Psocid News : the Psocidologists' Newsletter
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Local and Regional Influences on Arthropod Community
LOCAL AND REGIONAL INFLUENCES ON ARTHROPOD COMMUNITY STRUCTURE AND SPECIES COMPOSITION ON METROSIDEROS POLYMORPHA IN THE HAWAIIAN ISLANDS A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI'I IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN ZOOLOGY (ECOLOGY, EVOLUTION AND CONSERVATION BIOLOGy) AUGUST 2004 By Daniel S. Gruner Dissertation Committee: Andrew D. Taylor, Chairperson John J. Ewel David Foote Leonard H. Freed Robert A. Kinzie Daniel Blaine © Copyright 2004 by Daniel Stephen Gruner All Rights Reserved. 111 DEDICATION This dissertation is dedicated to all the Hawaiian arthropods who gave their lives for the advancement ofscience and conservation. IV ACKNOWLEDGEMENTS Fellowship support was provided through the Science to Achieve Results program of the U.S. Environmental Protection Agency, and training grants from the John D. and Catherine T. MacArthur Foundation and the National Science Foundation (DGE-9355055 & DUE-9979656) to the Ecology, Evolution and Conservation Biology (EECB) Program of the University of Hawai'i at Manoa. I was also supported by research assistantships through the U.S. Department of Agriculture (A.D. Taylor) and the Water Resources Research Center (RA. Kay). I am grateful for scholarships from the Watson T. Yoshimoto Foundation and the ARCS Foundation, and research grants from the EECB Program, Sigma Xi, the Hawai'i Audubon Society, the David and Lucille Packard Foundation (through the Secretariat for Conservation Biology), and the NSF Doctoral Dissertation Improvement Grant program (DEB-0073055). The Environmental Leadership Program provided important training, funds, and community, and I am fortunate to be involved with this network. -
Historical Biogeography of Thyrsophorini Psocids and Description of a New Neotropical Species of Thyrsopsocopsis (Psocodea: Psocomorpha: Psocidae)
European Journal of Taxonomy 194: 1–16 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2016.194 www.europeanjournaloftaxonomy.eu 2016 · Román-Palacios C. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Research article urn:lsid:zoobank.org:pub:96E9EA43-F6FE-492E-97BE-60DFB8EDE935 Historical biogeography of Thyrsophorini psocids and description of a new neotropical species of Thyrsopsocopsis (Psocodea: Psocomorpha: Psocidae) Cristian ROMÁN-PALACIOS 1,*, Alfonso N. GARCÍA ALDRETE 2 & Ranulfo GONZÁLEZ OBANDO 3 1,3 Departamento de Biología, Facultad de Ciencias Naturales y Exactas, Universidad del Valle, Santiago de Cali, Colombia. 2 Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Apartado Postal 70-153, 04510 Mexico City, Mexico. * Corresponding author: [email protected] 1 urn:lsid:zoobank.org:author:E88D0518-B6CB-4FE7-9EFC-F789EA6F05AD 2 urn:lsid:zoobank.org:author:9E03B921-78AE-4ED6-B1EA-9DCA01BE20BC 3 urn:lsid:zoobank.org:author:16C7AD76-F035-4C8B-8C00-A228CCCD39B0 Abstract. When based on phylogenetic proposals, biogeographic historic narratives have a great interest for hypothesizing paths of origin of the current biodiversity. Among the many questions that remain unsolved about psocids, the distribution of Thyrsophorini represents still a remarkable enigma. This tribe had been considered as exclusively Neotropical, until the description of Thyrsopsocopsis thorntoni Mockford, 2004, from Vietnam. Three hypotheses have been proposed to explain this atypical distribution, recurring to dispersal, vicariance and morphological parallelism between lineages, but the lack of evidence has not allowed a unique support. Here, we describe a new Neotropical species of Thyrsopsocopsis, and also attempt to test the three biogeographical hypotheses in a phylogenetic context. -
Wyre Forest Oak Fogging Project Wyre Forest Study Group
