Quick viewing(Text Mode)

The Palynological Results of the Paleogene and Neogene Successions in Wells PNA-GT-01 and PNA-GT-04

The Palynological Results of the Paleogene and Neogene Successions in Wells PNA-GT-01 and PNA-GT-04

Geologische Dienst Nederland Princetonlaan 6 3584 CB Utrecht P.O. Box 80015 3508 TA Utrecht TNO report The

www.tno.nl TNO 2020 R11381 T +31 88 866 42 56 The palynological results of the Paleogene and Neogene successions in wells PNA-GT-01 and PNA-GT-04

Date August 2020

Author(s) D.K.Munsterman

Number of pages 27 Number of appendices 4 Customer TU-DELFT Order nr. TU Delft P2012020583 Project number 060.43561/01.02.01

All rights reserved. No part of this publication may be reproduced and/or published by print, photoprint, microfilm or any other means without the previous written consent of TNO.

In case this report was drafted on instructions, the rights and obligations of contracting parties are subject to either the General Terms and Conditions for commissions to TNO, or the relevant agreement concluded between the contracting parties. Submitting the report for inspection to parties who have a direct interest is permitted.

© 2020 TNO TNO report | TNO 2020 R11381 2 / 24

Contents

1 Introduction ...... 3

2 Material and methods ...... 6 2.1 Abbreviations ...... 6 2.2 Samples ...... 6 2.3 Sample processing ...... 7 2.4 Palynological analysis...... 7 2.5 Taxonomy ...... 7 2.6 Age interpretation ...... 7 2.7 Composite well log and lithostratigraphy (NLOG August 2020) ...... 9

3 Palynological results of well PNA-GT-01 ...... 12

4 Palynological results of well PNA-GT-04 ...... 14

5 Discussion and conclusion ...... 17

6 References ...... 20

7 Signature ...... 24

Enclosure 1: Palynological interpretation of well PNA-GT-01 Enclosure 2: Distribution chart of well PNA-GT-01 Enclosure 3: Palynological interpretation of well PNA-GT-04 Enclosure 4: Distribution chart of well PNA-GT-04 TNO report | TNO 2020 R11381 3 / 24

1 Introduction

In this report to TU-Delft, the results of a palynological study on the Paleogene and Neogene successions from 2 wells in the West Netherlands Basin are presented. The respective wells are PNA-GT-01, interval 400-500 m and PNA-GT-04, interval 415-460 m (see Fig. 1).

Figure 1: Location map (NLOG, 18-08-2020)

The present palynological study contributes to the study “Preparing coring Paleogene clays within the frame of DAPwell at ~400 m depth by improved stratigraphic constraints using cutting palynology” written by Hemmo Abels, Department of Geosciences and Engineering, TU-Delft.

The Rupel and Landen Clay Members are the key units being considered for long- term storage of nuclear waste. Several research projects addressed the mechanical, chemical, and permeability and porosity behaviour of these units. Since core material is typically lacking from depths greater than 200 meters, direct measurements on the clays from greater depths are absent.

The thickness of the Rupel Clay and Landen Clay Members in the Delft subsurface is relatively uncertain (Fig. 2). Several subsurface tectonic lows and highs have caused variable deposition during the time period. On seismic cross-sections, faults show movements alongside these lows and highs. In between the highs, concentric seismic lines indicate thicker Landen and Rupel Clay Members (Fig. 3), but also assigned to the Berg Member, in the centre of the synclines, blanketing the TNO report | TNO 2020 R11381 4 / 24

Cretaceous and early Paleogene Chalk Formation. On top, the Breda Member of the Group follows and is seemingly well visible on the seismics (Fig. 4).

Figure 2 Estimated top of Rupel Clay Member in the Dutch and Belgian subsurface (panel A) and estimated thickness of the Rupel Clay Member (panel B) (source: TNO-•‐GDN).

Figure 3. Reprocessed seismic line 2819 from SW to NE roughly through the area where DAPwell is planned between the Delft High and the Vrijenban Low. Several geothermal doublets are placed in the Vrijenban low towards the Pijnacker High. The line shows the interpreted Top Chalk in yellow above which the Paleogene clays should be deposited. (source: Panterra / TU Delft report). TNO report | TNO 2020 R11381 5 / 24

Figure 4. Reprocessed seismic line (also 2819?) by Geert-•‐Jan Vis (TNO) showing the top Chalk in green and in orange the “inferred erosive base of the ” / Neogene. The location of DAPwell is indicated to be not far NW of the point where Paleogene clays where not deposited or eroded. A move further north of the coring location would enhance the chance of thicker and undisturbed Paleogene clays.

The PNA-GT-01 to 04 wells are located structurally deeper in Vrijenban Low. There is, however, still significant lithostratigraphic variability within these interpreted structural units, while the overall thickness of the clay packages is relatively stable. In the DAPwell, one may therefore expect a succession of the Landen and Rupel Clay Members, possibly separated by thinner sandy intervals. The expected thickness for the clayey sequence is uncertain, with estimates ranging between 5 and 50 meters. In order to prepare accurate planning of the DAPwell(s) with respect to the Paleogene clays, we here study the PNA-GT-01 and PNA-GT-04 wells. Key is the construction of robust biostratigraphic interpretation, that aid to resolve whether the suggested lithostratigraphic interpretation provided on nlog.nl are indeed correct. Dirk Munsterman is responsible for the palynological analysis, interpretation and report. The results of the analysis are described in chapters 3 and 4. Discussion and conclusions are recorded in chapter 5. The references are listed in chapter 6. TNO report | TNO 2020 R11381 6 / 24

2 Material and methods

2.1 Abbreviations

Standard abbreviations in use by TNO-GSN are listed in Table 1.

Table 1 Abbreviations used in this report

CO Core sample SC Sidewall core sample CU Cuttings sample m Meter MD Measured depth Ft Feet LOD Last Occurrence Datum FOD First Occurrence Datum LCOD Last Common Occurrence Datum FCOD First Common Occurrence Datum

2.2 Samples

Twenty cuttings samples were taken from the TNO-Geological Survey of the Netherlands repository at Zeist. The samples prepared and analysed are listed in Table 2 and Table 3.

Table 2 Sample list of well PNA-GT-01

Depth (m - MD) Type 415 CU 420 CU 425 CU 430 CU 435 CU 440 CU 445 CU 450 CU 455 CU 460 CU

Table 3 Sample list of well PNA-GT-04

Depth (m - MD) Type 400 CU 410 CU 420 CU TNO report | TNO 2020 R11381 7 / 24

430 CU 440 CU 450 CU 460 CU 470 CU 490* CU 500 CU *cuttings sample at depth 480 m was absent.

2.3 Sample processing

The samples were processed at the Palynological Laboratory Services (PLS - UK) by Malcolm Jones using the standard sample processing procedures, which involves HCl and HF treatment, and sieving over a 18 µm mesh sieve.

