Synthesis and Applications of Epicatechin And

Total Page:16

File Type:pdf, Size:1020Kb

Synthesis and Applications of Epicatechin And SYNTHESIS AND APPLICATIONS OF EPICATECHIN AND EPIAFZELECHIN DERIVATIVES FROM PROANTHOCYANIDINS FU CAILI NATIONAL UNIVERSITY OF SINGAPORE 2010 SYNTHESIS AND APPLICATIONS OF EPICATECHIN AND EPIAFZELECHIN DERIVATIVES FROM PROANTHOCYANIDINS FU CAILI B. Eng. China Agricultural University M. Eng. China Agricultural University A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF CHEMISTRY NATIONAL UNIVERSITY OF SINGAPORE 2010 Acknowledgements The last four years have been one of the most important stages in my life. The experience in my Ph.D. period will benefit me for a lifetime. I would like to take this opportunity to express my immense gratitude to all those who have kindly helped me and all those who have made my graduate life at NUS both productive and enjoyable. At the very first, I am honored to express my deepest gratitude to my dedicated supervisor, Dr. HUANG Dejian. This thesis would not have been possible without his able supervision. He has offered me a great many of invaluable ideas and great suggestions, profound knowledge, and rich research experience. From him, I learn not only the knowledge, but also the professional ethics, both of which will stay with me for many years to come. His encouragement, patience and kindness throughout all these years are greatly appreciated and I am very much obliged to his efforts of helping me finishing the dissertation. My most sincere gratitude is expressed to the following people for their various contributions to this research effort: Ms. Quek Yi Ling, Ms. Chen Wei, Ms. Tan Kheng Ling, Ms. Xie Bingbing, Ms. Ng Wei Ling, Ms Wendy Wen Yi Leong, Ms Amylia Bte Abdul Ghani and Mr. Ni Runyan from the National University of Singapore (NUS) for their contribution in various experiments. Dr. Wang Shuhua, Dr Yao Wei, Dr. Feng Shengbao and Ms. Koh Lee Wah from NUS for their technique support. Mdm. Lee Chooi Lan, Ms. Lew Huey Lee, Ms. Jiang Xiaohui and Mr. Abdul Rahman bin Mohd Noor for their generous assistance in the laboratories. Mdm Wong Lai Kwai, Mdm Lai Hui Ngee, Mdm. Han Yan Hui and Miss Tan Geok Kheng from the Chemical, Molecular and Materials Analysis Centre (CMMAC), NUS for their i assistance in mass spectrometry, nuclear magnetic resonance spectroscopy, and Single crystal X-Ray diffraction analysis. Last, but certainly not the least, I would like to thank my family. I want to express my gratitude to my dearest wife, for her unceasing love and continuous support. I also want to thank my parents for their love and support all the way. From the bottom of my heart, I thank all my friends whose name may not be mentioned one by one here, but had never hesitate to lend me their helping hands whenever I am in need. Fu Caili August 2010 ii Table of Contents page Abstract...................................................................................................................viii List of Figures..............................................................................................................x List of Tables.............................................................................................................xiv List of Schemes...........................................................................................................xv List of Abbreviations.................................................................................................xvi Chapter 1 Literature Review 1.1. Structures, sources and bioavailability of proanthocyanidins............................1 1.1.1 Structure of proanthocyanidins....................................................................1 1.1.2. Analytical methods of proanthocyanidins..................................................5 1.1.3 Sources and contents of proanthocyanidins...............................................11 1.1.4 Absorption and bioavailability of proanthocyanidins................................12 1.2. Bioactivities of proanthocyanidins...................................................................14 1.2.1 Antioxidant activities................................................................................14 1.2.2 Antibacterial activities..............................................................................16 1.2.3 Prevention of cardiovascular diseases.......................................................19 1.2.4 Anticancer and antiinflammatory