Wyre Forest Study Group Wyre Forest Oak Fogging Project ED. RosemarY Winnall Natural England Tree 2 Tree 3 Tree 1 Fogging tree 3 Katrina Dainton Introductory Notes by Mick Blythe The samples collected were excellent, due to both the success of the operation and the nature of the oak In the summer of 2015 Katy Dainton and Alice James tree which had a number of exciting dead and rotten of Natural England sampled the canopy of three oak branches low down in the canopy. trees in the Wyre Forest using the fogging technique. In this technique a powered fogger is used to blow a Tree 2 was a 100 year old oak tree in the PAWS fog of insecticide up through the canopy of the tree section of Longdon Wood, SO75141 77757, sampled and the dead or stunned arthropods are collected in on 24/06/2015. The understorey was ankle to knee funnels or on tarpaulins set out on the ground below. length bracken and bramble. The same method was employed except that the tarpaulins were set out at Tree 1, an 80-100 year old oak tree with no woody 5:00 a.m. on the morning of the fogging. The fogging understorey at SO76182 74811 was sampled on was carried out at 5:40 as Tree 1. 16/06/2015. The fogger used was a PulsFOG K-10-SP portable thermal fogger and the insecticide a 10% This experiment was less successful. The insecticidal solution of Permethrin. 15 tarpaulins were set out fog would not rise higher than the lower third of the beneath the chosen tree the day before. -
Insecta: Psocodea: 'Psocoptera'
Molecular systematics of the suborder Trogiomorpha (Insecta: Title Psocodea: 'Psocoptera') Author(s) Yoshizawa, Kazunori; Lienhard, Charles; Johnson, Kevin P. Citation Zoological Journal of the Linnean Society, 146(2): 287-299 Issue Date 2006-02 DOI Doc URL http://hdl.handle.net/2115/43134 The definitive version is available at www.blackwell- Right synergy.com Type article (author version) Additional Information File Information 2006zjls-1.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP Blackwell Science, LtdOxford, UKZOJZoological Journal of the Linnean Society0024-4082The Lin- nean Society of London, 2006? 2006 146? •••• zoj_207.fm Original Article MOLECULAR SYSTEMATICS OF THE SUBORDER TROGIOMORPHA K. YOSHIZAWA ET AL. Zoological Journal of the Linnean Society, 2006, 146, ••–••. With 3 figures Molecular systematics of the suborder Trogiomorpha (Insecta: Psocodea: ‘Psocoptera’) KAZUNORI YOSHIZAWA1*, CHARLES LIENHARD2 and KEVIN P. JOHNSON3 1Systematic Entomology, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan 2Natural History Museum, c.p. 6434, CH-1211, Geneva 6, Switzerland 3Illinois Natural History Survey, 607 East Peabody Drive, Champaign, IL 61820, USA Received March 2005; accepted for publication July 2005 Phylogenetic relationships among extant families in the suborder Trogiomorpha (Insecta: Psocodea: ‘Psocoptera’) 1 were inferred from partial sequences of the nuclear 18S rRNA and Histone 3 and mitochondrial 16S rRNA genes. Analyses of these data produced trees that largely supported the traditional classification; however, monophyly of the infraorder Psocathropetae (= Psyllipsocidae + Prionoglarididae) was not recovered. Instead, the family Psyllipso- cidae was recovered as the sister taxon to the infraorder Atropetae (= Lepidopsocidae + Trogiidae + Psoquillidae), and the Prionoglarididae was recovered as sister to all other families in the suborder. -
Consequences of Evolutionary Transitions in Changing Photic Environments
bs_bs_banner Austral Entomology (2017) 56,23–46 Review Consequences of evolutionary transitions in changing photic environments Simon M Tierney,1* Markus Friedrich,2,3 William F Humphreys,1,4,5 Therésa M Jones,6 Eric J Warrant7 and William T Wcislo8 1School of Biological Sciences, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia. 2Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA. 3Department of Anatomy and Cell Biology, Wayne State University, School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201, USA. 4Terrestrial Zoology, Western Australian Museum, Locked Bag 49, Welshpool DC, WA 6986, Australia. 5School of Animal Biology, University of Western Australia, Nedlands, WA 6907, Australia. 