On-Board Electrical, Electronics and Pose Estimation System for Hyperloop Pod Design

Total Page:16

File Type:pdf, Size:1020Kb

On-Board Electrical, Electronics and Pose Estimation System for Hyperloop Pod Design On-board Electrical, Electronics and Pose Estimation System for Hyperloop Pod Design Nihal Singh*, Jay Karhade*, Ishika Bhattacharya*, Prathamesh Saraf*, Plava Kattamuri*, Alivelu Manga Parimi Birla Institute of Technology and Science, Pilani Email: [email protected], [email protected], [email protected], [email protected], [email protected], [email protected] *All authors have equal contribution Abstract—Hyperloop is a high-speed ground-based transporta- Master Computer serves as the connection between the remote tion system utilizing sealed tubes, with the aim of ultimately laptop and embedded micro-controllers. A dedicated Flight transporting passengers between metropolitan cities in efficiently Controller whose sole responsibility performs state estimation, designed autonomous capsules. In recent years, the design and development of sub-scale prototypes for these Hyperloop pods has and Front and Rear Analog modules read non-critical sensor set the foundation for realizing more practical and scalable pod data for monitoring. In addition, there is a fiducial detector architectures. This paper proposes a practical, power and space module and a module for braking. The rLoop design [6], too, optimized on-board electronics architecture, coupled with an uses a combination of retro-reflective photo-detection sensors end-to-end computationally efficient pose estimation algorithm. and inertial measurement units for navigation. Considering the high energy density and discharge rate of on- board batteries, this work additionally presents a robust system The heart of the system, encapsulated by the power node, for fault detection, protection and management of batteries, along focuses on power conditioning, battery monitoring, and overall with the design of the surrounding electrical system. Performance system safety. Prolonged operation of the pod at maximum evaluation and verification of proposed algorithms and circuits capacity, can, however, result in increased temperatures in the has been carried out by software simulations using both Python cells, which eventually may lead to a phenomenon known as and Simulink. Index Terms—Hyperloop, distributed architecture, battery electrical arcing. management system, pose estimation, fault detection To prevent arcing, the rLoop team [6] designed a vessel of carbon dioxide to store the battery pack, whereas the Georgia Tech pod [7] built a water cooling based system for batteries I. INTRODUCTION and other electronics. Other teams like the one from UC Santa The Hyperloop is a novel mode of high speed passenger Barbara [8] programmed their system for partial or complete and freight transportation, based on an open-source vactrain shut down and execution of emergency protocols in the case design released by a joint team from Tesla and SpaceX. It of detected malfunctions. is a form of low friction ground transport aiming for speeds Another important part of the hyperloop pod is the pose over 700mph with the help of partially evacuated low-pressure estimation in real-time. Generally, the parameters that are tubes. Work on air-pressure driven transportation dates back measured during pose estimation are acceleration, velocity to the early 1800s with the introducton of the concept of an and position and attitude. Pose estimation tracking is done for “atmospheric railway” [1] and coinage of the term Vactrains a variety of reasons ranging from safety to motion-planning [2]. Interest in the concept was renewed with Elon Musk’s and even vehicle control. A range of sensors are used for original white paper on Hyperloop Alpha [3]. The emphasis obtaining the pod’s pose, however, each of them suffer from on the need for more efficient transport systems is increasing their own drawbacks which has been discussed in the pose- in recent times, and there has been considerable evolution in estimation section further. This is facilitated by a robust set arXiv:2012.09412v1 [eess.SY] 17 Dec 2020 the various technical aspects of the pod. of position estimation algorithms. Effective pose estimation is The nervous system of any general pod design is comprised constituted by a low latency system with high resolution and of its software and embedded systems. The expectations and accuracy of the estimates. Nikolaev [4], in his work on the challenges of this combined subsystem have been well-detailed Waterloo pod’s software system, proposes a minimal Kalman in the paper on the Goose-3 pod [4]. Using a divide-and- filter that simply fuses the data from 3 Inertial Measurement conquer approach, the tasks were divided between (1) the Units (IMUs). Drift and possible existing correlation between embedded system, responsible for collecting data from on- the sensors due to sensing the same physical quantity of a board sensors and executing control panel commands, and moving body are some of the limitations of this method. (2) the communication system, responsible for transmission The MIT Hyperloop Report [5], has proposed an Extended of data between the remote control panel and the embedded Kalman Filter(EKF) that takes into account ground truths by system. Key features include the presence of a CAN-BUS and reading the fiducial markers throughout the tube length which a Master-Slave Design with master and hub units. In the MIT not only serves as a comparison stage to the IMUs, but can design [5], the system is split into seven important blocks. The act as a recalibration step at constant intervals thus reducing Fig. 1. On-board System Architecture Model the bias and drift from true estimates even further. While hardware. Often, in the interest of better performance, due this serves as a basic Kalman filtering update, it is required consideration is not given to monitoring the health of the to analyze the velocity, acceleration and position models on-board power systems. 