Training Material on Weather Radar Systems

Total Page:16

File Type:pdf, Size:1020Kb

Training Material on Weather Radar Systems WORLD METEOROLOGICAL ORGANIZATION INSTRUMENTS AND OBSERVING METHODS REPORT No. 88 TRAINING MATERIAL ON WEATHER RADAR SYSTEMS E. Büyükbas (Turkey) O. Sireci (Turkey) A. Hazer (Turkey) I. Temir (Turkey) A. Macit (Turkey) C. Gecer (Turkey) WMO/TD-No. 1308 2006 NOTE The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the World Meteorological Organization concerning the legal status of any country, territory, city or area, or its authorities, or concerning the limitation of the frontiers or boundaries. This report has been produced without editorial revision by the Secretariat. It is not an official WMO publication and its distribution in this form does not imply endorsement by the Organization of the ideas expressed. FOREWORD The Thirteenth Session of the Commission for Instruments and Methods of Observation (CIMO) recognized the need for training and placed a greater emphasis on these issues as it planned its activities for its 13th Intersessional period. As next generation weather radars system are deployed the need for more in depth training in instrument and platform siting, operation, calibration, lightning safety and maintenance has been requested. Within this document the team of experts from Turkey, led by Mr Büyükbas, provided training materials that address the basic training needs requested by Commission Members. This excellent work will undoubtedly become a useful tool in training staff in many aspects of operating and maintaining weather radar systems. I wish to express our sincere gratitude to Mr Büyükbas and his colleagues in preparing such a fine series of documents. (Dr. R.P. Canterford) Acting President Commission for Instruments and Methods of Observation TRAINING MATERIAL ON WEATHER RADAR SYSTEMS MODULES MODULE A: Introduction to Radars MODULE B: Radar Hardware MODULE C: Processing Basics in Doppler Weather Radars MODULE D: Radar Products and Operational Applications MODULE E: Radar Maintenance and Calibration Techniques MODULE F: Radar Infrastructure TRAINING MATERIAL ON WEATHER RADAR SYSTEMS COURSE SYLLABUS TURKEY RADAR TRAINING 1.0 / ALANYA 2005 TURKISH STATE METEOROLOGICAL SERVICE (TSMS) WORLD METEOROLOGICAL ORGANIZATION (WMO) COMMISSION FOR INSTRUMENTS AND METHODS OF OBSERVATIONS (CIMO) OPAG ON CAPACITY BUILDING (OPAG-CB) EXPERT TEAM ON TRAINING ACTIVITIES AND TRAINING MATERIALS TRAINING COURSE ON WEATHER RADAR SYSTEMS MODULE A: INTRODUCTION TO RADAR MODULE B: RADAR HARDWARE MODULE C: PROCESSING BASICS IN DOPPLER WEATHER RADARS MODULE D: RADAR PRODUCTS AND OPERATIONAL APPLICATIONS MODULE E: RADAR MAINTENANCE AND CALIBRATION TECHNIQUES MODULE F: RADAR INFRASTRUCTURE TURKISH STATE METEOROLOGICAL SERVICE 12–16 SEPTEMBER 2005 WMO RMTC-TURKEY ALANYA FACILITIES, ANTALYA, TURKEY TURKEY RADAR TRAINING 1.0 / ALANYA 2005 COURSE SYLLABUS (TURKEY RADAR TRAINING 1.0 / ALANYA 2005) 1. OBJECTIVES OF THE COURSE This course has been planned to be organized within the scope of the tasks of Expert team on training materials and training activities established by CIMO Management Group (OPAG on Capacity Building (OPAG-CB)/C.1. Expert Team on Training Activities and Training Materials) This course is expected to give a general view and information to the trainees about the basic features of Meteorological Weather Radars and why and how to operate a Radar and Radar network. It is believed that to organize such training courses will give an invaluable contribution to the capacity building activities and will be a great opportunity to be able to exchange the experiences and information between the meteorological services of different countries. On