2.4 Palynological analysis

The microscopy analysis was done according to standard procedures. The associations on the microscope slides are counted until a total of ca 200 sporomorphs and dinoflagellate cysts (palynomorphs) is reached. The miscellaneous categories (Botryococcus, inner chambers of foraminifers, Tasmanaceae, etc.) are also calculated, but kept outside the total sum of palynomorphs. The remainder of the slide is thereafter scanned for any (rare) dinocyst species which are simply noted as “present” (+ symbol on the distribution chart). Diagnostic species are discussed in the report, a complete distribution chart including all species found is given as appendix.

2.5 Taxonomy

For the dinoflagellate cyst taxonomy the so-called “Lentin and Williams” index is followed (Fensome et al., 2019).

2.6 Age interpretation

The age interpretation is based on the LOD’s and FOD’s of dinoflagellate cysts.

Palynological interpretation is based on key-references concerning the palynostratigraphy of Paleogene to Neogene from the North Sea region such as: Bujak & Mudge (1994), De Schepper and Head (2009), De Schepper et al. (2015), Dybkjaer & Piasecki (2010), Heilmann-Clausen (1985), Köthe (2003), Kuhlmann et al. (2006), Louwye (2005), Louwye et al. (2010), Munsterman & Brinkhuis (2004), Munsterman et al., 2019, Powell (1992) and Van Simaeys, Munsterman & Brinkhuis (2005). For the Miocene the dinocyst zonation scheme of Munsterman and Brinkhuis (2004), is used, recalibrated to Geological Time Scale (GTS) 2016 of Ogg et al. (2016) in Munsterman et al. (2019). In the the dinocyst zonation of Van Simaeys et al (2005) is followed and for the -late Paleocene (Thanetian) the zonation of Bujak & Mudge (1994) is applied. TNO report | TNO 2020 R11381 8 / 24

Figure 5: Miocene dinozonation sensu Munsterman & Brinkhuis (2004), recalibrated to the GTS sensu Ogg et al. (2016) in Munsterman et al. (2019).

Figure 6: Oligocene zonation scheme sensu Van Simaeys, Munsterman & Brinkhuis (2005). TNO report | TNO 2020 R11381 9 / 24

Figure 7: Eocene zonation of Bujak & Mudge, 1994.

2.7 Composite well log and lithostratigraphy (NLOG August 2020)

Table 4: Lithostratigraphy of well PNA-GT-01 cf. NLOG (18-08-2020) TNO report | TNO 2020 R11381 10 / 24

Figure 8: Composite well log of well PNA-GT-01 (NLOG 18-08-2020); caliper log in red and gamma-ray log in black (last column)

Table 5: Lithostratigraphy of well PNA-GT-04 cf. NLOG (18-08-2020)

Figure 9: Composite well log of well PNA-GT-04 (NLOG 18-08-2020) TNO report | TNO 2020 R11381 11 / 24

Table 6: Old and new lithostratigraphic names used.

Old lithostratigraphic names (Van New lithostratigraphic names Adrichem Boogaert & Kouwe, 1993- (Stratigraphic Nomenclator online, 1997) 24-07-2020 & Munsterman et al., 2019) Diessen Groote Heide Veldhoven Clay Member Wintelre Member Rupel Clay Member Boom Member Basal Dongen Member Oosteind Member Landen Clay Member Liessel Member TNO report | TNO 2020 R11381 12 / 24

3 Palynological results of well PNA-GT-01

The associations are all rich in palynomorphs. The marine dinoflagellate cysts dominate the palynomorph (dinoflagellate cysts, spores and pollen) spectrum. The open-marine genus Spiniferites is present very common. The bisaccate pollen (gymnosperms) are the most abundant category among the sporomorphs. Bisacccate pollen have a high buoyancy in both air and water and can be transported over large distances (and provide a distal signal from the coast). Caving from overlying successions can be common due to the drill technique used (resulting in cuttings samples). Reworking is often present, but in low number. The preservation is fair to good.

Sample/Interval 415-420 m: middle Miocene, mid-Langhian, Zone SNSM6

The dating is based on: • LOD Cousteaudinium aubryae at 415 m • LOD Distatodinium paradoxum at 420 m

Remarks: Chronostratigraphic important species fitting in this interpretation are Apteodinium tectatum, Labyrintodinium truncatum modicum, Labyrintodinium truncatum truncatum, Sumatradinium druggii, and common Systematophora placacantha. Classopollis spp. and Callialasporites dampieri are considered as reworking from the Mesozoic and Wetzeliella symmetrica from the Oligocene.

Sample/Interval 425 m: early Oligocene, , Zone NSO-3

The dating is based on: • LOD Enneadocysta pectiniformis • LOD Gerdiocysta conopeum • LOD Glaphyrocysta cf. semitecta • LOD Phthanoperidinium comatum • LOD Wetzeliella symmetrica

Remarks: Dinoflagellate cysts confirming the age are Chiroperidium galea, Chiropteridium sp., Cordosphaeridium funiculatum, Deflandrea phosphoritica, Hystrichokolpoma cinctum, Hystrichokolpoma pseudooceanicum, and Operculodinium tiara.

Sample/Interval 430 m: early Oligocene, Rupelian, Zone NSO-2

The dating is based on: • LOD Glaphyrocysta semitecta

Remarks: Caving is common in this slide showing beautifully preserved e.g. Amiculosphaera umbracula and Cannosphaeropsis passio. Although using FOD’s of taxa is highly uncertain in case of cuttings samples due to (possible) caving, here we recorded several taxa with a first occurrence in the early Rupelian, Zone NSO-2, such as Areoligera semicirculata, Wetzeliella gochtii and Wetzeliella symmetrica. Minor reworking from the late Thanetian-Ypesian is recorded by the presence of Alisocysta sp. 2 in Heilmann-Causen (1985), Apectodinium spp., and Areoligera gippingensis. TNO report | TNO 2020 R11381 13 / 24

Sample/Interval 435 m: early Eocene, mid , Zone E2b

The dating is based on: • LOD Deflandrea oebisfeldensis • LOD Dracodinium simile • LOD Dracodinium aff. condylos • LOD Dracodinium varielongitudum

Remarks: Glaphyrocysta ordinata fits with the age assessment. A lot of caving is present.

Sample/Interval 440-445 m: early Eocene, early-mid Ypresian

The dating is based on: • LCOD Apectodinium spp. • LOD Dracodinium politum • Superposition

Remarks: Minor reworking is recorded from the (Densosporites), - (Cicatricosisporites and Classopollis) and Paleocene (Alisocysta circumtabulata).

