Universe to Human Brain Keiji Tanaka Et Al. L~ of RIKEN Frontier Research System Have Studied Visual Feature Recognition In

Total Page:16

File Type:pdf, Size:1020Kb

Universe to Human Brain Keiji Tanaka Et Al. L~ of RIKEN Frontier Research System Have Studied Visual Feature Recognition In No. 1] Proc. Japan Acad., 71, Ser. B (1995) 1 From Universe to Human Brain By Minoru ODA, M. J. A. (Communicated Jan. 12, 1995) Abstract : A possible non-invasive method of microscopic imaging of X-ray sources included in the brain is described. The principle is basically similar to the Fourier-Transform-Telescope developed for imaging celestial X-ray sources. Key words : Brain; microscopic imaging; X-ray sources. Keiji Tanaka et al. l~of RIKEN Frontier Research discovery of its optical counterpart. System have studied visual feature recognition in the The device usually consists of two grids, sepa- monkey's brain with an embedded probe in the cortex. rated by a certain length. An X-ray detector placed It was concluded that the minimum spatial dimension behind the two-layered grids measures the integrated of the brain activity, the column, is approximately 0.1 X-ray flux which represents a spatial Fourier compo- mm. nent of the source structure transformed with the What about for human brain? Of course we can not spatial wave-length determined by the pitch of the embed a probe. But with some non-invasive method it grid. was learnt that with the activity of the brain the blood In the late 1970s the modulation collimators were flow and/or de-oxidization of hemoglobin concentrate flown aboard the balloon at high attitudes and were at certain regions. As for the non-invasive probing into used to produce the X-ray image of the Crab Nebula the human brain, techniques of multiple scattering of from spatial Fourier components at various position light, PET, MRI and the measurement of very weak angles of the Nebula. Also, rotating modulation magnetic field with SQUID have been developed, and collimators had been utilized aboard X-ray astronomy the concentration of the blood flow has been identified satellites, "Hakucho" (launched on 1979) and "Tenma" to a scale of several mm.2~ (launched on 1983), and Solar X-ray astronomy satel- If the spatial resolution of the non-invasive prob- lite "Hinotori" (launched on 1980). (Fig. 3.) The ing is improved, a breakthrough in bridging between rotating modulation collimator produces Fourier com- high level activity of the brain or, say, the mind and ponents for a number of spatial wave numbers and the physical observation may be achieved. In the position angles by which an X-ray image of the sources following, a proposed instrument, which may be called may be reconstructed. "Fourier -Transform-Microscope" (FTM) is described . The Fourier-Transform-Telescope (FTT) was It is a complex structure of multiple modulation realized as a Hard X-ray Telescope (HXT) on board collimators to construct an image of the X-ray source the Solar X-ray satellite "Yohkoh" (launched on 1991), produced in the brain. total sensitive area of the X-ray detector being One often sees the Moire's fringe pattern through approximately 70 square cm. The HXT consists of 64 overlapped lace curtains, grid plates, mesh screens elements of the modulation collimator of different etc. The modulation collimator3~ was conceived as a spatial wave numbers and position angles which device to determine the location, the size and the produce 64 Fourier components on the Fourier u-v shape of celestial X-ray sources from how the sources plane. (Fig. 4.) With the HXT, being aided by the are seen alternatively through the Moire's fringe Maximum Entropy Method (MEM), the X-ray images projected on the sky. (Fig. 1, Fig. 2.) In early period of of typical Solar flares have been produced with 0.5 sec X-ray astronomy, with this device the X-ray source of time resolution and approximately 5 aresecond of was found to be as localized as a "star" and the precise spatial resolution for four energy bands of X-rays. location of bright sources, e.g. SCO X-1 led to the (Fig. 5.) 