the other hand, as in that case, Regional Meteorological Training Centres will be used more efficiently. Turkish State Meteorological Service (TSMS) started modernization program of observation network and got many experience both on equipment itself and operating them. So TSMS’s well trained staff will take the opportunity to transfer their knowledge and experiences to the representative of the other countries and get their experiences, comments and recommendations by means of that interactive training course. Upon completion of the course; Trainees will be able to; a) understand why we need more reliable, more accurate and continuous meteorological data and how these requirements can be met, b) learn basic principles and approach of an RADAR which has become a necessity for the meteorological observations, c) take benefits of experiences from users of an operational weather radar network, d) get the view how to maintain a single RADAR and an RADAR network. Trainers will be able to; a) understand weak and strong parts of their knowledge and teaching method, b) learn how they can transfer their knowledge to the trainees, c) take the opportunity to check their system’s features once more under questions of the trainees, d) get comments, experiences and recommendations of the representatives of the other countries. TURKEY RADAR TRAINING 1.0 / ALANYA 2005 1 COURSE CONTENT Lecture Lecture - Lecture Training Topic Training Method Lecturer Nr. Day / Hour Module Material 09:00 – 10:00 Opening Ceremony TURKEY WEATHER OBSERVING • Prepared text • Explanation by Power SYSTEMS AND RADAR NETWORK book and CD point presentation 1 / 1 • Projector • Brief Explanation on Course 1 • Laptop PC Ercan BÜYÜKBAŞ • Observation Network of TSMS 10:00 – 10:45 • Radar Network o Currently Operational o Planned for Future INTRODUCTION TO RADAR • Prepared text book and CD • Explanation by Power 1 / 2 Radar Theory • Projector point presentation Laptop PC . 2 A • Ercan BÜYÜKBAŞ • The History of Radar 11:00 – 11:45 • Basic Radar Terms • Radar Equation • Block Diagram of a Radar 12:00 – 13:15 Lunch break Lecture Lecture - Training Lecture Topic Training Method Lecturer Nr. Day / Hour Material Module Propagation of EM waves • Prepared text • Theoretical book and CD explanation by Power • Electromagnetic Spectrum • Projector point presentation • Electromagnetic Waves • Laptop PC • Drawings on the 1 / 3 • Refraction board 3 A Radar Types Aytaç HAZER 13:15 – 14:00 • Pulse, Continuous, • Doppler Radar, • MTI, ASR,TDWR TURKEY RADAR TRAINING 1.0 / ALANYA 2005 2 RADAR HARDWARE • Prepared text book and CD • Theoretical Operation Principles of Weather • Projector explanation by Power Radar • Laptop PC point presentation • Drawings on the 1 / 4 • General Overview board • Typical Radar System 4 B Oğuzhan ŞİRECİ Applications and Block Diagrams 14:15 – 15:00 Receiver • General Overview • Oscillators Receiver • Low Noise Amplifier • Duplexer&TR Limiter 1 / 5 • Basic Characteristics of Receiver Transmitter 5 B Oğuzhan ŞİRECİ 15:15-16:00 • General Overview • Transmitter Types • Modulator TURKEY RADAR TRAINING 1.0 / ALANYA 2005 3 Lecture Lecture - Lecture Training Topic Training Method Lecturer Nr. Day / Hour Module Material Antenna • Prepared text • Theoretical 2 / 1 • General Overview book and CD explanation by Power 6 B • Antenna Types • Projector point presentation İsmail TEMİR • Modulator • Laptop PC • Drawings on the 09:00 – 09:45 • Basic Characteristics of Antenna board • Main Parts of a Radar Antenna Radar Control Processor(RCP) and Radar Signal Processor(RSP) • Prepared text • Theoretical book and CD explanation by Power • General Overview • Projector point presentation 2 / 2 • Control Processor • Laptop PC • Drawings on the • Signal Processor board 7 B Oğuzhan ŞİRECİ 10:00 – 10:45 Radome • General Overview • Radome Types 2 / 3 Video Show 8 B ALL • Video Images of Turkish 11:00 – 11:45 Radars 12:00 – 13:00 Lunch Break Lecture Lecture - Lecture Training Topic Training Method Lecturer Nr. Day / Hour Module Material EXCURSION TURKEY RADAR TRAINING 1.0 / ALANYA 2005 4 Lecture Lecture - Lecture Training Topic Training Method Lecturer Nr. Day / Hour Module Material PROCESSING BASICS IN • Theoretical DOPPLER WEATHER RADAR • Prepared text explanation by Power SYSTEMS book and CD point presentation • Projector • Drawings on the Signal Processing • Laptop PC board 3 / 1 • I/Q Demodulation • Analogue receiver Channels 9 C Oğuzhan ŞİRECİ • Doppler Signal Processing 09:00 – 09:45 Techniques • Pulse Pair • Clutter Correction • FFT Implementation Maximum Unambiguous Range Velocity Determination • Prepared text • Theoretical • Doppler Shift book and CD explanation by Power 3 / 2 • Total Distance to Target in • Projector point presentation Radians • Laptop PC • Drawings on the 10 C Oğuzhan ŞİRECİ • Pulse Pair Method board 10:00 – 10:45 • Maximum Unambiguous Velocity Doppler Dilemma Radar Range Folding • Theoretical • Recognizing Range Aliased • Prepared text explanation by Power Echoes book and CD point presentation 3 / 3 • Elimination of Second Trip • Projector • Drawings on the 11 C Echoes board Oğuzhan ŞİRECİ • Laptop PC Velocity Folding 11:00 – 11:45 • Staggered PRF for Velocity Folding • Recognizing Velocity Aliasing 12:00 – 13:00 Lunch Break TURKEY RADAR TRAINING 1.0 / ALANYA 2005 5 Lecture Lecture - Lecture Training Topic Training Method Lecturer Nr. Day / Hour Module Material RADAR PRODUCTS AND • Theoretical OPERATIONAL APPLICATIONS • Prepared text explanation by Power book and CD point presentation 3 / 4 Radar Products • Projector • Drawings on the 12 D board Cüneyt GEÇER • Laptop PC • RPG(Radar Product Generation) 13:15 – 14:00 • Radar Parameters • Product Descriptions Scanning Strategies • Prepared text • Theoretical 3 / 5 book and CD explanation by Power • Winter Task Projector point presentation 13 D • Cüneyt GEÇER
Recommended publications
  • Chapter-5 Doppler Effect
    Chapter-5 Doppler Effect Stationary source Stationary observer Moving source Stationary observer Stationary source Moving observer Moving source Moving observer http://www.astro.ubc.ca/~scharein/a311/Sim/doppler/Doppler.html Doppler Effect The Doppler effect is the apparent change in the frequency of a wave motion when there is relative motion between the source of the waves and the observer. The apparent change in frequency f experienced as a result of the Doppler effect is known as the Doppler shift. The value of the Doppler shift increases as the relative velocity v between the source and the observer increases. The Doppler effect applies to all forms of waves. Doppler Effect (Moving Source) http://www.absorblearning.com/advancedphysics/demo/units/040103.html Suppose the source moves at a steady velocity vs towards a stationary observer. The source emits sound wave with frequency f. From the diagram, we can see that the distance between crests is shortened such that ' vs Since = c/f and = 1/f, We get c c v s f ' f f c vs f ' ( ) f c vs Doppler Effect (Moving Observer) Consider an observer moving with velocity vo toward a stationary source S. The source emits a sound wave with frequency f and wavelength = c/f. The velocity of the sound wave relative to the observer is c + vo. c Doppler Shift Consider a source moving towards an observer, the Doppler shift f is c f f ' f ( ) f f c vs f v s f c v s f v If v <<c, then we get s s f c The above equation also applies to a receding source, with vs taking as negative.