Sample/Interval 450 m: earliest Eocene, earliest Ypresian, Zone P6

The dating is based on: • LOD Apectodinium augustum • Acme Apectodinium spp.

Remarks: The Paleocene–Eocene Thermal Maximum (PETM), alternatively "Eocene Thermal Maximum 1" (ETM1) is reached. This climate event occurred at approximately the Paleocene/Eocene boundary. The exact age and duration of the event is uncertain, but it is estimated to have occurred around 55.5 million years ago. Odontochitina operculata is reworked from the Cretaceous.

Sample/Interval 455-460 m: late Paleocene, Thanetian, Zone P5

The dating is based on: • LOD Alisocysta margarita at 455 m • LCOD Areoligera gippingensis at 455 m

Remarks: This Zone P5 correlates with Zone Ama of Powell (1992) and Zone 4 in Heilmann-Clausen (1985). Reworking is rarely shown: Callialasporites dampieri and Densoisporites indicate a Jurassic-Early Cretaceous origin. TNO report | TNO 2020 R11381 14 / 24

4 Palynological results of well PNA-GT-04

The assemblages are rich in palynomorphs (dinoflagellate cysts, spores and pollen). Dinoflagellate cysts dominate the microflora in all cuttings samples, except at depth 410 m, where the most substantial category comprises bisaccate pollen (gymnosperms). Within the sporomorphs (pollen and spores) the bisaccates are most abundant. The open-marine genus Spiniferites attains the highest values among the dinoflagellate cysts. Downhole contamination (caving from rocks above the sample interval) does occur in the current cutting samples and can be in high concentrations. Also reworking from older strata occasionally plays an important role. The preservation is fair to good, with the exception of the cuttings sample at depth 500 m, which shows a poor preservation.

Sample/Interval 400 m: late , Piazencian, or Early Pleistocene

The dating is based on: • LOD Invertocysta tabulata

Remarks: Amiculosphaera umbracula and Operculodinium eirikianum fit in the age assessment, but taxa both have a LOD in the Early Pleistocene. Remarkable high is the amount of reworking in this cuttings sample. Cerebrocysta, Classopollis, Couperisporites jurassicus and Gonyaulacysta have an origin in the Late Jurassic- Early Cretaceous. Areoligera gippingensis and Apectodinium (10 specimens) can be interpreted around the Paleocene/Eocene boundary. Areoligera, Deflandrea, and Wetzeliella have a LOD in the early and start in Paleocene/Eocene. Distatodinium paradoxum has a range from mid Eocene to mid Miocene. The large concentration of reworking is well-known in the Early Pleistocene and younger successions, but occurs less frequent in the Pliocene. Hence the in-situ occurrence of Invertocysta tabulata could also be doubted here. An alternative (second) interpretation of age may be Early Pleistocene.

Sample/Interval 410 m: early Pliocene, early Zanclean, ca 4.5 Ma, or older

The dating is based on: • LOD Reticulatosphaerea actinocoronata • Presence of Operculodinium tegillatum

Remarks: Reworking is very rare: the presence of Densosporites sp. indicates an origin in the Carboniferous.

Sample/Interval 420 m: late Miocene, mid-late Tortonian, Zone SNSM13

The dating is based on: • LOD Labyrintodinium truncatum • LOD Systematophora placacantha

Remarks: Minor reworking from the Jurassic-Early Cretaceous is shown by the occurrence of the genera Gonyaulacysta and Pareodinia. Two fragments of Cannosphaeropsis passio (small fragments are not counted in the total sum TNO report | TNO 2020 R11381 15 / 24

palynomorphs) are also considered as reworking. The dating is considered as post Mid-Miocene (MMU).

Sample/Interval 430 m: mid(-late Miocene), late Serravallian(-early Tortonian), Zone SNSM11

The dating is based on: • LOD Cannosphaeropsis passio (fairly frequent) • LCOD Systematophora placacantha (fairly frequent)

Remarks: Because both taxa mentioned above are fairly frequent the stratigraphic interpretation is considered as pre-MMU. Reworking however is also noted in substantial amounts: Densosporites and Lycospora (Carboniferous), Kraeuselisporites reissingeri tetrad (), Callialasporites dampieri, Callialasporites trilobatus and Gonyaulacysta sp.(Jurassic-Early Cretaceous) and Wetzeliella symmetrica (Oligocene).

Sample/Interval 440 m: late Oligocene, early Chattian, Zone NSO-6, or older

The dating is based on: • LOD Areoligera semicirculata • LOD Deflandrea heterophlycta • LOD Spiniferella cornuta • LOD Wetzeliella symmetrica

Remarks: Also recorded in the assemblages are Distatodinium paradoxum (LOD mid-Langhian) and Thalassiphora pelagica (LOD early Burdigalian). A few percent reworking refers to the (Late) Jurassic-Early Cretaceous (by the presence of Callialasporites dampieri, Cerebropollenites sp., and Cicatricosisporites spp.).

Sample/Interval 450 m: early Oligocene, Rupelian, Zone NSO-3, or older

The dating is based on: • LOD Enneadocysta pectiniformis • LOD Phthanoperidinium filigranum • LOD Phthanoperidinium comatum • LOD Charlesdowniea spp. • LOD Operculodinium tiara

Remarks: Reworking is very rare. Odontochitina operculata is known from the Cretaceous.

Sample/Interval 460 m: early Oligocene, Rupelian, Zone NSO-2

The dating is based on: • LOD Glaphyrocysta semitecta

Remarks: Taxa with a first occurrence in the early Rupelian, Zone NSO-2, occur like Wetzeliella gochtii and Wetzeliella symmetrica. The association is largely similar to that of the overlying cuttings sample. The (considered) reworking however is mainly TNO report | TNO 2020 R11381 16 / 24

from the Early Eocene, Ypresian (Apectodinium sp., Dracodinium sp. and several Eatonicysta ursulae).

Sample/Interval 470-490 m: early Eocene, early-mid Ypresian, Zone E2b or older

The dating is based on: • LOD Deflandrea oebisfeldensis at 470 m • LOD Alisocysta sp.2 sensu Heilmann-Clausen (1985) at 470 m • LOD (consistent and frequent) Apectodinium spp. at 470 m • LOD Dracodinium varielongitudum at 470 m • LOD Dracodinium condylos at 490 m

Remarks: Also present are Diphyes pseudoficusoides, Dracodinium varielongitudum, Glaphyrocysta exuberans, Hystrichosphaeridium tubiferum, Thalassiphora delicata, and Wetzeliella articulata brevicornuta. Minor reworking is noted: Densosporites (Carboniferous), Callialasporites trilobatus, Classopollis, Pareodinia, and Plicatella (Jurassic-Early Cretaceous).