6Department of Zoology, The University of Melbourne, Melbourne, Vic. 3010, Australia. 7Department of Biology, Lund University, Sölvegatan 35, S-22362 Lund, Sweden. 8Smithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancón, Republic of Panamá. Abstract Light represents one of the most reliable environmental cues in the biological world. In this review we focus on the evolutionary consequences to changes in organismal photic environments, with a specific focus on the class Insecta. Particular emphasis is placed on transitional forms that can be used to track the evolution from (1) diurnal to nocturnal (dim-light) or (2) surface to subterranean (aphotic) environments, as well as (3) the ecological encroachment of anthropomorphic light on nocturnal habitats (artificial light at night). We explore the influence of the light environment in an integrated manner, highlighting the connections between phenotypic adaptations (behaviour, morphology, neurology and endocrinology), molecular genetics and their combined influence on organismal fitness. -
ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000). -
Insecta: Psocodea: Psocomorpha
1 for submission to Insect Systematics & Diversity (ISD-2020-0035) 2 3 Systematic Position of the Enigmatic Psocid Family Lesneiidae (Insecta: 4 Psocodea: Psocomorpha), with Description of Two New Species 5 6 Kazunori Yoshizawa,1,6 Yuri M. Marusik,2,3,4 Izumi Yao,1 and Charles Lienhard 5 7 8 1 SystematiC Entomology, SChool of AgriCulture, Hokkaido University, Sapporo 060-8589, Japan 9 2 Institute for BiologiCal Problems of the North RAS, Portovaya Str.18, Magadan, Russia 10 3 Department of Zoology & Entomology, University of the Free State, Bloemfontein 9300, South 11 AfriCa 12 4 ZoologiCal Museum, Biodiversity Unit, University of Turku, FI-20014, Finland 13 5 Geneva Natural History Museum, CP 6434, CH-1211 Geneva 6, Switzerland 14 15 6 Corresponding author, e-mail: [email protected] 16 17 18 Abstract 19 The systematiC plaCement of an enigmatiC psocid family restriCted to AfriCa, Lesneiidae, 20 was estimated by using a multiple gene data set. The candidates for its close relatives are now 21 Classified under two different infraorders, the family Archipsocidae of the infraorder Archipsocetae 22 or the families Elipsocidae/Mesopsocidae of the infraorder Homilopsocidea. The maximum 23 likelihood and Bayesian analyses of the moleCular data set strongly suggested that the Lesneiidae 24 belongs to Homilopsocidea and forms a clade with Elipsocidae/Mesopsocidae/EolaChesillinae 25 (LaChesillidae). However, the relationships among these (sub)families and Lesneiidae, including the 26 monophyly of Elipsocidae and MesopsoCidae, were ambiguous or questionable, showing the 27 neCessity of further investigations for elucidating their relationships and validating the status of 28 these families. -
1997 Species Report Card: the State of U.S
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/269112191 1997 Species Report Card: The State of U.S. Plants and Animals Book · January 1997 CITATIONS READS 38 102 2 authors, including: Bruce A. Stein National Wildlife Federation 62 PUBLICATIONS 2,285 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Natural Defenses In Action View project National Climate Assessment (3rd) View project All content following this page was uploaded by Bruce A. Stein on 05 December 2014. The user has requested enhancement of the downloaded file. 1997 Species Report Card The State of U.S. Plants and Animals IN COOPERATION WITH THE NATURAL HERITAGE NETWORK A NatureServe™ Publication 1997 Species Report Card The State of U.S. Plants and Animals Citation: Bruce A. Stein and Stephanie R. Flack. 1997. 1997 Species Report Card: The State of U.S. Plants and Animals. The Nature Conservancy, Arlington, Virginia. ISBN: 1-886765-08-1 This publication is available on The Nature Conservancy’s Web site at http://www.tnc.org/science/library. © 1997 The Nature Conservancy NATURESERVE: Science for Conservation Program Sponsor This publication is a product of NatureServe, which is made possible by Canon U.S.A.’s Clean Earth Campaign. The NatureServe program is designed to promote biodiversity conservation by raising public awareness and advancing scientific knowledge. Contents Summary ...................................................................................................... -