    [Show full text]
  • A Real-Time System to Estimate Weather Conditions at High Resolution
    12.1 A Real-Time System to Estimate Weather Conditions at High Resolution Peter P. Neilley1 Weather Services International, Inc. Andover, MA 01810 And Bruce L. Rose The Weather Channel Atlanta, GA the earth’s surface (the so-called current 1. Introduction1 conditions). b) We do not necessarily produce weather The purpose of this paper is to describe an observations on a regular grid, but at an operational system used to estimate current irregular set of arbitrary locations or points weather conditions at arbitrary places in real- that are relevant to the consumers of the time. The system, known as High Resolution information. Assimilation of Data (or HiRAD), is designed to generate synthetic weather observations in a c) In addition to producing quantitative manner equivalent in scope, timeliness and observational elements (e.g. temperature, quality to a arbitrarily dense physical observing pressure and wind speed) our system network. Our approach is, first, to collect produces common, descriptive terminology information from a variety of relevant sources of the sensible weather such as including gridded analyses, traditional surface “Thundershowers”, “Patchy Fog”, and weather reports, radar, satellite and lightning “Snow Flurries”. observations. Then we continuously synthesize these data into weather condition estimates at d) We do not strive to produce a state of the prescribed locations. An operational system atmosphere optimized for fidelity with based on this approach has been built and is Numerical Weather Prediction (NWP) commercially deployed in the United States. models. Instead, the system is optimized to produce the most accurate estimate of the In most regards, our approach is analogous to observed state at the surface that can be modern data assimilation techniques.
    [Show full text]
  • Fire W Eather
    Fire Weather Fire Weather Fire weather depends on a combination of wildland fuels and surface weather conditions. Dead and live fuels are assessed weekly from a satellite that determines the greenness of the landscape. Surface weather conditions are monitored every 5-minutes from the Oklahoma Mesonet. This fire weather help page highlights the surface weather ingredients to monitor before wildfires and also includes several products to monitor once wildfires are underway. Fire Weather Ingredients: WRAP While the presence of wildland fuels is one necessary component for wildfires, weather conditions ultimately dictate whether or not a day is primed for wildfires to occur. There are four key fire weather ingredients and they include: high Winds, low Relative humidity, high Air temperature, and no/minimal recent Precipitation (WRAP). High Winds are the second most critical weather ingredient for wildfires. In general, winds of 20 mph or greater 20+ mph winds increase spot fires and make for most of the containment considerably more difficult. state Low Relative humidity is the most 30-40+ critical weather ingredient for wildfires mph winds and is most common in the afternoon when the air temperature is at its warmest. When relative humidity is at or below 20% extreme fire behavior can result and spot fires become freQuent. Watch out for areas of 20% or below relative humidity and 20 mph or higher winds à 20/20 rule! Extremely low relative humidity Warm Air temperatures are another values key weather ingredient for wildfires as warming can lower the relative humidity, reduce moisture for smaller dead fuels, and bring fuels closer to their ignition point.
    [Show full text]
  • Weather Charts Natural History Museum of Utah – Nature Unleashed Stefan Brems
    Weather Charts Natural History Museum of Utah – Nature Unleashed Stefan Brems Across the world, many different charts of different formats are used by different governments. These charts can be anything from a simple prognostic chart, used to convey weather forecasts in a simple to read visual manner to the much more complex Wind and Temperature charts used by meteorologists and pilots to determine current and forecast weather conditions at high altitudes. When used properly these charts can be the key to accurately determining the weather conditions in the near future. This Write-Up will provide a brief introduction to several common types of charts. Prognostic Charts To the untrained eye, this chart looks like a strange piece of modern art that an angry mathematician scribbled numbers on. However, this chart is an extremely important resource when evaluating the movement of weather fronts and pressure areas. Fronts Depicted on the chart are weather front combined into four categories; Warm Fronts, Cold Fronts, Stationary Fronts and Occluded Fronts. Warm fronts are depicted by red line with red semi-circles covering one edge. The front movement is indicated by the direction the semi- circles are pointing. The front follows the Semi-Circles. Since the example above has the semi-circles on the top, the front would be indicated as moving up. Cold fronts are depicted as a blue line with blue triangles along one side. Like warm fronts, the direction in which the blue triangles are pointing dictates the direction of the cold front. Stationary fronts are frontal systems which have stalled and are no longer moving.