activities...............................................20 1.2.5 Other bioactivities......................................................................................21 1.3 Epicatechin derivatives from proanthocyanidins and their bioactivities.....22 1.4. Stereochemistry of epicatechin derivatives................................................24 1.5 The aim of this research.....................................................................................26 iii Chapter 2 Isolation, Purification and Characterization of Proanthocyanidins from Mangosteen Pericarps 2.1 Introduction.......................................................................................................28 2.2 Results and discussion.......................................................................................28 2.2.1 Isolation of proanthocyanidins from mangosteen pericarps......................28 2.2.2 Structural characterization.........................................................................30 2.2.3 Thiolysis....................................................................................................35 Chapter 3 Comparison among Different Proanthocyanidins 3.1 Introduction.......................................................................................................38 3.2 Results and discussion.......................................................................................38 3.2.1 Extraction and NMR analysis of cocoa proanthocyanidins.......................38 3.2.2 Synthesis of (2R,3R,4S)-2-(3,4-dihydroxyphenyl)-4-(2-hydroxy-4,6- dimethoxyphenyl)-3,4-dihydro-2H-chromene-3,5,7-triol, 1...............................40 3.2.3 Optimization of the depolymerizing condition for carbon nucleophile, 3,5- dimethoxyphenol................................................................................................41 3.2.4 Depolymerization of MPPs by methyl thioglycolate.................................42 3.2.5 Comparison among proanthocyanidins from four sources........................44 Chapter 4 Synthesis of Epicatechin Derivatives from Mangosteen Pericarp Proanthocyanidins 4.1 Introduction.......................................................................................................48 4.2 Results and discussion.......................................................................................48 4.2.1 Regioselective protecting of catechins......................................................49 4.2.2 Synthesis of epicatechin derivatives from MPPs.......................................51 Chapter 5 Isolation, Identification and modification of Proanthocyanidins from Rhizomes of Selliguea feei iv 5.1 Introduction......................................................................................................63 5.2 Results and discussion.......................................................................................64 5.2.1 Isolation and characterization of proanthocyanidins from the rhizomes of Selliguea feei.......................................................................................................65 5.2.2 Synthesis of four epiafzelechin derivatives...............................................71 Chapter 6 Applications of Sulfurcontaining Epicatechin Derivatives for Proanthocyanidins Synthesis 6.1 Introduction.......................................................................................................76 6.2 Results and discussion.......................................................................................77 6.2.1 Kinetics of the dethiolation of three sulfur-containing epicatechin derivatives...........................................................................................................77 6.2.2 Synthesis of procyanidin B2 via base-catalyzed condensation.................79 6.2.3 Synthesis of epicatechin alkaloids.............................................................81 Chapter 7 Conclusions and Suggestions for Future Work 7.1 Conclusions.......................................................................................................85 7.2 Suggestions for future work..............................................................................87 Chapter 8 Experimental procedures 8.1 Instrument and reagents...................................................................................88 8.2 Characterization of mangosteen pericarp proanthocyanidins............................90 8.2.1 Isolation and identification of