2 M. ODA [Vol. 71(B), Fig. 1. Principle of the modulation collimator. Layers of the grid produce the Moire fringe pattern. Transmission with respect to the angle is illustrated. Fig. 3. The illustration indicates the principle of rotat- ing modulation collimator. The concept of the FTT may be transferred to the Fourier-Transform-Microscope (FTM) to produce the microscopic image of X-ray or soft gamma ray sources. Modification of the structure of the modulation collima- tor may be necessary. (Fig. 6.) Unlike the case of FTT producing 2-dimensional X-ray images of astronomical objects at essentially infinite distances, for FTM the sources are of 3-dimensional at near distances. The difference may cause some difficulties. Prof. Kazuo Makishima of the University of Tokyo and his colleagues are undertaking laboratory simulations utilizing an optical systems to investigate the situa- tion. In order to achieve the spatial resolution higher than 100 µm or 10 µm, the advanced manufacturing techniques of the fine grids, like lithography, has to be accommodated and also the techniques of the align- ment of the grids has to be devised. A variety of possible methods of producing the X-ray or soft gamma-ray sources in the brain is represented in Table I and Fig. 7. First, as is utilized for the diagnosis of the heart, radioisotopes like 2o1T1, 123J , 133Xemay be introduced into the blood vein. They Fig. 2. Qualitative illustration of the principle of the radiate X-rays of energy of several tens to over 100 Fourier-Transform-Telescope (FTT) with multi-pitch 2- KeV which may be observed from outside with layer modulation collimator. essentially negligible magnitude of scattering through No. 1] From Universe to Human Brain 3 Fig. 4a (left). A design of multi-pitch and multi-position-angle grids. Fig. 4b (right). Fourier components obtained with the multiple modulation collimators (Fig. 4a) on the u-v plane. the body. oxygen atoms. The muonic atoms then generate hard Secondly a muon beam facility which is under KX-rays. The muonic oxygen atoms generate charac- construction at Rutherford-Appleton-Laboratory in teristic 133 Kev KX-rays. England under the collaboration between the Labora- The third possibility is to utilize X-rays to produce tory and RIKEN being led by Prof. K. Nagamine may fine shadows of blood veins, which contain Iodine, at be utilized. The region in the brain to be observed is just above and below the KX-ray-edge of Iodine: The irradiated with low energy minus-muons which replace difference of the shadows enhance the fine image of the the atomic electons of oxygen atoms producing muonic vein. As the X-ray emitting source, "SPring-8" i.e. a Fig. 5. An example of the X-ray imago of solars flares obtained with FTT (lower right for hard X-ray together with contour image for visible light) and with an X-ray telescope (upper left for soft X-ray) on board Solar X-ray Astronomy Satellite YOHKOH. 4 M. ODa [Vol. 71(B), Fig. 7. Illustration of FTM for human brain as stated in the text. synchrotron radiation facility with 8 Gev electron ring located in Hyogo-prefecture, Japan, may be used. Fig. 6. Design of a unit modulation collimator for FTM. Question of dosage, when radioisotopes are intro- duced into blood and a part of the brain is irradiated by muon beams or X-ray beams, has to be carefully Table I investigated in relation to the clarity of the image and the time of exposure i. e. temporal resolution. I wish to thank Prof. Masao Itoh and Keiji Tanaka of RIKEN who inspired my interest in neuro- physiology. I also express my gratitude to Prof. Claude Canizares of Center for Space Research and other friends at MIT who offered generous hospitality and encouragement during my short stay at MIT in May, 1994 where I developed the concept described in this note. References 1) I. Fujita, K. Tanaka, M. Ito, and K. Cheng (1992) Nature vol. 360, no. 6402. 2) e.g. M. Raichle, Scientific American, April 1994. 3) M. Oda (1965) Applied Optics 4, 143. 4) M. Oda (1968) Space Science Reviews 8, 507..