PSOCOPTERA – BARKFLIES by Alan R
NEGLECTED INSECTS IN BEDFORDSHIRE Beds Natural History Society Conference PSOCOPTERA – BARKFLIES by Alan R. Outen & Ian K. Dawson PSOCOPTERA Barkflies and Booklice (also sometimes referred to as Psocids) Small insects (1.5 – 7mm) with a domed postclypeus (the area at the front of the head between antennae and mouth); long filiform antennae; simple wing venation with two ‘triangular’ cells at tip of forewing; tendency to run rather than fly. Winged barkflies usually hold their wings tent-wise over their abdomens like miniature lacewings. These species can be confused with Psyllids but can be distinguished by gently touching them – psyllids jump away, barkflies don’t. Stenopsocus immaculatus – a common species in Beds. Note the strongly domed postclypeus and long filiform antennae Barkflies - Variations on a theme Some species don’t have full-sized (macropterous) wings but have them much reduced (brachypterous) or absent (apterous). They can be confused with springtails (which however will jump away when touched). Cerobasis guestfalica has been Embidopsocus enderleini recorded from several Beds sites An uncommon species not (yet) found in Beds Available Resources • Excellent British Barkflies website which via the gallery has been brilliant in facilitating identification of this group making them accessible to all. • 2005 RES Handbook is also very good. • Keith Alexander who runs the National Recording Scheme is very helpful. Graphopsocus cruciatus – a common and distinctive Bedfordshire species THE 2005 RES handbook is also excellent with keys that are much easier to follow than many mycological ones ! …….. A Stereo zoom binocular microscope is very useful though not essential ….. …….It is remarkable what can be achieved with the aid of digital photography !! Stenopsocus immaculatus PSOCOPTERA – BARKFLIES 98 British spp in total of which 69 live outdoors, the rest are synanthropic. -
Psocoptera of Muogamarra Nature Reserve
AUSTRALIAN MUSEUM SCIENTIFIC PUBLICATIONS Smithers, C. N., 1977. Psocoptera of Muogamarra Nature Reserve. Records of the Australian Museum 31(7): 251–306. [31 December 1977]. doi:10.3853/j.0067-1975.31.1977.215 ISSN 0067-1975 Published by the Australian Museum, Sydney naturenature cultureculture discover discover AustralianAustralian Museum Museum science science is is freely freely accessible accessible online online at at www.australianmuseum.net.au/publications/www.australianmuseum.net.au/publications/ 66 CollegeCollege Street,Street, SydneySydney NSWNSW 2010,2010, AustraliaAustralia THE PSOCOPTERA OF MUOGAMARRA NATURE RESERVE by C. N. SMITHERS The Australian Museum, Sydney SUMMARY In a preliminary study Psocoptera were periodically collected from eight habitats in Muogamarra Nature Reserve, near Sydney. Forty-three species were taken of which fifteen are described as new. Rainforest and Casuarina habitats yielded the greatest variety of species. Populations were highest in summer on Casuarina and showed little seasonal variation in rainforest; dry sclerophyll habitats, on the other hand, yielded greater populations in winter than summer. In each habitat one or two species were dominant. Acacia floribunda and Eucalyptus spp. were poorest in species and specimens. INTRODUCTION During the latter part of 1973 and through most of 1974 collections of Psocoptera were made at intervals from selected habitats in Muogamarra Nature Reserve. Psocoptera had not previously been recorded from the Reserve. The object of the work was to ascertain which species were present and to obtain some indication of any gross habitat preferences or seasonal fluctuations in numbers, if any, as a basis for planning future, more detailed, biological and ecological work. The basic information necessary for rational planning of such work has not been available for Australian species and very little appropriate work which might be applicable to Australian conditions has been done elsewhere. -