mangosteen pericarp proanthocyanidins...90 8.2.2 Thiolysis of mangosteen pericarp proanthocyanidins...............................91 8.3 Comparison among different proanthocyanidins.............................................91 8.3.1 Extraction and characterization of cocoa proanthocyanidins....................91 8.3.2 Depolymerization of MPPs with 3,5-dimethoxyphenol............................92 v 8.3.3 Synthesis of 2-((2R,3S,4S)-2-(3,4-dihydroxyphenyl)-3,5,7- trihydroxychroman-4-ylthio)acetate 2 from MPPs.............................................92 8.3.4 Gram-scale synthesis of 2 from mangosteen pericarps directly..............94 8.4 Screening regioselective protecting reagents of catechin derivatives...............94
Recommended publications
  • Metabolic Engineering of Microbial Cell Factories for Biosynthesis of Flavonoids: a Review
    molecules Review Metabolic Engineering of Microbial Cell Factories for Biosynthesis of Flavonoids: A Review Hanghang Lou 1,†, Lifei Hu 2,†, Hongyun Lu 1, Tianyu Wei 1 and Qihe Chen 1,* 1 Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; [email protected] (H.L.); [email protected] (H.L.); [email protected] (T.W.) 2 Hubei Key Lab of Quality and Safety of Traditional Chinese Medicine & Health Food, Huangshi 435100, China; [email protected] * Correspondence: [email protected]; Tel.: +86-0571-8698-4316 † These authors are equally to this manuscript. Abstract: Flavonoids belong to a class of plant secondary metabolites that have a polyphenol structure. Flavonoids show extensive biological activity, such as antioxidative, anti-inflammatory, anti-mutagenic, anti-cancer, and antibacterial properties, so they are widely used in the food, phar- maceutical, and nutraceutical industries. However, traditional sources of flavonoids are no longer sufficient to meet current demands. In recent years, with the clarification of the biosynthetic pathway of flavonoids and the development of synthetic biology, it has become possible to use synthetic metabolic engineering methods with microorganisms as hosts to produce flavonoids. This article mainly reviews the biosynthetic pathways of flavonoids and the development of microbial expression systems for the production of flavonoids in order to provide a useful reference for further research on synthetic metabolic engineering of flavonoids. Meanwhile, the application of co-culture systems in the biosynthesis of flavonoids is emphasized in this review. Citation: Lou, H.; Hu, L.; Lu, H.; Wei, Keywords: flavonoids; metabolic engineering; co-culture system; biosynthesis; microbial cell factories T.; Chen, Q.
    [Show full text]
  • Characterization and Biological Activity of Condensed Tannins from Tropical Forage Legumes
    1070 T.P. Pereira et al. Characterization and biological activity of condensed tannins from tropical forage legumes Tatiana Pires Pereira(1), Elisa Cristina Modesto(1), Delci de Deus Nepomuceno(2), Osniel Faria de Oliveira(3), Rafaela Scalise Xavier de Freitas(1), James Pierre Muir(4), José Carlos Batista Dubeux Junior(5) and João Carlos de Carvalho Almeida(1) (1)Universidade Federal Rural do Rio de Janeiro, Rodovia BR-465, Km 07, s/no, Zona Rural, CEP 23890-000 Seropédica, RJ, Brazil. E-mail: [email protected], [email protected], [email protected], [email protected] (2)In memoriam (3)Universidade Federal Rural de Pernambuco, Dois Irmãos, CEP 52171-900 Recife, PE, Brazil. E-mail: [email protected] (4)Texas AgriLife Research and Extension Center, Stephenville, TX, USA. E-mail: [email protected] (5)University of Florida, North Florida Research and Education Center, Highway, Marianna, FL, USA. E-mail: [email protected] Abstract – The objective of this work was to characterize condensed tannins (CT) from six tropical forage legumes and to determine their biological activity. The monomers propelargonidin, prodelphinidin and procyanidin were analyzed, as well as extractable condensed tannin (ECT), protein-bound CT (PBCT) and fiber-bound CT (FBCT), molecular weight, degree of polymerization, polydispersity index, and biological activity by protein precipitate by phenols (PPP) of leaves of the legumes Cajanus cajan, Gliricidia sepium, Stylosanthes capitata x Stylosanthes macrocephala (stylo), Flemingia macrophylla, Cratylia argentea, and Mimosa caesalpiniifolia, and of the bark of this latter species. Differences were observed in the concentrations of ECT, PBCT, PPP, and total condensed tannin among species, but not in that of FBCT.