2) In the Electrical System Design, and introduce an element of independent sensing for each safety has been strongly emphasized on, with focus on arcing parameter. Alternate systems taken by other teams like UCI [9] mitigation and fault-detection. This falls under the purview include the ellipse-N commercial model which is an out-of- of the software subsystem, as does pose estimation. 3) For the-box model for pose estimation. The ellipse-N series uses pose estimation, the proposed design focuses on developing Global Positioning System(GPS)/Global Navigation Satellite a robust positioning technique that can utilize on-board and System(GNSS) coupled with IMU sensing which while offers internal tube structure resources with minimal assumptions extremely accurate measurements and integrate some of the and external installations to provide accurate estimates. It most accurate positioning algorithms may suffer inside the makes use of a simple, but diverse, range of sensors namely: tube due to satellite position attenuation and failure [10]. A IMUs, Tachometers, Absolute Optical Encoders and Fiducial recent patent [11] assumes passive elements throughout the markers and simulated acceleration data following a pre- tube length which would yield accurate and precise estimates, planned trajectory. It has been assumed for simplification but it is not immediately clear as to what the economic costs of the algorithm, that the motion is along a linear axis. A would entail. The focus hence should be to develop a robust Kalman filter is used for fusing estimates and the updation positioning technique that can utilize onboard and internal tube follows a hierarchical fashion updating the estimates in the structure resources with minimal assumptions and external order: Acceleration, Velocity followed by position. Attitude installations to provide accurate estimates. estimation is done in an independent loop and involves only IMUs. Each of these subsystems has been further elaborated This paper introduces a custom on-board hardware ar- on in the following sections. chitecture for end-to-end interfacing and internal control of electrical and electronics components. The work presented II. ELECTRONICS SYSTEM DESIGN in this paper further proposes 1) detailed position, velocity and acceleration estimation algorithms specific to Hyperloop Sensing and monitoring of the pod’s environment and pod systems, along with and an efficient electrical system. internal functionalities is critical for a hyperloop pod. The Additionally on Electronics System Design, the board-level data gathered by various sensors is processed to determine the architecture proposed leverages salient features of the afore- core parameters for all on-board control and actuation. The mentioned embedded system designs while prioritizing dis- presented system architecture model builds on the work of tributed sensing and control along with the efficient use of other cited literature to propose a distributed noise-immune design with minimal hardware overhead. Each subsequent section details the various components used in engineering this system as shown in Fig 1, along with descriptions of their hardware layout and functionalities. A. CAN Bus The electronics system design is based on a Controller Area Network (CAN)-BUS shown in Fig 1, popularly used in automobiles to simplify connections between different elec- tronic control units. This reduces the chances of single point failures by making the system more noise-robust. Real-time, reliability and flexibility make it an indispensable network communication technology applied in the automobile network communication field [12]. It makes communication
Recommended publications
  • Innovative Technologies for Light Rail and Tram: a European Reference Resource
    Innovative Technologies for Light Rail and Tram: A European reference resource Briefing Paper 8 Additional Fuels - Aeromovel System September 2015 Sustainable transport for North-West Europe’s periphery Sintropher is a five-year €23m transnational cooperation project with the aim of enhancing local and regional transport provision to, from and withing five peripheral regions in North-West Europe. INTERREG IVB INTERREG IVB North-West Europe is a financial instrument of the European Union’s Cohesion Policy. It funds projects which support transnational cooperation. Innovative technologies for light rail and tram Working in association with the POLIS European transport network, who are kindly hosting these briefing papers on their website. Report produced by University College London Lead Partner of Sintropher project Authors: Charles King, Giacomo Vecia, Imogen Thompson, Bartlett School of Planning, University College London. The paper reflects the views of the authors and should not be taken to be the formal view of UCL or Sintropher project. 4 Innovative technologies for light rail and tram Table of Contents Background .................................................................................................................................................. 6 Innovative technologies for light rail and tram – developing opportunities ................................................... 6 Aeromovel – Atmospheric Railway ............................................................................................................... 7