Sample/Interval 500 m: Not diagnostic

Remarks: The palynological yielding shows a stratigraphic indifferent assemblage of palynomorphs with a undiagnostic age. Again dinoflagellate cysts, in particular the open-marine genus Spiniferites, dominate the association. Bisaccates are very common among the sporomorphs (pollen and spores). The microflora shows less variety, no new occurrences of palynomorphs, a lot of caving from in particular Neogene or younger strata. Reworking from the Jurassic- Early Cretaceous is also present by the occurrences of Cicatricosisporites, Gonyaulacysta and Pareodinia. TNO report | TNO 2020 R11381 17 / 24

5 Discussion and conclusion

The palynostratigraphic results of well PNA-GT-01 and PNA-GT-04 are respectively tabulated below:

Table 7: Overview age-assessments of well PNA-GT-01

Depth (m - MD) Age, Zone 415-420 middle Miocene, mid-Langhian, Zone SNSM6 ca. 420.1 ~~~~~~~ (Savian phase + EMU) 425 early Oligocene, Rupelian, Zone NSO-3 430 early Oligocene, Rupelian, Zone NSO-2 ca. 431 ~~~~~~~ (Pyrenean phase) 435 early Eocene, mid Ypresian, Zone E2b 440-445 early Eocene, early-mid Ypresian 450 earliest Eocene, earliest Ypresian, Zone P6 (PETM) 455-460 late Paleocene, Thanetian, Zone P5

Table 8: Overview age-assessments of well PNA-GT-04

Depth (m - MD) Age, Zone 400 late Pliocene, Piazencian (or Early Pleistocene) 410 early Pliocene, early Zanclean, ca 4.5 Ma, or older ca. 410 ~~~~~~~ (LMU) 420 late Miocene, mid-late Tortonian, Zone SNSM13 ca. 426 ~~~~~~~ (MMU) 430 middle Miocene, late Serravallian Zone, SNSM11 ca. 436 ~~~~~~~ (Savian phase + EMU) 440 late Oligocene, early Chattian, Zone NSO-6, or older ca. 450 ~~~~~~~ 450 early Oligocene, Rupelian, Zone NSO-3 460 early Oligocene, Rupelian, Zone NSO-2 ca. 463 ~~~~~~~ (Pyrenean phase) 470-490 early Eocene, early-mid Ypresian, Zone E2b or older 500 Not Diagnostic

Table 9: Updated and revised lithostratigraphy of well PNA-GT-01

Depth (m) New lithostratigraphy Depth (m) Old lithostratigraphy cf. NLOG, Aug. 2020 (415)-420.1 Groote Heide Fm 390-430 Breda Fm 420.1-431 Rupel Fm 430-465 Rupel Clay Mb 420.1-425 Boom Mb 425-431 Berg Mb 431-445.5 Ieper Clay Mb TNO report | TNO 2020 R11381 18 / 24

445.5-451 Oosteind Mb 451-460 Liessel Mb 460-470 Indiff. Landen Fm 465-470 Landen Clay Mb

Table 10: Updated and revised lithostratigraphy of well PNA-GT-04

Depth (m) New lithostratigraphy Depth (m) Old lithostratigraphy cf. NLOG Aug. 2020 -410 Oosterhout Fm 330-400 Oosterhout Fm 410-426 Diessen Fm 400-450 Breda Fm 426-436 Groote Heide Fm 436-450 Veldhoven Fm 436-443 Wintelre Mb 443-450 Voort Mb 450-463 Rupel Fm, Boom Mb 450-500 Rupel Fm 463-488 Ieper Clay Mb 450-481 Rupel Clay Mb 488-500 Oosteind Mb

Log-based lithostratigraphic interpretation is challenging in the study area. The relatively indistinct lithological and wireline log results from condensed successions, occasionally make lithostratigraphic interpretation difficult, as shown by the studied wells. Biostratigraphic analysis based on ditch cuttings is affected by uncertainty due to the sample resolution and caving from overlying sections. Also, in particular in this area, by the occasional inclusion of reworking from older strata. This addresses the need once more for additional core samples (excluding caving). Nevertheless, the results of palynological interpretation provide interesting stratigraphic insights, pointing towards the need to revise the (18-08-2020) lithostratigraphic NLOG classification substantially and reaching a higher differentiation in lithostratigraphic units. Based on the palynological study of wells PNA-GT-01 and PNA-GT-04, the following conclusions are reached: • The Groote Heide Formation interval (Munsterman et al., 2019) is thinner than previously recorded in this sub-basin. • Instead of being the older part of the Breda Formation in well PNA-GT-04, the interval, 436-450 m, is interpreted as the Veldhoven Formation. This is based on the dating, late Oligocene, early Chattian, Zone NSO-6 at 440 m. The glauconitic sands (greensands), interval 443-450 m, typically belong to the Voort Member. • Another (more important with reference to the current focus of this study) acquired insight is that the Rupel Clay section is thinner than earlier adopted (see tables 9 and 10). • New in both wells is the occurrence of a basal part of the , namely the Ieper Clay Member and Oosteind Member (see tables 8 and 9). Previously, the Dongen Formation was not discriminated, but classified as . • The Berg Sand Member (Vessem Sand cf. Van Adrichem Boogaert & Kouwe, 1993-1997) as part of the Rupel Formation in well PNA-GT-04, interval 481-500 m was misinterpreted on NLOG (18-08-2020). The Oosteind Member is established here. • In well PNA-GT-01 the PETM event is convincingly recorded, including an acme of Apectodinium spp. and several specimens of Apectodinium TNO report | TNO 2020 R11381 19 / 24

augustum. This PETM event is also recorded in the Oosteind Member of several other wells (like e.g. in well Rijsbergen-1 (RSB-01)). • The Liessel Member in well PNA-GT-01 is confirmed by the palynological analysis, but also in a more limited interval, 451-460 m (see Table 9). TNO report | TNO 2020 R11381 20 / 24

6 References

Bujak, J.P. et al., 1980. Dinoflagellate cysts and acritarchs from the Eocene of southern England, Spec Pap. Palaeontol., 24: 100 pp.

Bujak, J.P & Mudge, D., 1994. A high resolution North Sea Eocene dinocyst zonation, J. Geol. Soc. London, 151: 449 – 462.

Dale, B., 1996. Dinoflagellate cyst ecology: modeling and geological applications, In: Jansonius, J. and McGregor, D.C. (eds), Palynology: principles and applications; Am. Ass. Strat. Palynol. Found. (3): 1249 – 1275.

De Schepper, 2006 Plio-Pleistocene dinoflagellate cyst biostratigraphy and palaeoecology of eastern North Atlantic and southern North Sea Basin. Ph.D. University of Cambridge, 2006.