    [Show full text]
  • BIOSYNTHESIS of PROANTHOCYANIDINS in BARLEY: GENETIC CONTROL of the CONVERSION of DIHYDROQUERCETIN to CATECHIN and PROCYANIDINS by KLAUS NYEGAARD KRISTIANSEN
    Carlsberg Res. Commun. Vol. 49, p. 503-524, 1984 BIOSYNTHESIS OF PROANTHOCYANIDINS IN BARLEY: GENETIC CONTROL OF THE CONVERSION OF DIHYDROQUERCETIN TO CATECHIN AND PROCYANIDINS by KLAUS NYEGAARD KRISTIANSEN Department of Physiology, Carlsberg Laboratory, Gamle Carlsberg Vej 10, DK-2500 Copenhagen Valby and Institute of Genetics, University of Copenhagen Oster Farimagsgade 2A, DK-1353 Copenhagen K Keywords: Flavonoid biosynthesis, leucocyanidin isomers, ant mutants, genetic control, high pressure liquid chromatography, 'H NMR, mass spectroscopy The conversion of dihydroquercetin to catechin and procyanidin was studied in maturing wild type barley (Hordeum vulgare L., cv. Nordal) seeds and proanthocyanidin free mutants blocked in four different genes, ant 13, ant 17. ant 18 and ant 19. In the wild type barley grown under controlled conditions, maximal rate of synthesis of catechin, procyanidin B3 and procyanidin C2 occurred 8-16 days after flowering. Dihydroquercetin was radioactively labelled by feeding ( 1-'4C)-acetate and (2-'4C)-acetate to flowerbuds of a petunia mutant accumulating this flavonoid. When fed to pericarp-testa tissue of wild type barley labelled catechin, procyanidin B3 and procyanidin C2 were synthesized establishing dihydroquercetin as a precursor of these compounds. In addition labelled 2,3-trans-3,4-cis-leucocyanidin was synthesized indicating that this compound is an intermediate. The leucocyanidin was identified by co-chromatography with an authentic standard prepared chemically by reduction ofdihydroquercetin with NaBH,. The major product of this reduction, however, was the 2,3-trans-3,4-trans-leuco- cyanidin. Only mutant ant 18-102 accumulated dihydroquercetin in the seeds. Feeding ('4C)-dihydroquercetin to pericarp-testa tissue from the mutants revealed that ant 17-139 was capable of synthesizing significant amounts of labelled catechin and procyanidin, whereas ant 13-101, ant 13-152, ant 18-102 and ant 19-109 synthesized none or only very small amounts of these compounds.
    [Show full text]
  • Flavonoid Glucodiversification with Engineered Sucrose-Active Enzymes Yannick Malbert
    Flavonoid glucodiversification with engineered sucrose-active enzymes Yannick Malbert To cite this version: Yannick Malbert. Flavonoid glucodiversification with engineered sucrose-active enzymes. Biotechnol- ogy. INSA de Toulouse, 2014. English. NNT : 2014ISAT0038. tel-01219406 HAL Id: tel-01219406 https://tel.archives-ouvertes.fr/tel-01219406 Submitted on 22 Oct 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Last name: MALBERT First name: Yannick Title: Flavonoid glucodiversification with engineered sucrose-active enzymes Speciality: Ecological, Veterinary, Agronomic Sciences and Bioengineering, Field: Enzymatic and microbial engineering. Year: 2014 Number of pages: 257 Flavonoid glycosides are natural plant secondary metabolites exhibiting many physicochemical and biological properties. Glycosylation usually improves flavonoid solubility but access to flavonoid glycosides is limited by their low production levels in plants. In this thesis work, the focus was placed on the development of new glucodiversification routes of natural flavonoids by taking advantage of protein engineering. Two biochemically and structurally characterized recombinant transglucosylases, the amylosucrase from Neisseria polysaccharea and the α-(1→2) branching sucrase, a truncated form of the dextransucrase from L. Mesenteroides NRRL B-1299, were selected to attempt glucosylation of different flavonoids, synthesize new α-glucoside derivatives with original patterns of glucosylation and hopefully improved their water-solubility.