    [Show full text]
  • The Crystal Palace
    The Crystal Palace The Crystal Palace was a cast-iron and plate-glass structure originally The Crystal Palace built in Hyde Park, London, to house the Great Exhibition of 1851. More than 14,000 exhibitors from around the world gathered in its 990,000-square-foot (92,000 m2) exhibition space to display examples of technology developed in the Industrial Revolution. Designed by Joseph Paxton, the Great Exhibition building was 1,851 feet (564 m) long, with an interior height of 128 feet (39 m).[1] The invention of the cast plate glass method in 1848 made possible the production of large sheets of cheap but strong glass, and its use in the Crystal Palace created a structure with the greatest area of glass ever seen in a building and astonished visitors with its clear walls and ceilings that did not require interior lights. It has been suggested that the name of the building resulted from a The Crystal Palace at Sydenham (1854) piece penned by the playwright Douglas Jerrold, who in July 1850 General information wrote in the satirical magazine Punch about the forthcoming Great Status Destroyed Exhibition, referring to a "palace of very crystal".[2] Type Exhibition palace After the exhibition, it was decided to relocate the Palace to an area of Architectural style Victorian South London known as Penge Common. It was rebuilt at the top of Town or city London Penge Peak next to Sydenham Hill, an affluent suburb of large villas. It stood there from 1854 until its destruction by fire in 1936. The nearby Country United Kingdom residential area was renamed Crystal Palace after the famous landmark Coordinates 51.4226°N 0.0756°W including the park that surrounds the site, home of the Crystal Palace Destroyed 30 November 1936 National Sports Centre, which had previously been a football stadium Cost £2 million that hosted the FA Cup Final between 1895 and 1914.
    [Show full text]
  • Crumbling Cliffs and Crashing Waves a Self Guided Walk Along the South Devon Railway
    Crumbling cliffs and crashing waves A self guided walk along the South Devon Railway See one of Britain’s most spectacular railways Find out how and why it was built between cliffs and the sea Explore the coastal processes and manmade features that shape the line Discover how dramatic forces of nature affect the trains .discoveringbritain www .org ies of our land the stor scapes throug discovered h walks 2 Contents Introduction 4 Route overview 5 Practical information 6 Detailed route maps 8 Commentary 12 Credits 34 © The Royal Geographical Society (with the Institute of British Geographers), London, 2015 Discovering Britain is a project of the Royal Geographical Society (with IBG) The digital and print maps used for Discovering Britain are licensed to the RGS-IBG from Ordnance Survey 3 Crumbling cliffs and crashing waves Keeping the trains on track in South Devon Seeing is believing! Travelling by train along the South Devon coast between Exeter and Newton Abbot is one of the most spectacular rides on the British railway system. Ever since the line was built in the 1840s it has been closed many times by cliff collapses and sea wall breaches. Today the trains are still affected by gale force winds and flooded tracks, including the devasting storms of Waves over the line - a train caught in a storm at Dawlish February 2014. © Anthony T Steel The line is expensive to maintain but kept open because it is a vital communication link for the people and economy of the southwest. This walk follows the railway between Teignmouth and Dawlish Warren as it passes along the side of estuaries and bays and through dramatic coastal tunnels.
    [Show full text]
  • Riviera Line Manual
    The Riviera Line © Copyright RailSimulator.com 2012, all rights reserved Release Version 1.0 Train Simulator – The Riviera Line 1 ROUTE INFORMATION .............................................................................3 1.1 History................................................................................................... 3 1.2 Exeter St. Davids Station.......................................................................... 4 1.3 Paignton Station...................................................................................... 5 2 ROLLING STOCK......................................................................................6 2.1 Class 143 Diesel Multiple Unit ................................................................... 6 2.2 Design & Specification.............................................................................. 6 2.3 Class 143 DMSL FGW ............................................................................... 7 2.4 Class 143 DMS FGW................................................................................. 7 3 DRIVING THE CLASS 143.........................................................................8 3.1 Cab Controls........................................................................................... 8 4 SCENARIOS.............................................................................................9 4.1 [143] 1. First Look................................................................................... 9 4.2 [143] 2. Preparations..............................................................................