Recommended publications
  • XIII Publications, Presentations
    XIII Publications, Presentations 1. Refereed Publications E., Kawamura, A., Nguyen Luong, Q., Sanhueza, P., Kurono, Y.: 2015, The 2014 ALMA Long Baseline Campaign: First Results from Aasi, J., et al. including Fujimoto, M.-K., Hayama, K., Kawamura, High Angular Resolution Observations toward the HL Tau Region, S., Mori, T., Nishida, E., Nishizawa, A.: 2015, Characterization of ApJ, 808, L3. the LIGO detectors during their sixth science run, Classical Quantum ALMA Partnership, et al. including Asaki, Y., Hirota, A., Nakanishi, Gravity, 32, 115012. K., Espada, D., Kameno, S., Sawada, T., Takahashi, S., Ao, Y., Abbott, B. P., et al. including Flaminio, R., LIGO Scientific Hatsukade, B., Matsuda, Y., Iono, D., Kurono, Y.: 2015, The 2014 Collaboration, Virgo Collaboration: 2016, Astrophysical Implications ALMA Long Baseline Campaign: Observations of the Strongly of the Binary Black Hole Merger GW150914, ApJ, 818, L22. Lensed Submillimeter Galaxy HATLAS J090311.6+003906 at z = Abbott, B. P., et al. including Flaminio, R., LIGO Scientific 3.042, ApJ, 808, L4. Collaboration, Virgo Collaboration: 2016, Observation of ALMA Partnership, et al. including Asaki, Y., Hirota, A., Nakanishi, Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. K., Espada, D., Kameno, S., Sawada, T., Takahashi, S., Kurono, Lett., 116, 061102. Y., Tatematsu, K.: 2015, The 2014 ALMA Long Baseline Campaign: Abbott, B. P., et al. including Flaminio, R., LIGO Scientific Observations of Asteroid 3 Juno at 60 Kilometer Resolution, ApJ, Collaboration, Virgo Collaboration: 2016, GW150914: Implications 808, L2. for the Stochastic Gravitational-Wave Background from Binary Black Alonso-Herrero, A., et al. including Imanishi, M.: 2016, A mid-infrared Holes, Phys.
    [Show full text]
  • Building the Coolest X-Ray Satellite
    National Aeronautics and Space Administration Building the Coolest X-ray Satellite 朱雀 Suzaku A Video Guide for Teachers Grades 9-12 Probing the Structure & Evolution of the Cosmos http://suzaku-epo.gsfc.nasa.gov/ www.nasa.gov The Suzaku Learning Center Presents “Building the Coolest X-ray Satellite” Video Guide for Teachers Written by Dr. James Lochner USRA & NASA/GSFC Greenbelt, MD Ms. Sara Mitchell Mr. Patrick Keeney SP Systems & NASA/GSFC Coudersport High School Greenbelt, MD Coudersport, PA This booklet is designed to be used with the “Building the Coolest X-ray Satellite” DVD, available from the Suzaku Learning Center. http://suzaku-epo.gsfc.nasa.gov/ Table of Contents I. Introduction 1. What is Astro-E2 (Suzaku)?....................................................................................... 2 2. “Building the Coolest X-ray Satellite” ....................................................................... 2 3. How to Use This Guide.............................................................................................. 2 4. Contents of the DVD ................................................................................................. 3 5. Post-Launch Information ........................................................................................... 3 6. Pre-requisites............................................................................................................. 4 7. Standards Met by Video and Activities ...................................................................... 4 II. Video Chapter 1
    [Show full text]
  • Solar Flares