    [Show full text]
  • Impact of Condensed Tannin Containing Legumes on Ruminal Fermentation, Nutrition and Performance in Ruminants: a Review
    Canadian Journal of Animal Science Impact of condensed tannin containing legumes on ruminal fermentation, nutrition and performance in ruminants: a review Journal: Canadian Journal of Animal Science ManuscriptFor ID CJAS-2020-0096.R1 Review Only Manuscript Type: Review Date Submitted by the 18-Sep-2020 Author: Complete List of Authors: Kelln, Breeanna; University of Saskatchewan, Animal and Poultry Science Penner, Gregory; University of Saskatchewan, Animal and Poultry Science Acharya, Surya; AAFC, Lethbridge Research Centre McAllister, Tim; Agriculture and Agri-Food Canada, Lethbridge Research Centre Lardner, Herbert; University of Saskatchewan College of Agriculture and Bioresources, Animal and Poultry Science Keywords: tannins, proanthocyanidins, Ruminant, legumes, bloat © The Author(s) or their Institution(s) Page 1 of 43 Canadian Journal of Animal Science Short Title: Kelln et al. Legumes with condensed tannins for cattle Impact of condensed tannin containing legumes on ruminal fermentation, nutrition and performance in ruminants: a review For Review Only B.M. Kelln*, G.B. Penner*, S.N. Acharya†, T.A. McAllister†, and H.A. Lardner*1 *Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5B5; †Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta, Canada T1J 4B1 1Correspondence should be addressed to: H.A. (Bart) Lardner Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada, S7N 5A8 TEL: 1 306 966 2147 FAX: 1 306 966 4151 Email: [email protected] 1 © The Author(s) or their Institution(s) Canadian Journal of Animal Science Page 2 of 43 ABSTRACT Legume forages, such as sainfoin, and birdsfoot trefoil can increase the forage quality and quantity of western Canadian pastures, thus increasing producer profitability due to increased gains in grazing ruminants, while reducing risk of bloat in legume pastures due to the presence of proanthocyanidins.
    [Show full text]
  • Food & Function
    Food & Function View Article Online REVIEW View Journal | View Issue Roles of proanthocyanidin rich extracts in obesity Cite this: Food Funct., 2015, 6, 1053 M. Josepa Salvadó,* Ester Casanova, Anabel Fernández-Iglesias, Lluis Arola and Cinta Bladé Obesity is a multifactorial disorder involving an abnormal or excessive amount of body fat. Obese people have a very high probability of developing metabolic syndrome, a condition in which cholesterol, lipid, and glucose levels rise, causing diabetes and heart disease. From the point of view of energy balance, the main contributors to obesity are excessive energy intake, inadequate energy expenditure and metabolic malfunctions. For this reason, health organisations are working to implement policies and plans to promote healthy eating and active living. However, these measures have not yet proven sufficient to combat this worldwide epidemic; therefore, drugs and bioactive compounds are being investigated to complement the existing strategies. In the present review, we discuss the available data regarding the Received 13th November 2014, modulation of obesity by proanthocyanidin rich extracts. Because studies with human subjects are very Accepted 22nd January 2015 scarce, we focus on studies using laboratory animals. The results of in vitro studies are included because, Creative Commons Attribution-NonCommercial 3.0 Unported Licence. DOI: 10.1039/c4fo01035c although they cannot be directly extrapolated to the biological effects of proanthocyanidin, they can www.rsc.org/foodfunction reveal some mechanisms
    [Show full text]
  • Modification Et Stabilisation De La Réactivité De
    Modification et stabilisation de la réactivité de tanins traités chimiquement : applications à la préparation de résines adhésives et de mousses écosoutenables Samuele Giovando To cite this version: Samuele Giovando. Modification et stabilisation de la réactivité de tanins traités chimiquement : applications à la préparation de résines adhésives et de mousses écosoutenables. Alimentation et Nutrition. Université de Lorraine, 2013. Français. NNT : 2013LORR0227. tel-01750522 HAL Id: tel-01750522 https://hal.univ-lorraine.fr/tel-01750522 Submitted on 29 Mar 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. AVERTISSEMENT Ce document est le fruit d'un long travail approuvé par le jury de soutenance et mis à disposition de l'ensemble de la communauté universitaire élargie. Il est soumis à la propriété intellectuelle de l'auteur. Ceci implique une obligation de citation et de référencement lors de l’utilisation de ce document. D'autre part, toute contrefaçon, plagiat, reproduction illicite encourt une poursuite pénale. Contact : [email protected] LIENS Code de la Propriété Intellectuelle. articles L 122. 4 Code de la Propriété Intellectuelle. articles L 335.2- L 335.10 http://www.cfcopies.com/V2/leg/leg_droi.php http://www.culture.gouv.fr/culture/infos-pratiques/droits/protection.htm UFR.
