Bibliography from ADS File: Shimizu.Bib June 27, 2021

Total Page:16

File Type:pdf, Size:1020Kb

Bibliography from ADS File: Shimizu.Bib June 27, 2021 Bibliography from ADS file: shimizu.bib Lacour, S., Wang, J. J., Nowak, M., et al., “The ExoGRAVITY August 16, 2021 project: using single mode interferometry to characterize exoplanets”, 2020SPIE11446E..0OL ADS Oba, T., Shimizu, T., Katsukawa, Y., et al., “SUNRISE Chromospheric In- Kammerer, J., Lacour, S., Stolker, T., et al., “GRAVITY K-band spectroscopy of frared spectroPolarimeter (SCIP) for SUNRISE III: Scan mirror mechanism”, HD 206893 B. Brown dwarf or exoplanet”, 2021A&A...652A..57K ADS 2020SPIE11445E..4FO ADS GRAVITY Collaboration, Amorim, A., Bauböck, M., et al., “A ge- Suematsu, Y., Shimizu, T., Hara, H., et al., “Thermal design of the Solar-C ometric distance to the supermassive black Hole of NGC 3783”, (EUVST) telescope”, 2020SPIE11444E..3KS ADS 2021arXiv210714262G ADS Kawate, T., Tsuzuki, T., Shimizu, T., et al., “A sensitivity analysis of the updated Sánchez-Bermudez, J., Garatti, A. C. o., García López, R., et al., “The GRAV- optical design for EUVST on the Solar-C mission”, 2020SPIE11444E..3JK ITY Young Stellar Object Survey. VI. Mapping the variable inner disk of HD ADS 163296 at sub-au scales”, 2021arXiv210702391S ADS Shimizu, T., Imada, S., Kawate, T., et al., “The Solar-C (EUVST) mission: the Abuter, R., Amorim, A., Bauböck, M., et al., “Constraining particle acceler- latest status”, 2020SPIE11444E..0NS ADS ation in Sgr A* with simultaneous GRAVITY, Spitzer, NuSTAR and Chandra Dexter, J., Lutz, D., Shimizu, T. T., et al., “Determining Subparsec observations”, 2021arXiv210701096A ADS Supermassive Black Hole Binary Orbits with Infrared Interferometry”, Alonso-Herrero, A., García-Burillo, S., Hoenig, S. F., et al., “The Galaxy Activ- 2020ApJ...905...33D ADS ity, Torus and Outflow Survey (GATOS): II. Torus and polar dust emission in Smith, K. L., Koss, M., Mushotzky, R., et al., “Significant Suppression of Star nearby Seyfert galaxies”, 2021arXiv210700244A ADS Formation in Radio-quiet AGN Host Galaxies with Kiloparsec-scale Radio Gravity Collaboration, Rodríguez-Coira, G., Paumard, T., et al., “MOLsphere Structures”, 2020ApJ...904...83S ADS and pulsations of the Galactic Center’s red supergiant GCIRS 7 from Imada, S., Shimizu, T., Kawate, T., et al., “Current Status of the Solar-CEUVST VLTI/GRAVITY”, 2021A&A...651A..37G ADS Mission”, 2020AGUFMSH056..05I ADS Kammerer, J., Lacour, S., Stolker, T., et al., “GRAVITY K-band spectroscopy of Davies, R., Baron, D., Shimizu, T., et al., “Ionized outflows in lo- HD 206893 B: brown dwarf or exoplanet”, 2021arXiv210608249K ADS cal luminous AGN: what are the real densities and outflow rates?”, Burtscher, L., Davies, R. I., Shimizu, T. T., et al., “LLAMA: Stellar populations 2020MNRAS.498.4150D ADS in the nuclei of ultra hard X-ray selected AGN and matched inactive galax- Gravity Collaboration, Amorim, A., Bauböck, M., et al., “The spatially resolved ies”, 2021arXiv210505309B ADS broad line region of IRAS 09149-6206”, 2020A&A...643A.154G ADS Herrera-Camus, R., Förster Schreiber, N., Genzel, R., et al., “Kiloparsec view of Genzel, R., Price, S. H., Übler, H., et al., “Rotation Curves in z ∼ 1- a typical star-forming galaxy when the Universe was ∼1 Gyr old. I. Properties 2 Star-forming Disks: Evidence for Cored Dark Matter Distributions”, of outflow, halo, and interstellar medium”, 2021A&A...649A..31H ADS 2020ApJ...902...98G ADS Herrera-Camus, R., Foerster Schreiber, N., Genzel, R., et al., “VizieR Online Hasegawa, T., Noda, C. Q., Shimizu, T., & Carlsson, M., “On the For- Data Catalog: [CCJ2015b] HZ4 [CII] 158um datacube (Herrera-Camus+, mation of Lyman β and the O I 1027 and 1028 