    [Show full text]
  • List of GWR Books Held at STEAM - Museum of the GWR, Swindon
    List of GWR Books held at STEAM - Museum of the GWR, Swindon Title Author Publication Date Heavyweight Champion - Story of GWR No 2807 2807 Support Group 1997 Great Western Steam in the West Country 4588 Great Western Steam Miscellany 2 5079 Lysander Great Western Steam Miscellany 3 5079 Lysander Great Western Steam Miscellany 3 5079 Lysander Great Western Steam Miscellany 2 5079 Lysander Through the links at Southall and Old Oak Common Abear A E Through the lInks at Southall and Old Oak Common Abear A E Through the links at Southall and Old Oak Common Abear A E All Change at Reading Adam Sowan 2013 Isambard Kingdom Brunel Adams John and Elkin Paul 1988 Locomotive & Train Working in the latter part of the 19th Century Ahrons E L 1953 The G.W.R. in West Cornwall Alan Bennett 1995 Great Western Railway in East Cornwall Alan Bennett 1990 Great Western Railway in Western Cornwall Alan Bennett 1992 Great Western Railway Holiday Lines in Devon & West Somerset Alan Bennett 1993 Speed to the West - Great Western Publicity & posters 1923-1947 Aldo Delicta & Beverrley Cole 2000 Seldom Met with even on Mineral Lines - Caradon Raiilway permanent Way Alec Kendall Alec Kendall (with Iain Rowe & Lost Years of Liskeard & Caradon Railway Dave Ambler) 2013 Alec Kendall (with Iain Rowe, P Murnaghan, B Oldham & Liskeard and Caradon Railway -Moorswater to Trewint Dave Ambler) 2017 Alexandra Docks and Railway Newport Docks Company 1919 ABC of BR Locomotives - Western Region Allan Ian 1957 ABC of GWR Locomotives 1947 Allan Ian 1946 ABC of GWR Locomotives Allan
    [Show full text]
  • Vintage Spirit Article October 2020
    AN ATMOSPHERIC STAR MAIN PHOTO: A Great Western Railway Class 150 Sprinter slows to AN ATMOSPHERIC STAR a stop at Starcross Station on the west side of the River Exe estuary. ack in mid-March, I had a The car park for the village is to the Royal Marines Commandoes training A village on the west business appointment south north of the railway station, and the path base half way along. of Exeter but arriving a bit too to the station runs alongside the railway, As it nears the station, the path side of the Exe estuary early, I decided to follow the the railway fence being punctuated in a drops down to road level, and so access Broad towards Dawlish for a few miles to couple of places by cast iron gate posts to the station is up a flight of steps. in Devon is home to kill time. After a few minutes, I came made by Bayliss of Wolverhampton, and The station itself is nothing to really a unique relic of a to Starcross, a village of around 1,800 certainly of a Victorian age. The fence is write home about, though it is served people on the west bank of the river tensioned by old pieces of broad gauge by Class 150 Sprinter stopping trains, railway idea that Exe Estuary. bridge rail. while the expresses, mainly the ‘new’ Between the village houses and the Before reaching the station, on the electric or diesel Intercity Express Trains didn’t really work out. estuary are the main road to Dawlish opposite side of the road is a pub named introduced in late 2017 speed through, Brian Gooding went and the railway from Exeter to the West ‘The Atmospheric Railway’, a very apt an impressive sight.
    [Show full text]
  • Mauritius Lrt
    THE INTERNATIONAL LIGHT RAIL MAGAZINE www.lrta.org www.tautonline.com MARCH 2020 NO. 987 RECLAIMING THE RAILS: MAURITIUS LRT How to revive a failed railway with 21st Century technology West Midlands plans 240km Metro Alstom and Bombardier to merge? Stadler to build Tyne and Wear fleet Bucharest Blackpool £4.60 Rebuilding in The world’s greatest Romania’s capital heritage operation? European Light Rail Congress TWO days of interactive debates... EIGHT hours of dedicated networking... ONE place to be Ibercaja Patio de la Infanta Zaragoza, Spain 10-11 June The European Light Rail Congress brings together leading opinion-formers and decision-makers from across Europe for two days of debate around the role of technology in the development of sustainable urban travel. With presentations and exhibitions from some of the industry’s most innovative suppliers and service providers, this congress also includes technical visits and over eight hours of networking sessions. 2020 For 2020, we are delighted to be holding the event in the beautiful city of Zaragoza in partnership with Tranvía Zaragoza, Mobility City and the Fundación Ibercaja. Our local partners at Tranvía Zaragoza have arranged a depot tour as part of day one’s activities at the European Light Rail Congress. At the event, attendees will discover the role and future of light rail within a truly intermodal framework. To submit an abstract or to participate, please contact Geoff Butler on +44 (0)1733 367610 or [email protected] +44 (0)1733 367600 @ [email protected] www.mainspring.co.uk MEDIA PARTNER EU Light Rail Driving innovation CONTENTS 84 T he official journal of the Light Rail Transit Association MARCH 2020 Vol.