De Schepper, S., Head. M.J., & Louwye, S., 2004. New dinoflagellate cyst and incertae sedis taxa from the Pliocene of northern Belgium, Southern North Sea Basin. J.Paleont., 78 (4): 625-644.

De Schepper, S., Head, M.J., 2008. Age calibration of dinoflagellate cyst and acritarch events in the Pliocene– Pleistocene of the eastern North Atlantic (DSDP Hole 610A). Stratigraphy5 (2), 137–161.

De Schepper, S. & Head, M.J., 2009 Pliocene and Pleistocene dinoflagellate cyst and acritarch zonation of DSDP Hole 610 A, eastern North Atlantic. Palynology, 33 (1): 179-218.

De Schepper, S., Schreck, M., Beck, K.M., Matthiessen, J., Fahl, K., Mangerud, G., 2015. Early Pliocene onset of modern Nordic Seas circulation related to ocean gateway changes. Nat. Commun.6. https://doi .org /10 .1038 /ncomms9659.

De Schepper, S., Beck, K.M., Mangerud, G., 2017. Late Neogene dinoflagellate cyst and acritarch biostratigraphy for Ocean Drilling Program Hole 642B, Norwegian Sea. Rev. Palaeobot. Palynol.236, 12–32. https://doi .org /10 .1016 /j .revpalbo .2016 .08 .005.

Donders, T.H., Weijers, J.W.H., Munsterman, D.K. Kloosterboer-van Hoeve, M.L. Buckles, L. Pancost, R.D. Sinninghe Damsté, J.S., Brinkhuis, H. (2009) Strong climate coupling of terrestrial and marine environments in the Miocene of northwest Europe. Earth and Planetary Science Letters 281 (2009): 215-225 TNO report | TNO 2020 R11381 21 / 24

Dybkjaer, K., Piasecki, S. (2010). Neogene dinocyst zonation for the eastern North Sea Basin, Denmark. Review of Palaeobotany and Palynology 161, 1-29.

Dybkjaer, K., Rasmussen, Śliwińska, K.K., Esbensen, K.H., Matthiessen, A., 2018. A palynofacies study of past fluvio-deltaic and shelf environments, the Oligocene- Miocene succession, North Sea Basin: A reference dataset for similar Cenozoic systems. Marine and Petroleum Geology, 100: 111-147.

Eldrett, J.S., Harding, I.C., Firth, J.V., and Roberts, A.P., 2004. Magnetostratigraphic calibration of Eocene-Oligocene dinoflagellate cyst biostratigraphy from the Norwegian-Greenland Sea. Marine Geology 204: 91- 127.

Fensome, R.A., Williams, G.L., and MacRae, R.A., 2019. The Lentin and Williams Index of fossil dinoflagellate cysts. AASP Contribution Series, 50: 1173 pp.

Head, M.J., 1997. Thermophilic dinoflagellaten assemblages from the mid Pliocene of eastern England. J. Paleontol., 7: 165-193.

Head, M.J. , 1998. Marine environmental change in the Pliocene and early Pleistocene of eastern England: the dinoflagellate evidence reviewed. In: Van Kolfschoten, Th. and Gibbard, P.L., The dawn of the Quaternary. Meded. NITG-TNO, 60: 199-226.

Head, M.J., 1999. The Late Pliocene St. Erth Beds of Cornwall: a review of the palynology and reappraisal of the dinoflagellates. In: Scourse, J. and Furze, M.F.A. (eds.), The Quaternary of West Cornwall. Field guide, Quaternary Res. Ass.: 88-92.

Head, M.J. and Norris, G., 2003. New species of dinoflagellate cysts and other palynomorphs from the latest Miocene and Pliocene of DSDP Hole 603C, western North Atlantic. J. Paleontol., 77: 1-15.

Heilmann-Clausen, C., 1985. Dinoflagellate stratigraphy of the uppermost Danian to Ypresian in the Viborg 1 borehole, central Jylland, Denmark, Danmarks Geolog. Unders., A7: 69 pp.

Janssen, N. en Dammers, G. , 2008. Sample processing for pre-Quaternary palynology. Internal TNO report, May 2008.

Köthe, A., 2003. Dinozysten-Zonierung im Tertiär Norddeutschlands, Revue Paleobiologie, 22(2): 895-923.

Köthe, A., 2007. TNO report | TNO 2020 R11381 22 / 24

Cenozoic biostratigraphy from the German North Sea sector (G-11-1 borehole, dinoflagellate cysts, calcareous nannoplankton). Z.dt.Ges.Geowiss., 158/2:287- 327.

Kuhlmann, G., Langereis, C.G., Munsterman, D.K., Van Leeuwen, R.-J., Verreussel, R., Meulenkamp, J.E. and Wong, Th.E., 2006. Integrated chronostratigraphy of the Pliocene-Pleistocene interval and its relation to the regional stratigraphical stages in the southern North Sea region. Netherlands Journal of Geosciences 85: 19-35.

Kuhlmann, G., Langereis, C.G., Munsterman, D.K., Van Leeuwen, R.-J., Verreussel, R., Meulenkamp, J.E. and Wong, Th.E., 2006. Chronostratigraphy of Late Neogene sediments in the southern North Sea Basin and paleoenvironmental interpretations. Palaeogeography, Paleoclimatology, Palaeoecology 239: 426-455.

Larsson, L.M., Dybkjaer, K., Rasmussen E.S., Piasecki, S., Utescher, T., and Vajda, V. S., 2011. Miocene climate evolution of northern Europe: A palynological investigation from Denmark. Palaeogeography, Paleoclimatology, Palaeoecology 309: 161-175.

Louwye, S., 2002. Dinoflagellate cyst biostratigraphy of the Upper Miocene Deurne Sands (Diest Formation) of northern Belgium, southern North Sea Basin. Geol. J. 37: 55-67.

Louwye, S., Head, M.J., De Schepper, S., 2004. Dinoflagellate cyst stratigraphy and palaeoecology of the Pliocene in northern Belgium, southern North Sea Basin. Geological Magazine 141, 353–378.

Louwye, S., 2005. The Early and Middle Miocene transgression at the southern border of the North Sea Basin (northern Belgium). Geological Journal, 40: 441-456.

Louwye, S. and Laga, P., 2008. Dinoflagellate cyst stratigraphy and palaeoenvironment of the marginal marine Middle and Upper Miocene of the eastern Campine area , northern Belgium ( southern North Sea Basin ). Geological Journal 43, 75–94.

Louwye, S. and De Schepper, S., 2010. The Miocene–Pliocene hiatus in the southern North Sea Basin (northern Belgium) revealed by dinoflagellate cysts. Geological Magazine, 147, 760–776.