    https://ntrs.nasa.gov/search.jsp?R=20150005791 2019-08-31T11:04:12+00:00Z Solar Flares Sabrina Savage (NASA/MSFC) Heliophysics System Observatory (HSO) • Fleet of solar, heliospheric, geospace, and planetary satellites designed to work independently while enabling large-scale collaborative investigations. http://www.nasa.gov/mission_pages/sunearth/missions/ Heliophysics System Observatory (HSO): http://www.nasa.gov/mission_pages/sunearth/missions/ The Sun in Layers Converts 4 million tons of matter into energy every second. Core is as dense as lead. Interplay between magnetic pressure and gas (plasma) pressure. 15 000 000 ∘C “Mysteries of the Sun”: NASA / Jenny Mottar Sun Facts: http://solarscience.msfc.nasa.gov/ The Sun in Layers 15 000 000 ∘C European Space Agency (ESA) Smithsonian Astrophysical Observatory (SAO) “Mysteries of the Sun”: NASA / Jenny Mottar Sun Facts: http://solarscience.msfc.nasa.gov/ Sunspots & Active Regions 1625 May: Christoph Scheiner 2014 April 14: SDO HMI 6173 A European Space Agency (ESA) / Royal Observatory Belgium (ROB) NOAA Active Regions: SolarMonitor.org PROBA2 Science Center (ROB): http://proba2.sidc.be/ Sunspots & Active Regions Formation 4500 A 193 A 131 A SDO / AIA 2014 Apr 13 - 15 JHelioviewer — Explore the Sun: http://jhelioviewer.org/ Sunspots & Active Regions Hinode SOT: NASA / JAXA / NAOJ Sunspot Magnetic fields ~ 3000-6000 times stronger than Earth’s field. Magnetic pressure dominates gas pressure in spot, thus inhibiting convective flow of heat. JHelioviewer SDO / AIA 2014 Apr 04 SOT (CN line 3883 A); 2007 May 2 SOHO animation gallery SOT Picture of the Day (POD): http://sot.lmsal.com/pod?cmd=view-gallery Sunspots & Active Regions Solar Dynamics Observatory (GSFC) Jewel Box: http://svs.gsfc.nasa.gov/vis/a000000/a004100/a004117/ Sunspots & Active Regions Courtesy of Milo Littenberg Sunspots & Active Regions “SDO Jewel Box” Solar features as seen with 10 different filters (i.e., plasma at different temperatures).
    [Show full text]
  • Smallsat Solar Axion X-Ray Imager (SSAXI)
    SSC18-VII-02 SmallSat Solar Axion X-ray Imager (SSAXI) Jaesub Hong Harvard University Cambridge, MA 02138; 617-496-7512 [email protected] Suzanne Romaine, Christopher S. Moore, Katharine Reeves, Almus Kenter Smithsonian Astrophysical Observatory Cambridge, MA 02138; 617-496-7719 [email protected] Brian D. Ramsey, Kiranmayee Kilrau NASA Marshall Space Flight Center Huntsville, AL 35812; 256-961-7784 [email protected] Kerstin Perez Massachusetts Institute of Technology Cambridge, MA 02139; 617-324-1522 [email protected] Julia Vogel, Jaime Ruz Armendariz Lawrence Livermore National Laboratory Livermore, CA 94550; 925-424-4815 [email protected] Hugh Hudson Space Science Laboratory UC Berkeley, CA 94720; 510-643-0333 [email protected] ABSTRACT The axion is a promising dark matter candidate as well as a solution to the strong charge-parity (CP) problem in quantum chromodynamics (QCD). Therefore, discovery of axions will have far-reaching consequences in astrophysics, cosmology and particle physics. We describe a new concept for SmallSat Solar Axion X-ray Telescope (SSAXI) to search for solar axions or axion-like particles (ALPs). Axions or ALPs are expected to emerge abundantly from the core of stars like the Sun. SSAXI employs Miniature lightweight Wolter-I focusing X-ray optics (MiXO) and monolithic CMOS X-ray sensors to form a sensitive X-ray imaging spectrometer in a compact package (~10 x 10 x 60 cm). The wide energy range (~0.5 – 5 keV) of SSAXI is suitable for capturing the prime spectral feature of axion-converted X-rays (peaking at ~3 – 4 keV) from solar X-ray spectra.
