Johnson-Ajinwophd2017.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Johnson-Ajinwophd2017.Pdf This work is protected by copyright and other intellectual property rights and duplication or sale of all or part is not permitted, except that material may be duplicated by you for research, private study, criticism/review or educational purposes. Electronic or print copies are for your own personal, non- commercial use and shall not be passed to any other individual. No quotation may be published without proper acknowledgement. For any other use, or to quote extensively from the work, permission must be obtained from the copyright holder/s. IDENTIFICATION, SEMI-SYNTHESIS AND EVALUATION OF ANTI-OVARIAN CANCER COMPOUNDS FROM PLANTS USED IN TRADITIONAL MEDICINES OKIEMUTE ROSA JOHNSON-AJINWO Thesis submitted to Keele University for the degree of Doctor of Philosophy June 2017 IDENTIFICATION, SEMI-SYNTHESIS AND EVALUATION OF ANTI-OVARIAN CANCER COMPOUNDS FROM PLANTS USED IN TRADITIONAL MEDICINES OKIEMUTE ROSA JOHNSON-AJINWO INSTITUTE OF SCIENCE AND TECHNOLOGY IN MEDICINE KEELE UNIVERSITY THESIS SUBMITTED TO KEELE UNIVERSITY FOR THE DEGREE OF DOCTOR OF PHILOSOPHY JUNE 2017 ABSTRACT Ovarian cancer is the second leading cause of death among women in the gynaecological category of cancers. The current post surgery treatment which involves the use of platinum- based therapy with its attendant adverse drug-resistance often results in the return of the cancer. This research work, explored the role of natural products as the major source of new drugs by the evaluation of the anti-ovarian cancer activities of three selected medicinal plants and the semi-synthesis of analogues of an anti-cancer agent; thymoquinone from Nigella sativa. Using a bioassay-guided approach, an investigation of the cell growth inhibition of the extracts/fractions of these plants on four human ovarian cancer cell lines, A2780, OVCAR 4, OVCAR 8, and CIS-A2780 showed that Acalypha wilkesiana, Margaritaria discoidea and Rutidea parviflora had promising anti-ovarian cancer activities. This is the first report of the anti-cancer activities of M. discoidea and R. parviflora. The bioactive compounds of the plants were isolated by HPLC, identified by mass spectrometry/NMR spectroscopy and investigated for cytotoxicity. Gallic acid, (IC50 range of 6.2±0.3 – 26.9±4.1 µM) was the active compound in A. wilkesiana. The significantly bioactive compounds of M. discoidea were securinine, (IC50 range of 2.7±0.7 – 8.7±0.1 µM), betulinic acid, (IC50 of 16.0±1.9 µM) and gallic acid. While palmatine, (IC50 range of 5.5±0.9 – 7.9±0.5 µM) was the major active compound in R. parviflora. Twenty-one thymoquinone analogues including eleven semi- synthetic ones were evaluated for cytotoxicity. A synthetic 2-dimethylamino-5-methyl-1,4- benzoquinone demonstrated optimum activity (IC50 range of 4.7±0.5 – 11.2±1.9 µM) and superior aqueous solubility. Palmatine, securinine and 2-dimethylamino-5-methyl-1,4- benzoquinone showed induction of apoptosis via increased caspase 3/7 activity. Palmatine demonstrated PAPR cleavage by western blot analysis. 2-dimethylamino-5-methyl-1,4- benzoquinone showed synergy with carboplatin and paclitaxel. These studies have provided scientific evidences for the potential treatment of ovarian cancer with these traditional medicinal plants and hit compounds for future optimization towards clinical trials. i CONTENTS ABSTRACT ............................................................................................................................. i Contents ................................................................................................................................. ii FIGURES ............................................................................................................................. vii TABLES .............................................................................................................................. xiii ABBREVIATIONS ............................................................................................................... xvi PUBLICATIONS ................................................................................................................. xviii Journal Articles ............................................................................................................................. xviii Book Chapter ................................................................................................................................ xviii Conference Abstracts .................................................................................................................. xviii POSTER AWARD .......................................................................................................................... xix APPENDICES ...................................................................................................................... xx ACKNOWLEDGEMENTS .................................................................................................... xxi Chapter One........................................................................................................................... 1 Introduction ......................................................................................................................................... 1 1.1 Cancer .......................................................................................................................................... 1 1.2 Ovarian Cancer ........................................................................................................................... 1 1.3 Medicinal Plants-A Proven Source of Cancer Drugs ............................................................ 