Louwye, S., Marquet, R., Bosselaers, M. & Lambert, O., 2010. Stratigraphy of an Early-Middle Miocene sequence near Antwerp in northern Belgium (southern North Sea Basin). Geologica Belgica 13: 269-284.

Munsterman, D.K. & Brinkhuis, H., 2004. A southern North Sea Miocene dinoflagellate cyst zonation. Netherlands Journ. Geosc. 83 (4): 267-285. TNO report | TNO 2020 R11381 23 / 24

Munsterman, D.K., Ten Veen, J.H., Menkovic, A., Deckers, J., Witmans, N., Verhaegen, J., Kerstholt-Boegehold, S.J., Van de Ven, T. and Busschers, F., 2019. An updated and revised stratigraphic framework for the Miocene and earliest Pliocene strata of the Roer Valley Graben and adjacent blocks. Netherlands Journal of Geosciences, Volume 98, e8. Https://doi.org/10.1017/njg.2019.10.

Munsterman, D.K., and Deckers, J., 2020. The Oligocene/Miocene boundary in the ON-Mol-1 and Weelde boreholes along the southern margin of the North Sea Basin, Belgium. Geologica Belgica.

Ogg, J.G., Ogg, G., Gradstein, F.M., 2016. A Concise Geologic Time Scale, pp. 240.

Powell, A.J., 1992. Dinoflagellate cysts of the Tertiary System, In: Powell, A.J., A stratigraphic index of dinoflagellate cysts: 155 – 272.

Prinz, L., Schäfer, A., McCann T., Utescher T., Lokay P., & Asmus, S., 2017. Facies analysis and depositional model of the Serravallian-age Neurath Sand, Lower Rhine Basin (W Germany). Netherlands Journal of Geosciences, Geologie en Mijnbouw, 96 – 3: 211–231.

Quaijtaal, W., Donders, T.H., Persicoc, D., Louwye, S., 2014. Characterising the middle Miocene Mi-events in the Eastern North Atlantic realm: A first high-resolution marine palynological record from the Porcupine Basin, Palaeogeography, Palaeoclimatology, Palaeoecology, 399: 140-159.

Thomsen, E., Abrahamsen, N., Heilmann-Clausen, C., King, C., and Bjørslev Nielsen, O., 2012. Middle Eocene to earliest Oligocene development in the eastern North Sea Basin: Biostratigraphy, magnetostratigraphy and palaeoenvironment of the Kysing-4 borehole, Denmark, Palaeogeography, Palaeoclimatology, Palaeoecology, 350-352: 212-235.

Vandenberghe, N., Brinkhuis, H. and Steurbaut, E., 2003. The Eocene-Oligocene boundary in the North Sea area: a sequence stratigraphic approach. In: Protero, D.D., Ivany, L.C. & Nesbitt, E.A. (red.). From greenhouse to icehouse. The marine Eocene-Oligocene transition. New York (Columbia University Press): 419-437.

Van Simaeys, S., Munsterman, D.K. & Brinkhuis, H. 2005. Oligocene dinoflagellate cyst biostratigraphy of the southern North Sea Basin. Rev. Palaeobot. & Palynol. 134: 105-128. TNO report | TNO 2020 R11381 24 / 24

7 Signature

Name and signature reviewer:

Dr. A.J.P. Houben

Signature: Release:

Drs. D.K. Munsterman Dr. M.J. van der Meulen Lead author Research manager Well Name : PNA-GT-01 TNO-NITG Interval : 410.00m - 470.00m TNO report Utrecht Scale : 1:300 Palynological interpretation Chart date: 21 August 2020 D.K. Munsterman PNA-GT-01

Enclosure 1

Lithostratigraphy Chronostratigraphy

Depth Samples

Gamma Log 0(API) 150 Formation Member Age

410m

415m 415 415 415

Groote Heide Middle Miocene, mid-Langhian, Zone M6

420 420 420m 420.1 420.1 Boom

425 425m 425 Early Oligocene, Rupelian, Zone O3 Rupel Berg

430m Early Oligocene, Rupelian, Zone O2 430

431.0 431.0

435m Early Eocene, mid-Ypresian, Zone E2b 435 Ieper 440 440m 440

Dongen Early Eocene, early-mid Ypresian

445 445m 445 446

450m Oosteind Early Eocene, earliest Ypresian, Zone P6 (PETM) 450

451.0 451.0

455 455m 455 Liessel Late Paleocene, Thanetian, Zone P5

460 460 460m 460 Landen

465m

470m 470.0 Well Name : PNA-GT-01 TNO-NITG Interval : 410.00m - 470.00m TNO report Utrecht Scale : 1:300 Distribution chart Chart date: 20 August 2020 D.K. Munsterman PNA-GT-01

Enclosure 2 Dinoflagellate Cysts MP SP Absolute abundance *2 Absolute abundance cf. simile Achomosphaera spp. Adnatosphaeridium spp. Alisocysta circumtabulata margarita Alisocysta 2 sp. Alisocysta Amiculosphaera umbracula Apectodinium augustum Apectodinium spp. Apteodinium spp. Apteodinium tectatum Areoligera gippingensis Areoligera semicirculata Areoligera spp. Barssidinium evangelinae Barssidinium spp. Cannosphaeropsis passio Cerebrocysta poulsenii spp. Cerebrocysta Cerodinium spp. Charlesdowniea spp. Chiropteridium galea Chiropteridium spp. Cordosphaeridium cantharellum Cordosphaeridium funiculatum Cordosphaeridium minimum Cordosphaeridium spp. Cousteaudinium aubryae Cribroperidinium spp. Deflandrea oebisfeldensis Deflandrea phosphoritica Distatodinium paradoxum Dracodinium aff. condylos Dracodinium aff. politum Dracodinium Bisaccates Cerebropollenites Gleicheniidites spp. Indet sporomorphs Psilatrilete spores Reworking sporomorphs Taxodium spp. Hystrichokolpoma rigaudiae Hystrichokolpoma spp. Hystrichosphaeridium tubiferum Labyrinthodinium truncatum Labyrinthodinium truncatum modicum Lejeunecysta spp. Lingulodinium machaerophorum Melitasphaeridium asterium Melitasphaeridium choanophorum Melitasphaeridium spp. Membranophoridium intermedium Microdinium spp. Oligosphaeridium spp. Operculodinium centrocarpum Operculodinium longispinigerum Operculodinium piaseckii Operculodinium spp. Operculodinium tiara golzowense Palaeocystodinium *1 Paralecaniella spp. Pentadinium spp. Phthanoperidinium comatum Phthanoperidinium spp. Reticulatosphaera actinocoronata Spiniferella cornuta Spiniferites solidago Spiniferites spp. Sumatradinium druggii Systematophora placacantha Thalassiphora inflata Thalassiphora pelagica Tuberculodinium vancampoae Wetzeliella gochtii Wetzeliella spp. Wetzeliella symmetrica Acritarchs Foraminifera Lycopodium spp Scolecodont remains Tasmanaceae Dracodinium varielongitudum Enneadocysta pectiniformis Exochosphaeridium insigne Gerdiocysta conopeum Glaphyrocysta ordinata Glaphyrocysta cf. semitecta Glaphyrocysta semitecta Glaphyrocysta spp. Hafniasphaera septata Homotryblium floripes/plectilum spp. Homotryblium Hystrichokolpoma cinctum Hystrichokolpoma pseudooceanicum 1 57 74 80 46 21 78 47 58 2 48 49 70 3 59 4 5 79 82 71 28 29 30 31 6 60 7 32 61 33 22 62 75 63 1 4 5 6 2 7 3 24 42 76 8 25 9 10 72 11 77 67 73 81 12 13 14 51 43 52 26 27 53 44 54 15 68 16 17 18 19 83 55 20 56 69 45 2 4 5 3 1 64 34 35 36 65 37 50 38 66 39 23 40 41 Depth Samples cf. simile