    [Show full text]
  • The Montague Doppler Radar, an Overview June 2018
    ISSUE PAPER SERIES The Montague Doppler Radar, An Overview June 2018 NEW YORK STATE TUG HILL COMMISSION DULLES STATE OFFICE BUILDING · 317 WASHINGTON STREET · WATERTOWN, NY 13601 · (315) 785-2380 · WWW.TUGHILL.ORG The Tug Hill Commission Technical and Issue Paper Series are designed to help local officials and citizens in the Tug Hill region and other rural parts of New York State. The Tech- nical Paper Series provides guidance on procedures based on questions frequently received by the Commis- sion. The Issue Paper Series pro- vides background on key issues facing the region without taking advocacy positions. Other papers in each se- ries are available from the Tug Hill Commission. Please call us or vis- it our website for more information. The Montague Doppler Weather Radar, An Overview Table of Contents Introduction .................................................................................................................................................. 1 Who owns the Montague radar? ................................................................................................................. 1 Who uses the Montague radar? .................................................................................................................. 1 How does the radar system work? .............................................................................................................. 2 How does the radar predict lake-effect snowstorms? ................................................................................ 2 How does the
    [Show full text]
  • Weather Observations
    Operational Weather Analysis … www.wxonline.info Chapter 2 Weather Observations Weather observations are the basic ingredients of weather analysis. These observations define the current state of the atmosphere, serve as the basis for isoline patterns, and provide a means for determining the physical processes that occur in the atmosphere. A working knowledge of the observation process is an important part of weather analysis. Source-Based Observation Classification Weather parameters are determined directly by human observation, by instruments, or by a combination of both. Human-based Parameters : Traditionally the human eye has been the source of various weather parameters. For example, the amount of cloud that covers the sky, the type of precipitation, or horizontal visibility, has been based on human observation. Instrument-based Parameters : Numerous instruments have been developed over the years to sense a variety of weather parameters. Some of these instruments directly observe a particular weather parameter at the location of the instrument. The measurement of air temperature by a thermometer is an excellent example of a direct measurement. Other instruments observe data remotely. These instruments either passively sense radiation coming from a location or actively send radiation into an area and interpret the radiation returned to the instrument. Satellite data for visible and infrared imagery are examples of the former while weather radar is an example of the latter. Hybrid Parameters : Hybrid observations refer to weather parameters that are read by a human observer from an instrument. This approach to collecting weather data has been a big part of the weather observing process for many years. Proper sensing of atmospheric data requires proper siting of the sensors.
    [Show full text]
  • Project Stormy Weather Began in 1943
    61 Chapter 8 The Stormy Weather Group (Canada) R.H. Douglas,* McGill University 1 INTRODUCTION nated, and the McGill group carried on as the Stormy Weather Group. years later Project Stormy Weather began in 1943. Thirty Marshall (1973) recalls that "the first contribution of of the Marshall (1973), reviewing the accomplishments Project Stormy Weather, within the CAORG, was time­ meteorology and cloud Stormy Weather Group in radar lapse photography of the PPI scope. (By telephoning an estimated 500 scientists physics, noted that (in 1973) around the Ottawa Valley, it was established that there in weather radar, the around the world were involved was rain where the radar screen glowed, and that rain from a handful in 1943. number having increased linearly started at a given point just after the echo moved over that the Stormy Weather Group, Quoting Marshall, "Activity of point on the screen.) Viewing these films as movies, one roughly one-sixth continuous for thirty years, represented sensed a new approach to storm dynamics and a potential about one­ of the whole until, say, 1963, and represents for short-term forecasting. The showing of Stormy Weather ( 19 73 ) ." Thus Marshall twelfth of the larger activity now films to American scientific meetings did much to stimulate and his colleagues in the Group have enjoyed a continuing interest in weather radar." in the development of and advances and significant role The early radar equipment consisted of a microwave but relatively recent in this (by now) well-established height-finding unit at Ottawa and early warning units at branch of the meteorological sciences.