3 1.3.1 Natural Products Derived and Platin-derived Drugs Clinically Used in the Treatment of Ovarian Cancer ...................................................................................................... 5 1.3.2 Plant natural products in Clinical Trials ............................................................................ 8 1.3.3 Natural Products Derived Drugs in Pre-Clinical Trials for the Treatment of Ovarian Cancer ........................................................................................................................................... 12 1.3.4 Recent Plant-Derived Compounds with Activities on Ovarian Cancer Cell Lines ... 15 Polyscias duplicate (Thouars ex Bail.) Lowry and G.M. Plunkett (Araliaceae) ...................... 18 1.3.5 Some Other Compounds with Anti-cancer Activities ................................................... 29 1.4 Literature Survey of the Medicinal Plants Investigated in this study ................................. 31 1.4.1 Acalypha wilkesiana- A Plant with Potential Chemotherapeutic Activities ............... 31 1.4.2 Margaritaria discoidea - An unexplored plant for Anti-cancer Activities .................... 33 ii 1.4.3 Rutidea Parviflora- An un-researched Plant with Potentials for Cancer Treatment 38 1.5 Thymoquinone - A Potential Anticancer Lead ...................................................................... 39 1.6 Research Design ...................................................................................................................... 43 1.7 Aims and Objectives ................................................................................................................. 45 Chapter Two......................................................................................................................... 48 General Materials and Methods .................................................................................................... 48 2.1 Materials ..................................................................................................................................... 48 2.1.1 Reagents ............................................................................................................................. 48 2.1.2 Plant Materials ................................................................................................................... 48 2.1.3 Cancer assay materials .................................................................................................... 48 2.1.4 The ovarian cancer cell lines ........................................................................................... 49 2.1.5 The Human Ovarian Epithelial (HOE) Cell Line ........................................................... 49 2.2 Methods ...................................................................................................................................... 50 2.2.1 Cell Growth Conditions ..................................................................................................... 50 2.2.2 Resuscitation of cryopreserved cells .............................................................................. 50 2.2.3 Trypsinization of Cells ....................................................................................................... 50 2.2.4 Cryopreservation of Cells ................................................................................................. 51 2.3 Cell Growth Assay .................................................................................................................... 51 2.3.1 Drug Combination Experiments ...................................................................................... 53 2.3.2 Trypan Blue assay ............................................................................................................. 54 2.4 Apoptosis Studies ....................................................................................................................
Recommended publications
  • Ethnobotany and Phytomedicine of the Upper Nyong Valley Forest in Cameroon
    African Journal of Pharmacy and Pharmacology Vol. 3(4). pp. 144-150, April, 2009 Available online http://www.academicjournals.org/ajpp ISSN 1996-0816 © 2009 Academic Journals Full Length Research Paper Ethnobotany and phytomedicine of the upper Nyong valley forest in Cameroon T. Jiofack1*, l. Ayissi2, C. Fokunang3, N. Guedje4 and V. Kemeuze1 1Millennium Ecologic Museum, P. O Box 8038, Yaounde – Cameroon. 2Cameron Wildlife Consevation Society (CWCS – Cameroon), Cameroon. 3Faculty of Medicine and Biomedical Science, University of Yaounde I, Cameroon. 4Institute of Agronomic Research for Development, National Herbarium of Cameroon, Cameroon. Accepted 24 March, 2009 This paper presents the results of an assessment of the ethnobotanical uses of some plants recorded in upper Nyong valley forest implemented by the Cameroon wildlife conservation society project (CWCS). Forestry transects in 6 localities, followed by socio-economic study were conducted in 250 local inhabitants. As results, medicinal information on 140 plants species belonging to 60 families were recorded. Local people commonly use plant parts which included leaves, bark, seed, whole plant, stem and flower to cure many diseases. According to these plants, 8% are use to treat malaria while 68% intervenes to cure several others diseases as described on. There is very high demand for medicinal plants due to prevailing economic recession; however their prices are high as a result of prevailing genetic erosion. This report highlighted the need for the improvement of effective management strategies focusing on community forestry programmes and aims to encourage local people participation in the conservation of this forest heritage to achieve a sustainable plant biodiversity and conservation for future posterity.