Å Spectral Lines”, 2021)”, 2021yCat..36490031H ADS 2020ApJ...900...34H ADS Koss, M. J., Strittmatter, B., Lamperti, I., et al., “VizieR Online Data Cat- Kawabata, Y., Asensio Ramos, A., Inoue, S., & Shimizu, T., “Chromospheric alog: BAT AGN Spectroscopic Survey. XX. Molecular gas (Koss+, 2021)”, Magnetic Field: A Comparison of He I 10830 Å Observations with Nonlinear 2021yCat..22520029K ADS Force-free Field Extrapolation”, 2020ApJ...898...32K ADS Wisnioski, E., Schreiber, N. M. F., Fossati, M., et al., “VizieR On- Liu, T., Koss, M., Blecha, L., et al., “The BAT AGN Spectroscopic Sur- line Data Catalog: Completed KMOS3D survey NIR obs. (Wisnioski+,”, vey. XVIII. Searching for Supermassive Black Hole Binaries in X-Rays”, 2021yCat..18860124W ADS 2020ApJ...896..122L ADS García-Burillo, S., Alonso-Herrero, A., Ramos Almeida, C., et al., “The Galaxy Kawabata, Y., Inoue, S., & Shimizu, T., “Extrapolation of Three-dimensional Activity, Torus and Outflow Survey (GATOS) I. ALMA images of dusty molec- Magnetic Field Structure in Flare-productive Active Regions with Different ular tori in Seyfert galaxies”, 2021arXiv210410227G ADS Initial Conditions”, 2020ApJ...895..105K ADS Gravity Collaboration, Amorim, A., Bauböck, M., et al., “The central parsec Lee, K.-S., Hara, H., Watanabe, K., et al., “A Solar Magnetic-fan Flaring Arch of NGC 3783: a rotating broad emission line region, asymmetric hot dust Heated by Nonthermal Particles and Hot Plasma from an X-Ray Jet Erup- structure, and compact coronal line region”, 2021A&A...648A.117G ADS tion”, 2020ApJ...895...42L ADS Gravity Collaboration, Eupen, F., Labadie, L., et al., “The GRAVITY young Davies, R. L., Förster Schreiber, N. M., Lutz, D., et al., “From Nuclear to Cir- stellar object survey. V. The orbit of the T Tauri binary star WW Cha”, cumgalactic: Zooming in on AGN-driven Outflows at z ∼ 2.2 with SINFONI”, 2021A&A...648A..37G ADS 2020ApJ...894...28D ADS Belli, S., Contursi, A., Genzel, R., et al., “The Diverse Molecular Gravity Collaboration, Dexter, J., Shangguan, J., et al., “The resolved Gas Content of Massive Galaxies Undergoing Quenching at z ∼ 1”, size and structure of hot dust in the immediate vicinity of AGN”, 2021ApJ...909L..11B ADS 2020A&A...635A..92G ADS Davies, R. L., Förster Schreiber, N. M., Genzel, R., et al., “The KMOS3D Survey: Herrera-Camus, R., Janssen, A., Sturm, E., et al., “AGN feedback in a galaxy Investigating the Origin of the Elevated Electron Densities in Star-forming merger: multi-phase, galaxy-scale outflows with a fast molecular gas blob ∼6 Galaxies at 1 . z . 3”, 2021ApJ...909...78D ADS kpc away from IRAS F08572+3915”, 2020A&A...635A..47H ADS Wang, J. J., Vigan, A., Lacour, S., et al., “Constraining the Nature of the PDS Harra, L., Matthews, S., Long, D., et al., “Locating Hot Plasma in Small Flares 70 Protoplanets with VLTI/GRAVITY”, 2021AJ....161..148W ADS using Spectroscopic Overlappogram Data from the Hinode EUV Imaging Gravity Collaboration, Abuter, R., Amorim, A., et al., “Improved Spectrometer”, 2020SoPh..295...34H ADS GRAVITY astrometric accuracy from modeling optical aberrations”, Rojas, A. F., Sani, E., Gavignaud, I., et al., “BAT AGN Spectroscopic Survey - 2021A&A...647A..59G ADS XIX. Type 1 versus type 2 AGN dichotomy from the point of view of ionized Ishikawa, R., Bueno, J. T., del Pino Alemán, T., et al., “Mapping so- outflows”, 2020MNRAS.491.5867R ADS lar magnetic fields from the photosphere to the base of the corona”, Oba, T., Iida, Y., & Shimizu, T., “Average Radial Structures of Gas Convection 2021SciA....7.8406I ADS in the Solar Granulation”, 2020ApJ...890..141O ADS Davies, R., Baron, D., Shimizu, T., & Netzer, H., “Ionized outflows in local Lamperti, I., Saintonge, A., Koss, M., et al., “The