    [Show full text]
  • Securing Japan an Assessment of Japan´S Strategy for Space
    Full Report Securing Japan An assessment of Japan´s strategy for space Report: Title: “ESPI Report 74 - Securing Japan - Full Report” Published: July 2020 ISSN: 2218-0931 (print) • 2076-6688 (online) Editor and publisher: European Space Policy Institute (ESPI) Schwarzenbergplatz 6 • 1030 Vienna • Austria Phone: +43 1 718 11 18 -0 E-Mail: [email protected] Website: www.espi.or.at Rights reserved - No part of this report may be reproduced or transmitted in any form or for any purpose without permission from ESPI. Citations and extracts to be published by other means are subject to mentioning “ESPI Report 74 - Securing Japan - Full Report, July 2020. All rights reserved” and sample transmission to ESPI before publishing. ESPI is not responsible for any losses, injury or damage caused to any person or property (including under contract, by negligence, product liability or otherwise) whether they may be direct or indirect, special, incidental or consequential, resulting from the information contained in this publication. Design: copylot.at Cover page picture credit: European Space Agency (ESA) TABLE OF CONTENT 1 INTRODUCTION ............................................................................................................................. 1 1.1 Background and rationales ............................................................................................................. 1 1.2 Objectives of the Study ................................................................................................................... 2 1.3 Methodology
    [Show full text]
  • MIT Japan Program Working Paper 01.10 the GLOBAL COMMERCIAL
    MIT Japan Program Working Paper 01.10 THE GLOBAL COMMERCIAL SPACE LAUNCH INDUSTRY: JAPAN IN COMPARATIVE PERSPECTIVE Saadia M. Pekkanen Assistant Professor Department of Political Science Middlebury College Middlebury, VT 05753 [email protected] I am grateful to Marco Caceres, Senior Analyst and Director of Space Studies, Teal Group Corporation; Mark Coleman, Chemical Propulsion Information Agency (CPIA), Johns Hopkins University; and Takashi Ishii, General Manager, Space Division, The Society of Japanese Aerospace Companies (SJAC), Tokyo, for providing basic information concerning launch vehicles. I also thank Richard Samuels and Robert Pekkanen for their encouragement and comments. Finally, I thank Kartik Raj for his excellent research assistance. Financial suppport for the Japan portion of this project was provided graciously through a Postdoctoral Fellowship at the Harvard Academy of International and Area Studies. MIT Japan Program Working Paper Series 01.10 Center for International Studies Massachusetts Institute of Technology Room E38-7th Floor Cambridge, MA 02139 Phone: 617-252-1483 Fax: 617-258-7432 Date of Publication: July 16, 2001 © MIT Japan Program Introduction Japan has been seriously attempting to break into the commercial space launch vehicles industry since at least the mid 1970s. Yet very little is known about this story, and about the politics and perceptions that are continuing to drive Japanese efforts despite many outright failures in the indigenization of the industry. This story, therefore, is important not just because of the widespread economic and technological merits of the space launch vehicles sector which are considerable. It is also important because it speaks directly to the ongoing debates about the Japanese developmental state and, contrary to the new wisdom in light of Japan's recession, the continuation of its high technology policy as a whole.