    [Show full text]
  • Silvestrol Induces Early Autophagy and Apoptosis in Human Melanoma Cells Wei-Lun Chen1, Li Pan2, A
    Chen et al. BMC Cancer (2016) 16:17 DOI 10.1186/s12885-015-1988-0 RESEARCH ARTICLE Open Access Silvestrol induces early autophagy and apoptosis in human melanoma cells Wei-Lun Chen1, Li Pan2, A. Douglas Kinghorn2, Steven M. Swanson1,3 and Joanna E. Burdette1* Abstract Background: Silvestrol is a cyclopenta[b]benzofuran that was isolated from the fruits and twigs of Aglaia foveolata, a plant indigenous to Borneo in Southeast Asia. The purpose of the current study was to determine if inhibition of protein synthesis caused by silvestrol triggers autophagy and apoptosis in cultured human cancer cells derived from solid tumors. Methods: In vitro cell viability, flow cytometry, fluorescence microscopy, qPCR and immunoblot was used to study the mechanism of action of silvestrol in MDA-MB-435 melanoma cells. Results: By 24 h, a decrease in cyclin B and cyclin D expression was observed in silvestrol-treated cells relative to control. In addition, silvestrol blocked progression through the cell cycle at the G2-phase. In silvestrol-treated cells, DAPI staining of nuclear chromatin displayed nucleosomal fragments. Annexin V staining demonstrated an increase in apoptotic cells after silvestrol treatment. Silvestrol induced caspase-3 activation and apoptotic cell death in a time- and dose-dependent manner. Furthermore, both silvestrol and SAHA enhanced autophagosome formation in MDA-MB-435 cells. MDA-MB-435 cells responded to silvestrol treatment with accumulation of LC3-II and time-dependent p62 degradation. Bafilomycin A, an autophagy inhibitor, resulted in the accumulation of LC3 in cells treated with silvestrol. Silvestrol-mediated cell death was attenuated in ATG7-null mouse embryonic fibroblasts (MEFs) lacking a functional autophagy protein.
    [Show full text]
  • Secondary Successions After Shifting Cultivation in a Dense Tropical Forest of Southern Cameroon (Central Africa)
    Secondary successions after shifting cultivation in a dense tropical forest of southern Cameroon (Central Africa) Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften vorgelegt beim Fachbereich 15 der Johann Wolfgang Goethe University in Frankfurt am Main von Barthélemy Tchiengué aus Penja (Cameroon) Frankfurt am Main 2012 (D30) vom Fachbereich 15 der Johann Wolfgang Goethe-Universität als Dissertation angenommen Dekan: Prof. Dr. Anna Starzinski-Powitz Gutachter: Prof. Dr. Katharina Neumann Prof. Dr. Rüdiger Wittig Datum der Disputation: 28. November 2012 Table of contents 1 INTRODUCTION ............................................................................................................ 1 2 STUDY AREA ................................................................................................................. 4 2.1. GEOGRAPHIC LOCATION AND ADMINISTRATIVE ORGANIZATION .................................................................................. 4 2.2. GEOLOGY AND RELIEF ........................................................................................................................................ 5 2.3. SOIL ............................................................................................................................................................... 5 2.4. HYDROLOGY .................................................................................................................................................... 6 2.5. CLIMATE ........................................................................................................................................................