Gamma Log Achomosphaera spp. Apteodinium tectatum Barssidinium evangelinae Cannosphaeropsis passio Cerebrocysta poulsenii Cordosphaeridium minimum Cousteaudinium aubryae Labyrinthodinium truncatum Lejeunecysta spp. Lingulodinium machaerophorum Melitasphaeridium choanophorum Operculodinium centrocarpum Operculodinium longispinigerum Operculodinium piaseckii Reticulatosphaera actinocoronata Spiniferites solidago Spiniferites spp. Sumatradinium druggii Systematophora placacantha Tuberculodinium vancampoae Amiculosphaera umbracula Distatodinium paradoxum spp. Homotryblium Hystrichokolpoma rigaudiae Labyrinthodinium truncatum modicum *1 Paralecaniella spp. Chiropteridium galea Chiropteridium spp. Cordosphaeridium cantharellum Cordosphaeridium funiculatum Cribroperidinium spp. Deflandrea phosphoritica Enneadocysta pectiniformis Exochosphaeridium insigne Gerdiocysta conopeum Glaphyrocysta cf. semitecta Glaphyrocysta spp. Homotryblium floripes/plectilum Hystrichokolpoma cinctum Hystrichokolpoma pseudooceanicum Hystrichokolpoma spp. Operculodinium tiara Phthanoperidinium comatum Wetzeliella symmetrica 2 sp. Alisocysta Apectodinium spp. Areoligera gippingensis Areoligera semicirculata Glaphyrocysta semitecta Operculodinium spp. golzowense Palaeocystodinium Pentadinium spp. Phthanoperidinium spp. Thalassiphora pelagica Wetzeliella gochtii Adnatosphaeridium spp. Apteodinium spp. Barssidinium spp. Cordosphaeridium spp. Deflandrea oebisfeldensis Dracodinium aff. condylos Dracodinium Hafniasphaera septata Membranophoridium intermedium Spiniferella cornuta Wetzeliella spp. Areoligera spp. Charlesdowniea spp. Melitasphaeridium asterium Microdinium spp. Alisocysta circumtabulata Dracodinium aff. politum Hystrichosphaeridium tubiferum Melitasphaeridium spp. Apectodinium augustum spp. Cerebrocysta margarita Alisocysta Oligosphaeridium spp. Cerodinium spp. Thalassiphora inflata Tasmanaceae Acritarchs Scolecodont remains Foraminifera Lycopodium spp Bisaccates Psilatrilete spores Taxodium spp. Cerebropollenites Gleicheniidites spp. Indet sporomorphs Reworking sporomorphs 0(API) 150 Dracodinium varielongitudum Glaphyrocysta ordinata 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 1 2 3 4 5 1 2 3 4 5 6 7 64 65 410m

415m 415 111C51121144731171411103 1 19 2 1 2R

420m 420 1 1 3 1 3 6 4 2 12 11 146 2 9 2 1C 1 1 4 2 1 3 1R 35 2 1 1R

425m 425 21C1 311 1 71821211C111 4 + 121?1211 + 1 ++112 + 31 71 3

430m 430 1 1C 511 411102C523C+ 11 1 ++112+ 11?2212 + 1 + 1 76 5 1R

435m 435 2C 4 2 1 131 2 1 1 1 3 1 1 1C 3 1 + 1C2111 + 13113 55 2

440m 440 2 128 3 1 1 1 18 + 13122111 11 317121 1R

445m 445 3 100 1 2 1 14 1 1 1 1 1 2 1R 112 2 44 21 3 4R

450m 450 1753 1 1412 24162 38 24 1 2R

455m 455 2745 1 2 31 16 1 2 1 9 2 2 4 3 1 1120 22 3R

460m 460 198 1 319201 2 1 1121 83211 18 12 2 2R

465m

470m Well Name : PNA-GT-04 TNO-NITG Interval : 390m - 510m TNO report Utrecht Scale : 1:300 Palynological interpretation Chart date: 04 September 2020 D.K. Munsterman PNA-GT-04

Enclosure 3

Lithostratigraphy Chronostratigraphy

Depth Samples

Gamma Log 0(API) 150 Formation Member Age

390m

395m

400m Oosterhout or Maassluis Late Pliocene, Piacenzian or Early Pleistocene 400

405m

410m Oosterhout Early Pliocene, early Zanclean, 4.5 Ma or older 410 410.0

415m

420m Diessen Late Miocene, mid-late Tortonian, Zone M13 420

425m

426.0

430m Middle Miocene, late Serravallian, Zone M11 430 Groote Heide

435m

436.0 436.0

440m Late Oligocene, earlt Chattian, Zone O6 440 Wintelre

443.0

445m Veldhoven Voort

450 450m 450 450 Early Oligocene, Rupelian, Zone O3

455m Rupel Boom

460m Early Oligocene, Rupelian, Zone O2 460

463.0 463.0

465m

470m 470 470

475m Ieper

480m Dongen

485m

488 Early Eocene, Ypresian, Zone E2b, or older Zone Eocene, Ypresian, Early

490 490m 490

495m Oosteind

500 500 500m Not Diagnostic 500

505m

510m Well Name : PNA-GT-04 TNO-NITG Interval : 390m - 510m TNO report Utrecht Scale : 1:300 Distribution chart Chart date: 20 August 2020 D.K.Munsterman PNA-GT-04