    [Show full text]
  • Relation Structure/Activité De Tanins Bioactifs Contre Les Nématodes
    En vue de l'obtention du DOCTORAT DE L'UNIVERSITÉ DE TOULOUSE Délivré par : Institut National Polytechnique de Toulouse (INP Toulouse) Discipline ou spécialité : Pathologie, Toxicologie, Génétique et Nutrition Présentée et soutenue par : Mme JESSICA QUIJADA PINANGO le jeudi 17 décembre 2015 Titre : RELATION STRUCTURE/ACTIVITE DE TANINS BIOACTIFS CONTRE LES NEMATODES GASTROINTESTINAUX (HAEMONCHUS CONTORTUS) PARASITES DES PETITS RUMINANTS Ecole doctorale : Sciences Ecologiques, Vétérinaires, Agronomiques et Bioingénieries (SEVAB) Unité de recherche : Interactions Hôtes - Agents Pathogènes (IHAP) Directeur(s) de Thèse : M. HERVÉ HOSTE Rapporteurs : M. ADIBE LUIZ ABDALLA, UNIVERSIDAD DE SAO PAULO Mme HEIDI ENEMARK, NORWEGIAN VETERINARY INSTITUTE Membre(s) du jury : 1 M. FRANÇOIS SCHELCHER, ECOLE NATIONALE VETERINAIRE DE TOULOUSE, Président 2 M. HERVÉ HOSTE, INRA TOULOUSE, Membre 2 Mme CARINE MARIE-MAGDELAINE, INRA PETIT BOURG, Membre 2 M. SMARO SOTIRAKI, HAO-DEMETER, Membre 2 M. VINCENT NIDERKORN, INRA CLERMONT FERRAND, Membre QUIJADA J. 2015 Cette thèse est dédiée à mes parents, Teresa et Héctor, À mon mari, Rafäel, pour son soutien inconditionnel, son amour illimité, sa patience, sa loyauté, son amitié et surtout sa confidence, À ma grand-mère, Marcolina, car m'ait donné le plus grand et précieux cadeau en ma vie : ma foi en Dieu ma forteresse et mon espoir (Isaïas 41:13). À mes adorés sœurs, belle- sœurs et frère : Yurlin, Indira, Iskay, Olga, Zoraida et Jesus. Merci pour l’amour infini que m’ont toujours été donné, celui qu’a été prolongé par l'amour de mes merveilleux neveux. 1 QUIJADA J. 2015 REMERCIEMENTS Je remercie tout d’abord mon Dieu pour me donner le cadeau de la vie, et la forteresse pour vivre chaque jour.