    [Show full text]
  • A Revision of Margaritaria (Euphorbiaceae)
    JOURNAL OF THE ARNOLD ARBORETUM HARVARD UNIVERSITY VOLUME 60 US ISSN 0004-2625 Journal of the Arnold Arboretum Subscription price $25.00 per year. Subscriptions and remittances should be sent to Ms. E. B. Schmidt, Arnold Arboretum, 22 Divinity Avenue, Cambridge, Massachusetts 02138, U.S.A. Claims will not be accepted after six months from the date of issue. Volumes 1-51, reprinted, and some back numbers of volumes 52-56 are available from the Kraus Reprint Corporation, Route 100, Millwood, New York 10546, U.S.A. EDITORIAL COMMITTEE S. A. Spongberg, Editor E. B. Schmidt, Managing Editor P. S. Ashton K. S. Bawa P. F. Stevens C. E. Wood, Jr. Printed at the Harvard University Printing Office, Boston, Massachusetts America, Europe, Asia Minor, and in eastern Asia where the center of species diversity occurs. The only North American representative of the genus, C. caroliniana grows along the edges of streams and in wet, rich soils in forested areas from Nova Scotia and Quebec southward to Florida and westward into Minnesota, Iowa, Missouri, eastern Texas, and Oklahoma. Disjunct popula- • - - Mexico and in Central The stems of Carpinus caroliniana, a small i bluish-gray, sinuate bark and an ; _ _ trees (Fagus spp.). The wood, which i Second-class postage paid at Boston, Massachusetts JOURNAL OF THE ARNOLD ARBORETUM REVISION OF MARGARITARIA (EUPIIORBIACEAE) GRADY L. WEBSTER AM ONC 1 THE SMALLER GENK aiphorbiaceae subfamily Phyllanthoi- deae 1Pax , Margaritaria has a larly broad distribution (MAP 1) in •he New and Old World (except for the Pacific islands). The name' (in alluding to the 'I e C\ n I.i< p i b white cndocarp of the fruit, v .
    [Show full text]
  • Title Kitongwe Name of Plants: a Preliminary Listing Author(S)
    Title Kitongwe Name of Plants: A Preliminary Listing Author(s) NISHIDA, Toshisada; UEHARA, Shigeo Citation African Study Monographs (1981), 1: 109-131 Issue Date 1981 URL http://dx.doi.org/10.14989/67977 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University 109 KITONGWE NAME OF PLANTS: A PRELIMINARY LISTING Edited by Toshisada NISHIDA and Shigeo UEHARA Departnlent ofAnthropology, Faculty ofScience, University of Tokyo, Tokyo, Japan INTRODUCTION Field workers of Kyoto University Africa Primatological Expedition collected plants in western Tanzania. Experts of Japan International Cooperation Agency working as Game (Wildlife) Research Officers at Kasoje Chimpanzee Research Station (Mahale Mountains Wildlife Research Centre) have concentrated their collecting activities Inainly to the Mahale Mountains. The collection of plants with notes of kitongwe name not only has facilitated the ecological studies on wild chimpanzees (and other wild animals), but also will be of use in analyzing the traditional system of classification of plants among Batongwe, as well as in re­ cording for ever a rapidly-vanishing culture. This is a revised version, though still only preliminary one, of the manuscript entitled "Sitongwe-Latin Dictionary of Plants" edited by T. Nishida on 4 April, 1975. COLLECTION The researchers who have contributed to this work in the collection of the plants are listed below, with the reference number in the East African Herbarium'(Kenya Herbarium), the number of total specimens collected, and the specimen number in each collection. All the plants with known kitongwe nalne collected within the Tongwe (and Bende) territory are listed in this edition. Local emphasis is put on the Mahale Mountains and especially on Kasoje area.