    [Show full text]
  • Shanghai Maglev Train General Overview and Comparative Usage of Shanghai Maglev…………
    UC Santa Barbara Recent Work Title Consumer Desirability of the Proposed Hyperloop Permalink https://escholarship.org/uc/item/3w5414sm Authors Jia, Perry Zichen Razi, Kiana Wu, Nathan et al. Publication Date 2019-07-10 eScholarship.org Powered by the California Digital Library University of California Consumer Desirability of the Proposed Hyperloop Kiana Razi; Nathan Wu; Casby Wang; Marty Chen; Huizhong(Steven) Xue; Nick Lui; Perry Jia August 2018 1 Table of Contents Title page………………………………………………………………………………………… 1 Table of Contents………………………………………………………………………………. 2 - 4 ​ Introduction of the Hyperloop………………………………………………………………... 5 ​ Timeline………………………………………………………………………………………….. 6 - 8 Preface to the question……………………………………………………………………….. 9 ​ Introducing the question and the reasoning behind why the question should be tackled……………………………………………………... 10 ​ Flowchart for Determining the Economic Feasibility of the Hyperloop……………….. 11 Methodology…………………………………………………………………………………….. 12 ​ Clarifying the Case Study Parameters Question……………………………………………………………………………………… 13 ​ Breakdown of the question………………………………………………………………….. 13 - 14 ​ KPI Clarification: Price……………………………………………………………………………………… 14 ​ Travel Time………………………………………………………………………………. 14 - 15 ​ Safety…………………………………………………………………………………….. 15 ​ Comfort…………………………………………………………………………………... 15 ​ Not Using Environmental Impact……………………………………………………….. 16 ​ ​ Setting up the theoretical Hyperloop Price of the Hyperloop………………………………………………………………………. 17 ​ Travel Time of the Hyperloop……………………………………………………………….. 17 - 18
    [Show full text]
  • Methodology to Assess Coastal Infrastructure Resilience to Climate Change
    7 E3S Web of Conferences, 02004 (2016) DOI: 10.1051/ e3sconf/20160702004 FLOOD risk 2016 - 3rd European Conference on Flood Risk Management Methodology to assess coastal infrastructure resilience to climate change Marta Roca1,a, Dominic Hames1, Ben Gouldby1, Eleni S. Zve1, Olwen Rowlands2, Peter Barter2 and Jo Grew3 1HR Wallingford, Howbery Business Park. Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BA, United Kingdom 2CH2M Hill, Burderop Park, Swindon, SN4 0QD, United Kingdom 3Network Rail, Western House, 1 Holbrook Way, Swindon, Wiltshire, SN1 1BD, United Kingdom Abstract. The section of railway which runs along the coastline of south Devon in United Kingdom, from Exeter to Newton Abbot, is one of the most photographed sections of railway in the world. It was opened in 1846 with embankments and seawalls protecting and supporting the railway, providing the route of an atmospheric railway. Despite regular maintenance however, there has been a history of storm damage, one of the most severe occurring in February 2014. This resulted in the collapse of the line, interruption of all rail traffic into and out of the far South- West of the United Kingdom (affecting parts of Devon and the whole of Cornwall) and significant damage to the regionR economy. In order to improve the resilience of the line, several options have been considered to evaluate and reduce climate change impacts to the railway. This paper describes the methodological approach developed to evaluate the risks of flooding for a range of scenarios in the estuary and open coast reaches of the line. Components to derive the present day and future climate change coastal conditions including some possible adaptation measures are also presented together with the results of the hindcasting analysis to assess the performance of the modelling system.