    [Show full text]
  • 2.1 Structure Elucidation 14 2.2 Synthesis 15
    , HIERDIE EKSEMPlAAR MAG ONDER University Free State GEEN OMSTANDIGHEDE UIT DIE mml~lmmMMllllllln34300000347405 Universiteit Vrystaat BIBLIOTEEK VER\VYDER WORD NIE THE STRUCTURE AND SYNTHESIS OF OLIGOFLA VANOIDS AND OLIGOSTILBENES FROM CASSIA ABBREVIATA. Dissertation submitted infulfilment of the requirements for the degree Master of Science in the Department of Chemisrty Faculty of Natural Sciences at University of Orange Free State Bloemfontein by Makhosazana Claribel Mthembu Supervisor: Prof. E. Malan Co-supervisor Dr J. C. Coetzee JANUARY 2000 ACKNOWLEDGEMENTS I wish to express my gratitude to the following people: • God the Almighty for the love and support he has shown me throughout my studies. • My supervisors Professor f. Malan and Dr j. C. Coetzee, their guidance and helpful recommendations throughout this study will always be appreciated: • • Proff. Malan for his constructive guidance, critism and invaluable support in putting this work in paper. • Dr j. C. Coetzeefor recording my NMR spectra, his encourangement and unselfish assistance. • Proff. V. Brandt ,D. Ferrdra and NRF sponsor for granting me this opportumity. • Finally the members of the fomily and [riends, Irene,jaqui, Zanele, Vusl and Busi for their love, tolerance and constant encouragement, I owe the greatest debt to them. M. C. Mthembu Table of Content Abstract LITERATURE SURVERY CHAPTER 1: MONOMERIC STILBENES 1 1.1 Nomenclature 1 1.2 Structure and Natural Occurrence 3 1.3 Structure Elucidation 5 1.4 Synthesis 5 CHAPTER 2: OLIGOMERIC STILBENES 11 2.1 Structure Elucidation 14 2.2 Synthesis 15 CHAPTER 3.: FLA VAN-3-0LS 16 3.1 Nomenclature 16 3.2 Structure and Natural Occurrence 17 3.3 Structure Elucidation 19 CHAPTER 4: LEUCOANTHOCY ANIDINS.
    [Show full text]
  • Condensed Tannins 7
    120 Biochem. J. (1961) 78, 120 Condensed Tannins 7. ISOLATION OF (-)-7:3':4'-TRIHYDROXYFLAVAN-3-OL [(-)-FISETINIDOL], A NATURALLY OCCURRING CATECHIN FROM BLACK-WATTLE HEARTWOOD* By D. G. ROUX AND E. PAULUS Leather Industries Research Institute, Rhodes University, Grahamstown, South Africa (Received 9 May 1960) The interrelated flavonoid compounds (+ )- aqueous phase extracted with ethyl acetate in each in- 7:3':4'-trihydroxyflavan-3:4-diol (Keppler, 1957) stance. The combined organic and ethyl acetate extracts of 2:3-trans:3:4-cis configuration (Clark-Lewis & from each fraction were evaporated to 50 ml. and applied Roux, 1959), (+ )-fustin (2:3-trans) and in bands to sheets (5 ml./sheet) of 221 in. x 18j in. What- 1958, man no. 3 chromatographic paper. The chromatograms fisetin (Roux & Paulus, 1960) have been isolated were developed by upward migration in 2 % acetic acid for from black-wattle-wood tannins. In the present 12 hr. The fustin (RF 0-43 on Whatman no. 3 paper), the study a new catechin, (-)-fisetinidol, correspond- polymeric leuco-fisetinidin and the ( +)-mollisacacidin ing to these substances has been isolated, and their (traces) (RF 0 57) bands were located with toluene-p- biogenesis is discussed. sulphonic acid. Bands in the region Rp 050 which appeared yellowish in ordinary light were cut out and eluted with 70% ethanol. Concentrate of the eluents gave 0-113 g. of EXPERIMENTAL AND RESULTS pale-yellow crystals. The mother liquors were purified by All melting points are uncorrected. Mixed melting running on five sheets, as above, yielding a further 0-05 g. points were on equimolecular mixtures of the substances Pale-yellow crystals of (- )-fisetinidol, m.p.