    [Show full text]
  • Tick [Genome Mapping]
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Public Health Resources Public Health Resources 2008 Tick [Genome Mapping] Amy J. Ullmann Centers for Disease Control and Prevention, Fort Collins, CO Jeffrey J. Stuart Purdue University, [email protected] Catherine A. Hill Purdue University Follow this and additional works at: https://digitalcommons.unl.edu/publichealthresources Part of the Public Health Commons Ullmann, Amy J.; Stuart, Jeffrey J.; and Hill, Catherine A., "Tick [Genome Mapping]" (2008). Public Health Resources. 108. https://digitalcommons.unl.edu/publichealthresources/108 This Article is brought to you for free and open access by the Public Health Resources at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Public Health Resources by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 8 Tick Amy J. Ullmannl, Jeffrey J. stuart2, and Catherine A. Hill2 Division of Vector Borne-Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA Department of Entomology, Purdue University, 901 West State Street, West Lafayette, IN 47907, USA e-mail:[email protected] 8.1 8.1 .I Introduction Phylogeny and Evolution of the lxodida Ticks and mites are members of the subclass Acari Ticks (subphylum Chelicerata: class Arachnida: sub- within the subphylum Chelicerata. The chelicerate lin- class Acari: superorder Parasitiformes: order Ixodi- eage is thought to be ancient, having diverged from dae) are obligate blood-feeding ectoparasites of global Trilobites during the Cambrian explosion (Brusca and medical and veterinary importance. Ticks live on all Brusca 1990). It is estimated that is has been ap- continents of the world (Steen et al.
    [Show full text]
  • Nigerian Veterinary Journal 38(3)
    Nigerian Veterinary Journal 38(3). 2017 Ogo et al NIGERIAN VETERINARY JOURNAL ISSN 0331-3026 Nig. Vet. J., September 2017 Vol 38 (3): 260-267. ORIGINAL ARTICLE Morphological and Molecular Characterization of Amblyomma variegatum (Acari: Ixodidae) Ticks from Nigeria Ogo, N. I.1; Okubanjo, O. O. 2; Inuwa, H. M. 3 and Agbede, R. I. S.4 1National Veterinary Research Institute, Vom, Plateau State. 2Department of Veterinary Parasitology and Entomology, Ahmadu Bello University, Zaria, Nigeria. 3Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria. 4Department of Veterinary Parasitology and Entomology, University of Abuja, FCT, Nigeria. *Corresponding author: Email: [email protected]; Tel No:+234 8034521514 SUMMARY The association of most tick-borne pathogens with specific tick species has made it imperative that proper identification and characterization of such tick vectors is necessary for the purpose of developing effective tick and tick-borne control strategies. This study was undertaken to identify and characterize Amblyomma species ticks collected from cattle in Plateau State, North-Central, Nigeria. They were morphologically identified using diagnostic characters. Further confirmation and characterization was done genetically using a 460bp-long partial fragment of the 16S rRNA gene amplified by polymerase chain reaction (PCR). The amplified fragment was cloned and sequenced for the phylogenetic dendogram. All the examined ticks were identified as A. variegatum which was confirmed by 16S rRNA gene sequences analysis, and phylogenetic inferences showed a 99% similarity and grouping to A. variegatum of African origin. However, the A. variegatum sequences from Nigeria were clustered into 2 groups, but formed a distinct clade from the A. variegatum sequence from Ethiopia.
    [Show full text]
  • WAAVP2019-Abstract-Book.Pdf
    27th Conference of the World Association for the Advancement of Veterinary Parasitology JULY 7 – 11, 2019 | MADISON, WI, USA Dedicated to the legacy of Professor Arlie C. Todd Sifting and Winnowing the Evidence in Veterinary Parasitology @WAAVP2019 @WAAVP_2019 Abstract Book Joint meeting with the 64th American Association of Veterinary Parasitologists Annual Meeting & the 63rd Annual Livestock Insect Workers Conference WAAVP2019 27th Conference of the World Association for the Advancements of Veterinary Parasitology 64th American Association of Veterinary Parasitologists Annual Meeting 1 63rd Annualwww.WAAVP2019.com Livestock Insect Workers Conference #WAAVP2019 Table of Contents Keynote Presentation 84-89 OA22 Molecular Tools II 89-92 OA23 Leishmania 4 Keynote Presentation Demystifying 92-97 OA24 