    [Show full text]
  • ESSENTIALS of METEOROLOGY (7Th Ed.) GLOSSARY
    ESSENTIALS OF METEOROLOGY (7th ed.) GLOSSARY Chapter 1 Aerosols Tiny suspended solid particles (dust, smoke, etc.) or liquid droplets that enter the atmosphere from either natural or human (anthropogenic) sources, such as the burning of fossil fuels. Sulfur-containing fossil fuels, such as coal, produce sulfate aerosols. Air density The ratio of the mass of a substance to the volume occupied by it. Air density is usually expressed as g/cm3 or kg/m3. Also See Density. Air pressure The pressure exerted by the mass of air above a given point, usually expressed in millibars (mb), inches of (atmospheric mercury (Hg) or in hectopascals (hPa). pressure) Atmosphere The envelope of gases that surround a planet and are held to it by the planet's gravitational attraction. The earth's atmosphere is mainly nitrogen and oxygen. Carbon dioxide (CO2) A colorless, odorless gas whose concentration is about 0.039 percent (390 ppm) in a volume of air near sea level. It is a selective absorber of infrared radiation and, consequently, it is important in the earth's atmospheric greenhouse effect. Solid CO2 is called dry ice. Climate The accumulation of daily and seasonal weather events over a long period of time. Front The transition zone between two distinct air masses. Hurricane A tropical cyclone having winds in excess of 64 knots (74 mi/hr). Ionosphere An electrified region of the upper atmosphere where fairly large concentrations of ions and free electrons exist. Lapse rate The rate at which an atmospheric variable (usually temperature) decreases with height. (See Environmental lapse rate.) Mesosphere The atmospheric layer between the stratosphere and the thermosphere.
    [Show full text]
  • An Implementation of Real-Time Phased Array Radar Fundamental Functions on a DSP-Focused, High-Performance, Embedded Computing Platform
    aerospace Article An Implementation of Real-Time Phased Array Radar Fundamental Functions on a DSP-Focused, High-Performance, Embedded Computing Platform Xining Yu 1,*, Yan Zhang 1, Ankit Patel 1, Allen Zahrai 2 and Mark Weber 2 1 School of Electrical and Computer Engineering, University of Oklahoma, 3190 Monitor Avenue, Norman, OK 73019, USA; [email protected] (Y.Z.); [email protected] (A.P.) 2 National Severe Storms Laboratory, National Oceanic and Atomospheric Administration, Norman, OK 73072, USA; [email protected] (A.Z.); [email protected] (M.W.) * Correspondence: [email protected]; Tel.: +1-405-325-2871 Academic Editor: Konstantinos Kontis Received: 22 July 2016; Accepted: 2 September 2016; Published: 9 September 2016 Abstract: This paper investigates the feasibility of a backend design for real-time, multiple-channel processing digital phased array system, particularly for high-performance embedded computing platforms constructed of general purpose digital signal processors. First, we obtained the lab-scale backend performance benchmark from simulating beamforming, pulse compression, and Doppler filtering based on a Micro Telecom Computing Architecture (MTCA) chassis using the Serial RapidIO protocol in backplane communication. Next, a field-scale demonstrator of a multifunctional phased array radar is emulated by using the similar configuration. Interestingly, the performance of a barebones design is compared to that of emerging tools that systematically take advantage of parallelism and multicore capabilities, including the Open Computing Language. Keywords: phased array radar; embedded computing; serial RapidIO; MPAR 1. Introduction 1.1. Real-Time, Large-Scale, Phased Array Radar Systems In [1], we had introduced the real-time phased array radar (PAR) processing based on the Micro Telecom Computing Architecture (MTCA) chassis.