Enclosure 4 Dinoflagellate Cysts SP MP Absolute abundance Absolute abundance Absolute abundance m filigranum Phthanoperidinium spp. Phthanoperidinium actinocoronata Reticulatosphaera dinocysts Reworking Spiniferella cornuta Spiniferites spp. Systematophora placacantha Tectatodinium pellitum Tectodinium pellitum delicata Thalassiphora pelagica Thalassiphora vancampoae Tuberculodinium Wetzeliella articulata brevicornuta articulata Wetzeliella Wetzeliella gochtii Wetzeliella spp. Wetzeliella symmetrica Bisaccates Indet sporomorphs spp. Lycopodiumsporites spores Psilatrilete sporomorphs Reworking spp. Taxodium Acritarchs Foraminifera spp Lycopodium Pediastrum algae Prasinophyte Tasmanaceae Achomosphaera andalousiensis sp. 2 Alisocysta Alterbia spp. umbracula Amiculosphaera Amiculosphaera / Invertocysta group spp. Apectodinium spp. Apteodinium gippingensis Areoligera semicirculata Areoligera spp. Areoligera spp. Barssidinium passio Cannosphaeropsis spp. Charlesdowniea galea Chiropteridium cantharellum Cordosphaeridium spp. Cordosphaeridium aubryae Cousteaudinium spp. Cribroperidinium Dapsilidinium spp. heterophlycta Deflandrea Deflandrea oebisfeldensis phosphoritica Deflandrea spp. Deflandrea spp. Dinopterygium pseudoficusoides Diphyes paradoxum Distatodinium condylos Dracodinium pachydermum Dracodinium spp. Dracodinium varielongitudum Dracodinium ursulae Eatonicysta Enneadocysta pectiniformis exuberans Glaphyrocysta semitecta Glaphyrocysta spp. Glaphyrocysta spp. Histiocysta Homotryblium pallidum Homotryblium spp. reducta Hystrichokolpoma rigaudiae Hystrichokolpoma spp. Hystrichokolpoma tubiferum Hystrichosphaeridium spp. Impagidinium Invertocysta lacrymosa Invertocysta spp. Invertocysta tabulata truncatum Labyrinthodinium machaerophorum Lingulodinium asterium Melitasphaeridium choanophorum Melitasphaeridium Melitasphaeridium pseudorecurvatum Melitasphaeridium spp. Melitasphaeridium aspinatum Membranophoridium centrocarpum Operculodinium *1 Operculodinium eirikianum piaseckii Operculodinium spp. Operculodinium Operculodinium tegillatum tiara Operculodinium spp. Paralecaniella spp. Pentadinium comatum Phthanoperidinium Phthanoperidiniu 56 16 26 33 10 23 17 80 79 34 57 58 73 48 59 35 1 2 5 3 6 4 1 2 4 5 3 6 11 60 74 1 18 75 61 2 27 36 37 19 38 39 40 76 41 20 28 29 62 42 3 49 63 30 77 64 50 65 51 43 66 52 67 44 53 31 68 54 21 69 4 12 70 5 22 13 71 24 72 32 55 6 7 8 14 25 15 45 9 78 46 47 Depth Samples

Gamma Log 0(API) 150 umbracula Amiculosphaera gippingensis Areoligera spp. Deflandrea spp. Impagidinium Invertocysta tabulata centrocarpum Operculodinium & Dale centrocarpum sensu Wall Operculodinium Operculodinium eirikianum spp. Paralecaniella Spiniferites spp. Achomosphaera andalousiensis Invertocysta lacrymosa machaerophorum Lingulodinium piaseckii Operculodinium Operculodinium tegillatum actinocoronata Reticulatosphaera Tectatodinium pellitum Amiculosphaera / Invertocysta group passio Cannosphaeropsis spp. Cribroperidinium spp. Hystrichokolpoma truncatum Labyrinthodinium Systematophora placacantha choanophorum Melitasphaeridium spp. Operculodinium dinocysts Reworking semicirculata Areoligera Dapsilidinium spp. heterophlycta Deflandrea paradoxum Distatodinium Homotryblium spp. spp. Melitasphaeridium Spiniferella cornuta pelagica Thalassiphora Wetzeliella symmetrica spp. Areoligera spp. Barssidinium spp. Charlesdowniea galea Chiropteridium cantharellum Cordosphaeridium aubryae Cousteaudinium phosphoritica Deflandrea Enneadocysta pectiniformis spp. Histiocysta tiara Operculodinium comatum Phthanoperidinium Phthanoperidinium filigranum Wetzeliella gochtii spp. Dinopterygium spp. Dracodinium ursulae Eatonicysta semitecta Glaphyrocysta Homotryblium pallidum rigaudiae Hystrichokolpoma aspinatum Membranophoridium spp. Phthanoperidinium vancampoae Tuberculodinium Wetzeliella articulata Wetzeliella spp. sp. 2 Alisocysta Apteodinium spp. Deflandrea oebisfeldensis pseudoficusoides Diphyes pachydermum Dracodinium varielongitudum Dracodinium exuberans Glaphyrocysta spp. Glaphyrocysta reducta Hystrichokolpoma tubiferum Hystrichosphaeridium Invertocysta spp. asterium Melitasphaeridium pseudorecurvatum Melitasphaeridium Wetzeliella articulata brevicornuta Alterbia spp. spp. Apectodinium spp. Cordosphaeridium condylos Dracodinium spp. Pentadinium delicata Thalassiphora Tectodinium pellitum Bisaccates Indet sporomorphs Psilatrilete spores spp. Taxodium spp. Lycopodiumsporites sporomorphs Reworking Acritarchs Foraminifera algae Prasinophyte spp Lycopodium Pediastrum Tasmanaceae 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 1 2 3 4 5 6 1 2 3 4 5 6 390m

395m

400m 400 11R 1R 112211107 1R 1R 1R 2R 4R 10R 44 2 15 2 4R 52

405m

410m 410 16 15 39236121 + 1R 126 3 1R 1

415m

420m 420 3 1481 13 122112 3R 29 19 2R 11 11

425m

430m 430 139 10 7231 1R 24 25 1 1 7 1

435m

440m 440 150 2 3 4 2 2 7 9 1 + 3 ++122 + 3 13 7 1 6 11

445m

450m 450 61 21 21 15 1R 3 11 12211C1111C1321111 21 7 1

455m

460m 460 73 2 6 3 14 31 1 22 121122 2 5111322221125 1R 21 4

465m

470m 470 168 2 3 2 4 5 1R 2 2 2 11 2 11615112211122211 34 19 1R 1

475m

480m

485m

490m 490 2 139 13 41 1 1 1 2 11 1 2 1 1?81112 13 17 3R

495m

500m 500 112 3 11 2 3 14 2R 11 11 1 245 15 1 4R 1

505m

510m