Nematode Molecular Tools, One Health: Sifting and Winnowing Resistance II the Role of Veterinary Parasitology 97-101 OA25 IAFWP Symposium 101-104 OA26 Canine Helminths II 104-108 OA27 Epidemiology Plenary Lectures 108-111 OA28 Alternative Treatments for Parasites in Ruminants I 6-7 PL1.0 Evolving Approaches to Drug 111-113 OA29 Unusual Protozoa Discovery 114-116 OA30 IAFWP Symposium 8-9 PL2.0 Genes and Genomics in 116-118 OA31 Anthelmintic Resistance in Parasite Control Ruminants 10-11 PL3.0 Leishmaniasis, Leishvet and 119-122 OA32 Avian Parasites One Health 122-125 OA33 Equine Cyathostomes I 12-13 PL4.0 Veterinary Entomology: 125-128 OA34 Flies and Fly Control in Outbreak and Advancements Ruminants 128-131 OA35 Ruminant Trematodes I Oral Sessions
    [Show full text]
  • Frugivory on Margaritaria Nobilis Lf (Euphorbiaceae)
    Revista Brasil. Bot., V.31, n.2, p.303-308, abr.-jun. 2008 Frugivory on Margaritaria nobilis L.f. (Euphorbiaceae): poor investment and mimetism ELIANA CAZETTA1,3, LILIANE S. ZUMSTEIN1, TADEU A. MELO-JÚNIOR2 and MAURO GALETTI1 (received: July 04, 2007; accepted: May 15, 2008) ABSTRACT – (Frugivory on Margaritaria nobilis L.f. (Euphorbiaceae): poor investment and mimetism). Dehiscent fruits of Euphorbiaceae usually have two stages of seed dispersal, autochory followed by myrmecochory. Two stages of Margaritaria nobilis seed dispersal were described, the first stage autochoric followed by ornithocoric. Their dehiscent fruits are green and after they detached from the tree crown and fall on the ground, they open and expose blue metallic cocas. We studied the seed dispersal system of Margaritaria nobilis in a semi-deciduous forest in Brazil. In 80 h of focal observations, we recorded only 12 visits of frugivores, however the thrush Turdus leucomelas was the only frugivore that swallowed the fruits on the tree crown. Pitylus fuliginosus (Fringilidae) and Pionus maximiliani (Psittacidae) were mainly pulp eaters, dropping the seeds below the tree. On the forest floor, after fruits dehiscence, jays (Cyanocorax chrysops), guans (Penelope superciliaris), doves (Geotrygon montana) and collared-peccaries (Pecari tajacu) were observed eating the blue diaspores of M. nobilis. Experiments in captivity showed that scaly-headed parrots (Pionus maximiliani), toco toucans (Ramphastos toco), jays (Cyanochorax chrysops), and guans (Penelope superciliaris) consumed the fruits and did not prey on the seeds before consumption. The seeds collected from the feces did not germinate in spite of the high viability. The two stages of seed dispersal in M.
    [Show full text]
  • New Cytotoxic Pregnane-Type Steroid from the Stem Bark of Aglaia Elliptica (Meliaceae)
    ORIGINAL ARTICLE Rec. Nat. Prod. 12:2 (2018) 121-127 New Cytotoxic Pregnane-type Steroid from the Stem Bark of Aglaia elliptica (Meliaceae) Kindi Farabi 1, Desi Harneti 1, Nurlelasari 1, Rani Maharani 1, Ace Tatang Hidayat 1,2, Khalijah Awang 3, Unang Supratman 1,2,* and Yoshihito Shiono 4 1Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Sumedang, Indonesia 2Central Laboratory of Universitas Padjadjaran, Jatinangor 45363, Sumdeang, Indonesia 3Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 59100, Malaysia 4Department of Food, Life, and Environmental Science, Faculty of Agriculture, Yamagata University, Tsuruoka, Yamagata 997-8555, Japan (Received July 5, 2017; Revised September 13, 2017; Accepted September 13, 2017) Abstract: A new pregnane-type steroid, 2α-hydroxy-3α-methoxy-5α-pregnane (1), together with three known dammarane-type triterpenoid, 3β-acetyl-20S,24S-epoxy-25-hydroxydammarane (2), 20S,24S-epoxy-3α,25- dihydroxydammarane (3), and eichlerianic acid (4) have been isolated from the stem bark of Aglaia elliptica. The structures were determined by spectroscopic methods including the 2D-NMR techniques. Compound 1-4 showed moderate cytotoxic activity against P-388 murine leukemia cells. Keywords: Pregnane-type steroid; Aglaia elliptica; cytotoxic activity; Meliaceae. © 2018 ACG Publications. All rights reserved. 1. Introduction Aglaia is the largest genus belong to Meliaceae family contain about 150 species, and more than 65 species of them were grown in Indonesia [1,2]. Recently, Aglaia genus used traditionally for treatment some desease. In Thailand, A. odorata used for the treatment of traumatic injury, bruises, febrifuge, heart disease and toxin by causing vomiting [3] and the bark of A.