Other Material
272 HAMPSHIRE FIELD CLUB INSECTS IN HAMPSHIRE, 1933 By F. H. HAINES HE summer of 1933, remarkable for drought and the amount of long-continued sunshine and heat, reacted on insects, T especially Lepidoptera, on the whole favourably. Times of appearance were very early, migrants numerous, and species normally single or double-brooded often produced an extra brood. But many, such as dragonflies, were soon over. February was wet, April dry, but June had one very heavy storm here (1.59ms. in 24 hours). The absence of rain was particularly noticeable later in-the year : in August, November and December. Orthoptera (Earwigs, Cockroaches, Crickets and Grass hoppers). The species of Ectobia were abundant and early, as was Nemobius sylvestris F., and grasshoppers : Pholidoptera griseoaptera De G. in the New Forest in August, Metrioptera albopunctata Gz. near Ringwood, M. brachyptera L., Conocephalus dorsalis 'Latr., Meconema thalassinum De G. and Leptophyes punctatissima Bosc. in the Forest. Tetrix subulatus L. was common, and hibernated T. bipunctatus L. was met with here very early. Goytphocerus maculatus Thunb. was everywhere in the wild, dry places around through summer and autumn, its colour, as usual, varying endlessly with that of its surroundings. The large Mecostethus grossus L., not uncommon in the forest bogs, and usually on Linwood Bog, was strangely, conditions being so favourable, not found here this year. Omocestus rufipes Zett. was not nearly so common on the heath as was O. viridulus L. on the grass. It was still abundant, basking in the sun on the woodwork of the house here, and else where, late in October. -
Crostwight Heath Parish: Honing/Witton Grid Reference: TG 395302 Area: 17.0 Ha District: North Norfolk Survey Date: 08/08/18
WILDLIFE IN COMMON PROJECT SURVEY Wildlife Site Survey Form (Ref. No. CWS 1226) Site Name: Crostwight Heath Parish: Honing/Witton Grid reference: TG 395302 Area: 17.0 ha District: North Norfolk Survey date: 08/08/18 Registered Common Number: CL 4 Habitat map: 1 WILDLIFE IN COMMON PROJECT SURVEY Habitat description (refer to the annotated map) Compartment A: South Woodland: Mixed Semi-natural Woodland This is an attractive woodland primarily consisting of oak (Quercus robur), downy birch (Betula pubescens) and planted Scott’s pine (Pinus sylvestris) on acid, sandy/gravelly soil on an undulating terrain. The overall impression is of a natural area, with a very varied and visually appealing terrain and vegetation structure. Much of the oak is low-branched and wide-spreading; there are some notably large birch. The woodland also includes sweet chestnut (Castanea sativa), sycamore (Acer pseudoplatanus), beech (Fagus sylvatica), and rowan (Sorbus aucuparia), while aspen (Populus tremula) is a feature, suckering widely along Heath Road. There are some interesting large veteran oaks on an old wood bank. The shrub layer comprises mainly small birch, occasional holly (Ilex aquifolium) (some large), hazel (Corylus avellana), hawthorn (Crataegus monogyna), elder (Sambucus nigra), and bramble (Rubus fruticosus agg). Rarities include the unusual alder buckthorn (Frangula alnus). There are encouraging signs of natural regeneration, with plenty of young birch, holly, rowan, hazel, and sweet chestnut. There is plentiful fallen wood. Broad-buckler fern (Dryopteris dilatata) dominates as ground cover in places, with bracken (Pteridium aquilinum) the main ground flora in other areas. Honeysuckle (Lonicera periclymenum) also acts as ground-cover as well as ascending as a climber, with the ground being bare (with deep leaf litter) in denser shade.