findings in this study also demonstrate that a single intramuscular injection in mice of AAV encoding R1a-B6-Fc was able to drive sustained high-level expression (0.5–1.1 mg/mL) of the nanobody-Fc in sera with no evidence of reduction for up to 6 months.
    [Show full text]