    [Show full text]
  • Spring 2017 Some Reflections on the History of Radar from Its Invention
    newsletter OF THE James Clerk Maxwell Foundation ISSN 205 8-7503 (Print) Issue No.8 Spring 2017 ISSN 205 8-7511 (Online) Some Re flections on the History of Radar from its Invention up to the Second World War By Professor Hugh Griffiths , DSc(Eng), FIET, FIEEE, FREng, University College, London, Royal Academy of Engineering Chair of Radio Frequency Sensors Electromagnetic Waves – Maxwell and Hertz In 1927, in France, Pierre David had observed similar effects and, in 1930, had conducted further trials, leading to a deployed In his famous 1865 paper ‘ A Dynamical Theory of the Electromagnetic forward-scatter radar system to protect the naval ports of Brest, Field’ Maxwell derived theoretically his famous equations of Cherbourg, Toulon and Bizerte (Algeria). electromagnetism which showed that these equations implied that electromagnetic disturbances travelled as waves at finite speed. In 1935, in the UK, Robert Watson-Watt had a claim to be From the fact that the speed of these waves was equal (to within ‘the father of radar’ on the basis of the Daventry Experiment experimental error) to the known velocity of light, Maxwell (described later in this article) and his development of a radar detection system (Chain Home) for the R.A.F. in World War II. concluded with the immortal words: “This velocity is so nearly that of light that it seems we have strong reason But, to the author, the priority for the invention of radar should go to conclude that light itself (including radiant heat and other radiations if to a German, Christian Hülsmeyer, a young engineer who in 1904 built and demonstrated a device to detect ships.
    [Show full text]
  • Design Trade-Offs for Airborne Phased Array Radar for Atmospheric Research
    Design Trade-offs for Airborne Phased Array Radar for Atmospheric Research Jorge L. Salazar, Eric Loew, Pei-Sang Tsai, V. Chandrasekar Jothiram Vivekanandan and Wen Chau Lee Colorado State University (CSU) National Center for Atmospheric Research (NCAR) NCAR Affiliate Scientist 3450 Mitchell Lane Boulder, CO 80301, USA 1373 Fort Collins, CO 80523, U Abstract - This paper discusses the design options and trade- Besides the fact that both are single-polarized and passive offs of the key performance parameters, technology, and arrays, fast electronically scanned beams have provided the costs of dual-polarized and two-dimensional active phased scientific community with higher temporal resolution array antenna for an atmospheric airborne radar system. The measurements that improve detection and warning for severe design proposed provides high-resolution measurements of high-impact weather. Tornado false alarm rates have been the air motion and rainfall characteristics of very large storms reduced substantially and the tornado warning lead times that are difficult to observe with a ground-based radar system. extended from 14 minutes to 20 minutes [4]. Parameters such as antenna size, wavelength, beamwidth, transmit power, spatial resolution, along-track resolution, and Considering the benefit of phased array technology, polarization have been evaluated. The paper presents a academic, state, federal, and private institutions have been performance evaluation of the radar system. Preliminary working together to develop phased-array radar for results from the antenna front-end section that corresponds to atmospheric applications. Currently, the Massachusetts a Line Replacement Unit (LRU) are presented. Institute of Technology’s Lincoln Laboratory (MIT-LL) is developing a multifunction, two-dimensional (2-D), dual-pol, Index Terms – Airborne Doppler radar, ELDORA, phased flat and multifunction S-band radar system [6].
    [Show full text]
  • CMA-2012 Doppler Velocity Sensor and Navigation System
    CMA-2012 Doppler Velocity Sensor and Navigation System High Accuracy Velocity Sensor Ideally Suited for Helicopter Operations The CMA-2012 Doppler Velocity Sensor and The CMA-2012’s superior accuracy and performance are Navigation System represents the culmination achieved by integrating several technologies into one compact, of CMC Electronics’ 50 years of experience in low weight unit. A frequency modulation/continuous wave (FM/CW) modulation technique, together with a four-beam Janus airborne Doppler radar and navigation systems. It configuration, is optimized for low-speed conditions. A dynamic is particularly well suited for helicopter hover and carrier breakthrough circuit lowers hover drift. Signal returns then low-speed operations, such as anti-submarine undergo digital signal processing to optimize signal acquisition warfare and SAR, and for weapons targeting during over marginal terrain, such as smooth water, sand or snow, and tactical flight manoeuvres, where the highest enhance tracking precision accuracy. Pitch, roll and yaw heading accuracy velocity sensor is required to ensure inputs further enhance the CMA-2012’s performance during mission accomplishment. dynamic helicopter movements. With the input of pitch, roll and heading information, the CMA-2012 can provide Doppler navigation system functions, compute present position and other navigation information, and output navigation data to CMC’s or other multifunction CDUs via a digital data bus. Extensive flight testing of the CMA-2012 has demonstrated its excellent performance.
    [Show full text]