    [Show full text]
  • Soy Isoflavone Genistein Inhibits an Axillary Osmidrosis Risk Factor ABCC11: in Vitro Screening and Fractional Approach for ABCC11-Inhibitory Activities in Plant Extracts and Dietary
    nutrients Article Soy Isoflavone Genistein Inhibits an Axillary Osmidrosis Risk Factor ABCC11: In Vitro Screening and Fractional Approach for ABCC11-Inhibitory Activities in Plant Extracts and Dietary Flavonoids 1,2, 2, , 1 1 1 Hiroki Saito y, Yu Toyoda * y , Hiroshi Hirata , Ami Ota-Kontani , Youichi Tsuchiya , Tappei Takada 2 and Hiroshi Suzuki 2 1 Frontier Laboratories for Value Creation, Sapporo Holdings Ltd., 10 Okatome, Yaizu, Shizuoka 425-0013, Japan; [email protected] (H.S.); [email protected] (H.H.); [email protected] (A.O.-K.); [email protected] (Y.T.) 2 Department of Pharmacy, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; [email protected] (T.T.); [email protected] (H.S.) * Correspondence: [email protected] These authors contributed equally to this work. y Received: 2 July 2020; Accepted: 12 August 2020; Published: 14 August 2020 Abstract: Axillary osmidrosis (AO) is a common chronic skin condition characterized by unpleasant body odors emanating from the armpits, and its aetiology is not fully understood. AO can seriously impair the psychosocial well-being of the affected individuals; however, no causal therapy has been established for it other than surgical treatment. Recent studies have revealed that human ATP-binding cassette transporter C11 (ABCC11) is an AO risk factor when it is expressed in the axillary apocrine glands—the sources of the offensive odors. Hence, identifying safe ways to inhibit ABCC11 may offer a breakthrough in treating AO. We herein screened for ABCC11-inhibitory activities in 34 natural products derived from plants cultivated for human consumption using an in vitro assay system to measure the ABCC11-mediated transport of radiolabeled dehydroepiandrosterone sulfate (DHEA-S—an ABCC11 substrate).
    [Show full text]
  • Different Approaches to Evaluate Tannin Content and Structure of Selected Plant Extracts – Review and New Aspects M
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by JKI Open Journal Systems (Julius Kühn-Institut) Journal of Applied Botany and Food Quality 86, 154 - 166 (2013), DOI:10.5073/JABFQ.2013.086.021 1University of Kiel, Institute of Crop Science and Plant Breeding – Grass and Forage Science / Organic Agriculture, Kiel, Germany 2Institute of Ecological Chemistry, Plant Analysis and Stored Product Protection; Julius Kühn-Institute, Quedlinburg, Germany Different approaches to evaluate tannin content and structure of selected plant extracts – review and new aspects M. Kardel1*, F. Taube1, H. Schulz2, W. Schütze2, M. Gierus1 (Received July 2, 2013) Summary extracts, tannins, salts and derivates was imported to the EU in the year 2011, mainly from Argentina, with a trade value of nearly Tannins occur in many field herbs and legumes, providing an im- 63.5 mio. US Dollar (UN-COMTRADE, 2013). These extracts are pro- mense variability in structure and molecular weight. This leads to duced industrially on a large scale. They could therefore maintain complications when measuring tannin content; comparability of a relatively constant quality and thus provide an advantage in rumi- different methods is problematic. The present investigations aimed at nant feeding. characterizing four different tannin extracts: quebracho (Schinopsis Tannins from different sources can react very diverse regarding lorentzii), mimosa (Acacia mearnsii), tara (Caesalpinia spinosa), protein affinity (MCNABB et al., 1998; BUENO et al., 2008). Diffe- and gambier (Uncaria gambir) and impact of storage conditions. rences in tannin structure can occur even between similar plant Using photometrical methods as well as HPLC-ESI-MS, fundamen- species (OSBORNE and MCNEILL, 2001; HATTAS et al., 2011) and a tal differences could be determined.
    [Show full text]