    [Show full text]
  • Cytotoxic Sesquiterpenoid from the Stembark of Aglaia Argentea
    Research Journal of Chemistry and Environment_______________________________Vol. 22(Special Issue II) August (2018) Res. J. Chem. Environ. Cytotoxic Sesquiterpenoid from the Stembark of Aglaia argentea (Meliaceae) Harneti Desi1, Farabi Kindi1, Nurlelasari1, Maharani Rani1, Supratman Unang1* and Shiono Yoshihito2 1. Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadajaran, Jatinangor 45363, INDONESIA 2. Department of Food, Life and Environmental Science, Faculty of Agriculture, Yamagata University, Tsuruoka, Yamagata 997-8555, JAPAN *[email protected] Abstract reducing fever and for treating contused wound, coughs and Aglaia argentea also known as langsat hutan in skin diaseases16-18. Previous phytochemical studies of A. Indonesia is a higher plant traditionally used for argentea have revealed the presence of compounds with moisturizing the lungs, reducing fever and treating cytotoxic activity including cycloartane-type triterpenoids against KB cells19 and 3,4-secoapotirucallane-type contused wound, coughs and skin diseases. The triterpenoids against KB cells20, but there are no reports of stembark of A. argentea was successively extracted sesquiterpenes of this species before. with methanol. The methanolic extract then partitioned by n-hexane, ethyl acetate and n-butanol. The n-hexane Herein we isolated, determined the chemical structure and extract was chromatographed over a vacuum-liquid tested at P388 murine leukemia cells of one sesquiterpenoid chromatographed (VLC) column packed with silica gel compound from n-hexane extract of A. argentea. 60 by gradient elution. Material and Methods The VLC fractions were repeatedly subjected to General: The IR spectra were recorded on a Perkin-Elmer normal-phase column chromatography and spectrum-100 FT-IR in KBr. Mass spectra were obtained with a Synapt G2 mass spectrometer instrument.
    [Show full text]
  • Biodiversity in Forests of the Ancient Maya Lowlands and Genetic
    Biodiversity in Forests of the Ancient Maya Lowlands and Genetic Variation in a Dominant Tree, Manilkara zapota (Sapotaceae): Ecological and Anthropogenic Implications by Kim M. Thompson B.A. Thomas More College M.Ed. University of Cincinnati A Dissertation submitted to the University of Cincinnati, Department of Biological Sciences McMicken College of Arts and Sciences for the degree of Doctor of Philosophy October 25, 2013 Committee Chair: David L. Lentz ABSTRACT The overall goal of this study was to determine if there are associations between silviculture practices of the ancient Maya and the biodiversity of the modern forest. This was accomplished by conducting paleoethnobotanical, ecological and genetic investigations at reforested but historically urbanized ancient Maya ceremonial centers. The first part of our investigation was conducted at Tikal National Park, where we surveyed the tree community of the modern forest and recovered preserved plant remains from ancient Maya archaeological contexts. The second set of investigations focused on genetic variation and structure in Manilkara zapota (L.) P. Royen, one of the dominant trees in both the modern forest and the paleoethnobotanical remains at Tikal. We hypothesized that the dominant trees at Tikal would be positively correlated with the most abundant ancient plant remains recovered from the site and that these trees would have higher economic value for contemporary Maya cultures than trees that were not dominant. We identified 124 species of trees and vines in 43 families. Moderate levels of evenness (J=0.69-0.80) were observed among tree species with shared levels of dominance (1-D=0.94). From the paleoethnobotanical remains, we identified a total of 77 morphospecies of woods representing at least 31 plant families with 38 identified to the species level.
    [Show full text]