    [Show full text]
  • YOHKOH SXT XPE Catalogue: a Description
    YOHKOH SXT XPE Catalogue: A Description X-ray Plasma Ejections (XPEs) are dynamical events seen in the solar corona in X-rays. They establish a wide range of macroscopic motions of a magnetized plasma with different morphology, kinematics and physical conditions, usually associated with solar flares. The catalogue contains all XPEs, known for us, observed by the Soft X-ray Telescope (Tsuneta et al., 1991) during the whole time interval of Yohkoh operation, i.e. between 1991 October 1 and 2001 December 14. There are three main surveys of events that we used in our catalogue: 1. Kim et al. (2005) which contains 137 events observed between 1999 April and 2001 March. 2. Ohyama (2009) with 53 events that occurred between 1991 October and 1998 August. The survey was prepared for the aim of statistical research (Ohyama & Shibata, 2000), but it was not published. 3. Chmielewska (2010) which reports 116 events observed mainly within two time inter- vals: 1998 September – 1999 March and 2001 April – 2001 December that were not systematically searched before. We incorporated also 65 XPEs reported in other scientific papers as well as in the elec- tronic bulletin YOHKOH SXT Science Nuggets (http://www.lmsal.com/YPOP/Nuggets/). In summary, our catalogue contains 368 events. We qualified events to the catalogue on the basis of the SXT observations exclusively. For this reason, we omitted some X-ray ejections from years 1991-2001 that are known according to observations made with other instruments alone, like the Yohkoh Hard X-ray Telescope, e.g. Hudson et al. (2001). The general arrangement of the catalogue is a matrix of years and months of observations.
    [Show full text]
  • Low Altitude Solar Magnetic Reconnection, Type III Solar Radio Bursts, and X-Ray Emissions Received: 11 January 2015 I
    www.nature.com/scientificreports OPEN Low Altitude Solar Magnetic Reconnection, Type III Solar Radio Bursts, and X-ray Emissions Received: 11 January 2015 I. H. Cairns 1, V. V. Lobzin1,23, A. Donea2, S. J. Tingay3, P. I. McCauley1, D. Oberoi4, R. T. Accepted: 18 December 2017 Dufn1,3,5, M. J. Reiner6,7, N. Hurley-Walker3, N. A. Kudryavtseva 3,8, D. B. Melrose1, J. C. Published: xx xx xxxx Harding1, G. Bernardi9,10,11, J. D. Bowman12, R. J. Cappallo13, B. E. Corey13, A. Deshpande14, D. Emrich 3, R. Goeke15, B. J. Hazelton16, M. Johnston-Hollitt17,3, D. L. Kaplan18, J. C. Kasper10, E. Kratzenberg13, C. J. Lonsdale13, M. J. Lynch3, S. R. McWhirter13, D. A. Mitchell19,3, M. F. Morales16, E. Morgan15, S. M. Ord3,10, T. Prabu14, A. Roshi20, N. Udaya Shankar14, K. S. Srivani15, R. Subrahmanyan14,20, R. B. Wayth 3,21, M. Waterson3,22, R. L. Webster19,21, A. R. Whitney13, A. Williams 3 & C. L. Williams15 Type III solar radio bursts are the Sun’s most intense and frequent nonthermal radio emissions. They involve two critical problems in astrophysics, plasma physics, and space physics: how collective processes produce nonthermal radiation and how magnetic reconnection occurs and changes magnetic energy into kinetic energy. Here magnetic reconnection events are identifed defnitively in Solar Dynamics Observatory UV-EUV data, with strong upward and downward pairs of jets, current sheets, and cusp-like geometries on top of time-varying magnetic loops, and strong outfows along pairs of open magnetic feld lines. Type III bursts imaged by the Murchison Widefeld Array and detected by the Learmonth radiospectrograph and STEREO B spacecraft are demonstrated to be in very good temporal and spatial coincidence with specifc reconnection events and with bursts of X-rays detected by the RHESSI spacecraft.