    [Show full text]
  • Analysis of Fire Hazards Associated with the Vactrain Design
    Analysis of Fire Hazards Associated with the VacTrain Design An Interactive Qualifying Project Report submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for the Degree of Bachelor of Science On this day of …………………………….. by Andrew P. Lazaro Electrical and Computer Engineering ‘11 Buddhi M. Paranamana Mechanical Engineering ‘11 Anil Saddat Chemical Engineering ‘11 Approved: ………….…………………… ……….……………………….…….. …………………………........... Pavlov, Oleg V. Meacham, Brian Jay Rangwala, Ali S Abstract A vacuum train (VacTrain) refers to the concept of a high speed transportation system which consists of a magnetically levitated train (Maglev) that travels in an evacuated tunnel. Several studies have been conducted on the existent magnetic levitation train and its fire safety aspects. However, no research exists for the fire hazards in the vacuum train itself. This project analyzes the fire safety characteristics of systems closely related to the VacTrain and its environment in order to predict its fire hazards. Based on these findings, the most efficient suppression systems and evacuation techniques were proposed. 2 Acknowledgements This dissertation could not have been possible without the guidance and support of Professor Rangwala, Professor Meacham and Professor Pavlov. Not only did they serve as our IQP advisors but they also challenged and encouraged us through this entire project. We would like to sincerely thank you for your insightful critiques and patience during the whole process. We would
    [Show full text]
  • Hyperloop - Wikipedia 7/3/20, 1042 AM
    Hyperloop - Wikipedia 7/3/20, 10)42 AM Hyperloop A Hyperloop is a proposed mode of passenger and freight transportation, first used to describe an open-source vactrain design released by a joint team from Tesla and SpaceX.[1] Hyperloop is a sealed tube or system of tubes with low air pressure through which a pod may travel substantially free of air resistance or friction.[2] The Hyperloop could convey people or objects at airline or hypersonic speeds while being very energy efficient.[2] This would drastically reduce travel times versus trains as well [2] as planes over distances of under approximately 1,500 Concept art of Hyperloop inner workings kilometres (930 miles).[3] Elon Musk first publicly mentioned the Hyperloop in 2012.[4] His initial concept incorporated reduced-pressure tubes in which pressurized capsules ride on air bearings driven by linear induction motors and axial compressors.[5] The Hyperloop Alpha concept was first published in August 2013, proposing and examining a route running from the Los Angeles region to the San Francisco Bay Area, roughly following the Interstate 5 corridor. The Hyperloop Genesis paper conceived of a hyperloop system that would propel passengers along the 350-mile (560 km) route at a speed of 760 mph (1,200 km/h), allowing for a travel time of 35 minutes, which is considerably faster than current rail or air travel times. Preliminary cost estimates for this LA–SF suggested route were included in the white paper—US$6 billion for a passenger-only version, and US$7.5 billion for a somewhat larger-diameter version transporting passengers and vehicles.[1] (Transportation analysts had doubts that the system could be constructed on that budget.
    [Show full text]
  • Parsons Tunnel to Teignmouth Heritage Assessment
    CULTURAL HERITAGE DESK-BASED ASSESSMENT South West Rail Resilience Programme Parsons Tunnel to Teignmouth SEPTEMBER 2018 CONTACTS Project Manager Arcadis. Level 1 2 Glass Wharf Temple Quay Bristol BS2 0FR CEM Arcadis. Level 1 2 Glass Wharf Temple Quay Bristol BS2 0FR Design Manager Arcadis. Level 1 2 Glass Wharf Temple Quay Bristol BS2 0FR Arcadis (UK) Limited is a private limited company registered in England registration number: 1093549. Registered office, Arcadis House, 34 York Way, London, N1 9AB. Part of the Arcadis Group of Companies along with other entities in the UK. Regulated by RICS. Copyright © 2015 Arcadis. All rights reserved. arcadis.com Cultural Heritage Desk-Based Assessment Parsons Tunnel to Teignmouth Authors Checkers Approver Report No 142630-ARC-REP-EEN-000003 Date SEPTEMBER 2018 1 VERSION CONTROL Version Date Author Changes 1.0 DRAFT 24/07/18 Policy references 2.0 ISSUE 25/09/18 updated. This report dated 25 September 2018 has been prepared for Network Rail (the “Client”) in accordance with the terms and conditions of appointment dated 26 April 2018(the “Appointment”) between the Client and Arcadis (UK) Limited (“Arcadis”) for the purposes specified in the Appointment. For avoidance of doubt, no other person(s) may use or rely upon this report or its contents, and Arcadis accepts no responsibility for any such use or reliance thereon by any other third party. Page 3 of 90 CONTENTS 1 INTRODUCTION ....................................................................................................... 7 2 SITE LOCATION, GEOLOGY, TOPOGRAPHY AND LAND USE ............................ 7 2.1.1 Site location ........................................................................................................................................ 7 2.1.2 Geology ............................................................................................................................................... 7 2.1.3 Topography and land use ..................................................................................................................
    [Show full text]