    [Show full text]
  • Sdo Sdt Report.Pdf
    Solar Dynamics Observatory “…to understand the nature and source of the solar variations that affect life and society.” Report of the Science Definition Team Solar Dynamics Observatory Science Definition Team David Hathaway John W. Harvey K. D. Leka Chairman National Solar Observatory Colorado Research Division Code SD50 P.O. Box 26732 Northwest Research Assoc. NASA/MSFC Tucson, AZ 85726 3380 Mitchell Lane Huntsville, AL 35812 Boulder, CO 80301 Spiro Antiochos Donald M. Hassler David Rust Code 7675 Southwest Research Institute Applied Physics Laboratory Naval Research Laboratory 1050 Walnut St., Suite 426 Johns Hopkins University Washington, DC 20375 Boulder, Colorado 80302 Laurel, MD 20723 Thomas Bogdan J. Todd Hoeksema Philip Scherrer High Altitude Observatory Code S HEPL Annex B211 P. O. Box 3000 NASA/Headquarters Stanford University Boulder, CO 80307 Washington, DC 20546 Stanford, CA 94305 Joseph Davila Jeffrey Kuhn Rainer Schwenn Code 682 Institute for Astronomy Max-Planck-Institut für Aeronomie NASA/GSFC University of Hawaii Max Planck Str. 2 Greenbelt, MD 20771 2680 Woodlawn Drive Katlenburg-Lindau Honolulu, HI 96822 D37191 GERMANY Kenneth Dere Barry LaBonte Leonard Strachan Code 4163 Institute for Astronomy Harvard-Smithsonian Naval Research Laboratory University of Hawaii Center for Astrophysics Washington, DC 20375 2680 Woodlawn Drive 60 Garden Street Honolulu, HI 96822 Cambridge, MA 02138 Bernhard Fleck Judith Lean Alan Title ESA Space Science Dept. Code 7673L Lockheed Martin Corp. c/o NASA/GSFC Naval Research Laboratory 3251 Hanover Street Code 682.3 Washington, DC 20375 Palo Alto, CA 94304 Greenbelt, MD 20771 Richard Harrison John Leibacher Roger Ulrich CCLRC National Solar Observatory Department of Astronomy Chilton, Didcot P.O.
    [Show full text]
  • J. Paul History of High Energy Astrophysics
    HHisisttooricricalal VVieieww JaJaccququeess PPaauull AAPPCC ((UUMMRR 77116644)) CCEEAA--SSaacclalayy I.E.S. 3 April I.E.S. Observing the X- and Gamma-ray Sky 3 April Caarrggèèssee Observing the X- and Gamma-ray Sky 2006 TThhee XX-- aanndd ggaammmma-a-rraayy ddoommaaiinn Jacques Paul I.E.S. Cargèse ± Observing the X- and Gamma-ray Sky ± Historical View ± 3 April 2006 Slide 2 EEleleccttrroommagagnneetticic ssppeeccttrruumm ffoorr asasttrroonnoommyy WWavaveleleennggtthh ((mm)) 0 7 4 1 2 1 1 1 8 5 2 -- -- -- -- -- -- -- 00 00 00 00 00 00 00 00 11 11 11 11 11 11 11 11 GamGammma-raya-ray X-rayX-ray UUVV IIRR radradioio VVisiisibbllee X- andd ggaammmmaa--rarayyss:: mmoorere tthhaann 500%% ooff tthee uussaabbllee EEMM sspeeccttrum Jacques Paul I.E.S. Cargèse ± Observing the X- and Gamma-ray Sky ± Historical View ± 3 April 2006 Slide 3 TThhee atatmmoosspphheerricic ssccrreeeenn 110000 50% reduction of atmospheric ) ) 8800 m m transmission k k ( ( e e d d 6600 u u tit tit 4400 Al Al 2200 radradioio IIRR VV UUVV XX-ray-ray ggaammmma-raa-rayy Jacques Paul I.E.S. Cargèse ± Observing the X- and Gamma-ray Sky ± Historical View ± 3 April 2006 Slide 4 FFooccuussiningg XX-- anandd ggamammmaa raysrays radradiio,o, IIR,R, vviissiibbllee,, UUVV Jacques Paul I.E.S. Cargèse ± Observing the X- and Gamma-ray Sky ± Historical View ± 3 April 2006 Slide 5 AAssttrroonnoommyy wwitithh XX-- aanndd ggamammma-a-rrayay pphhoottoonnss PPhhootonton eneneergrgyy V V V V V e V e V e V e V V e V T e V G e V M e V k T G e M e k e V T e G e M k e 0 T 0 G 0 M 0 k 0 0 T 0 0 G 0 0 M 0 0 k 1 1 1 1 1 1 1 1 1 1 1 1 GGamammmaa raysrays X-rayX-rayss very hiigh energy hiigh energy llow energy hard soft HESS GLAST INTEGRAL XMM Jacques Paul I.E.S.
    [Show full text]
  • Detection of Nearly Periodic Spin Period Reversals in Vela X-1 on Long Time-Scales: Inkling of Solar-Like Cycle in the Donor Star?
    MNRAS 000,1–15 (2021) Preprint 17 August 2021 Compiled using MNRAS LATEX style file v3.0 Detection of nearly periodic spin period reversals in Vela X-1 on long time-scales: inkling of solar-like cycle in the donor star? Amar Deo Chandra,1,2¢ Jayashree Roy,3,1 P. C. Agrawal1,4 and Manojendu Choudhury5,1 1UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari Campus, Kalina, Santacruz (East), Mumbai, Maharashtra 400098, India 2Center of Excellence in Space Sciences India, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India 3Inter-University Center for Astronomy and Astrophysics, Post Bag 4, Pune, Maharashtra 411007, India 4 Senior Professor (Retd.), Dept. of Astronomy and Astrophysics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 40005, India 5 Department of Physics, St. Xavier’s College (Autonomous), 5 Mahapalika Marg, Mumbai 400001, Maharashtra, India Accepted XXX. Received YYY; in original form ZZZ ABSTRACT We explore the long-term evolution of the spin period of the High Mass X-ray Binary (HMXB) pulsar Vela X-1 over a period of 46 yr. Our analysis indicates nearly periodic variations in the spin period of the pulsar on time-scales of about 5.9 yr. There is suggestion of an overall spin-down behaviour of the pulsar though it is noticed that the source appears to stay near its equilibrium period 283.4 s since MJD 51000, with rather erratic spin-up/spin-down episodes around this value. Our study suggests nearly cyclic turnover in the spin behaviour of the pulsar from spin-up to spin-down regimes on time-scales of about 17-19 yr.
    [Show full text]
  • Arxiv:Astro-Ph/0111018V1 1 Nov 2001 Ihdrtosbten1 N 0Mn(Uke L 95.Teeburs These 1985)
    PERIODIC ACCELERATION OF ELECTRONS IN THE 1998 NOVEMBER 10 SOLAR FLARE A. Asai 1,2, M. Shimojo 3, H. Isobe 1,2, T. Morimoto 1, T. Yokoyama 3, K. Shibasaki 3, and H. Nakajima 3 [email protected] ABSTRACT We present an examination of the multi-wavelength observation of a C7.9 flare which occurred on 1998 November 10. This is the first time of imaging observation of the quasi-periodic pulsations (QPPs). Four bursts were observed with the hard X-ray telescope aboard Yohkoh and the Nobeyama Radioheliograph during the impulsive phase of the flare. In the second burst, the hard X-ray and microwave time profiles clearly showed a QPP. We estimated the Alfv´en transit time along the flare loop using the images of the soft X-ray telescope aboard Yohkoh and the photospheric magnetgrams, and found that the transit time was almost equal to the period of the QPP. We therefore suggest, based on a shock acceleration model, that variations of macroscopic magnetic structures, such as oscillations of coronal loops, affect the efficiency of particle injection/acceleration. Subject headings: acceleration of particles — Sun : activity — Sun : flares — Sun : radio radiation — Sun : X-rays arXiv:astro-ph/0111018v1 1 Nov 2001 1. INTRODUCTION Non-thermal electrons generated in the impulsive phase of a flare are observed in hard X-ray, γ-ray, and microwaves. The light curves in these wavelengths show short-lived bursts with durations between 10 s and 10 min (Dulk et al. 1985). These bursts include smaller pulses with shorter duration, and they sometimes show periodicity.
    [Show full text]