CO(3-2)/CO(1-0) Luminosity luminous AGN: Density and outflow rate”, 2021IAUS..359..226D ADS Line Ratio in Nearby Star-forming Galaxies and Active Galactic Nuclei from Gravity Collaboration, Abuter, R., Amorim, A., et al., “Detection of faint stars xCOLD GASS, BASS, and SLUGS”, 2020ApJ...889..103L ADS near Sagittarius A* with GRAVITY”, 2021A&A...645A.127G ADS Caglar, T., Burtscher, L., Brandl, B., et al., “LLAMA: The M_BH-σ_? relation Tsuzuki, T., Katsukawa, Y., Uraguchi, F., et al., “Sunrise Chromospheric In- of the most luminous local AGNs”, 2020A&A...634A.114C ADS frared spectroPolarimeter (SCIP) for SUNRISE III: optical design and per- Gravity Collaboration, Pfuhl, O., Davies, R., et al., “An image of the dust subli- formance”, 2020SPIE11447E..AJT ADS mation region in the nucleus of NGC 1068”, 2020A&A...634A...1G ADS Uraguchi, F., Tsuzuki, T., Katsukawa, Y., et al., “Sunrise Chromospheric In- Herrera-Camus, R., Janssen, A., Sturm, E., et al., “VizieR Online Data Cat- frared spectroPolarimeter (SCIP) for SUNRISE III: opto-mechanical analysis alog: IRAS F08572+3915 CO(1-0) datacube (Herrera-Camus+, 2020)”, and design”, 2020SPIE11447E..ABU ADS 2020yCat..36350047H ADS Kubo, M., Shimizu, T., Katsukawa, Y., et al., “Sunrise Chromospheric Infrared GRAVITY Collaboration, Pfuhl, O., Davies, R., et al., “VizieR Online Data spectroPolarimeter (SCIP) for SUNRISE III: polarization modulation unit”, Catalog: NGC 1068 GRAVITY reconstructed image (GRAVITY+, 2020)”, 2020SPIE11447E..A3K ADS 2020yCat..36340001G ADS Katsukawa, Y., del Toro Iniesta, J. C., Solanki, S. K., et al., “Sunrise Chromo- Ichikawa, K., Ricci, C., Ueda, Y., et al., “VizieR Online Data Catalog: spheric Infrared SpectroPolarimeter (SCIP) for sunrise III: system design and BAT AGN spectroscopic survey. XI. IR photometry (Ichikawa+, 2019)”, capability”, 2020SPIE11447E..0YK ADS 2020yCat..18700031I ADS 1 Koss, M., BASS Survey Team, Treister, E., et al., “Tending the Fire: A Mulay, S. M., Matthews, S., Hasegawa, T., et al., “Flare-related Recurring Ac- molecular gas study of hard X-ray selected AGN from the BASS survey.”, tive Region Jets: Evidence for Very Hot Plasma”, 2018SoPh..293..160M 2020AAS...23532503K ADS ADS Herrera-Camus, R., Sturm, E., Graciá-Carpio, J., et al., “Molecular gas inflows Förster Schreiber, N. M., Wilman, D., Wisnioski, E. S., et al., “Wit- and outflows in ultraluminous infrared galaxies at z ∼ 0.2 and one QSO at z nessing the Early Growth and Life Cycle of Galaxies with KMOS3D”, = 6.1”, 2020A&A...633L...4H ADS 2018Msngr.174...28S ADS Lutz, D., Sturm, E., Janssen, A., et al., “Molecular outflows in local Quintero Noda, C., Uitenbroek, H., Carlsson, M., et al., “Study of the po- galaxies: Method comparison and a role of intermittent AGN driving”, larization produced by the Zeeman effect in the solar Mg I b lines”, 2020A&A...633A.134L ADS 2018MNRAS.481.5675Q ADS GRAVITY Collaboration, Abuter, R., Accardo, M., et al., “Hunting Exoplanets Suzuki, A., Ade, P.
Recommended publications
  • XIII Publications, Presentations
    XIII Publications, Presentations 1. Refereed Publications E., Kawamura, A., Nguyen Luong, Q., Sanhueza, P., Kurono, Y.: 2015, The 2014 ALMA Long Baseline Campaign: First Results from Aasi, J., et al. including Fujimoto, M.-K., Hayama, K., Kawamura, High Angular Resolution Observations toward the HL Tau Region, S., Mori, T., Nishida, E., Nishizawa, A.: 2015, Characterization of ApJ, 808, L3. the LIGO detectors during their sixth science run, Classical Quantum ALMA Partnership, et al. including Asaki, Y., Hirota, A., Nakanishi, Gravity, 32, 115012. K., Espada, D., Kameno, S., Sawada, T., Takahashi, S., Ao, Y., Abbott, B. P., et al. including Flaminio, R., LIGO Scientific Hatsukade, B., Matsuda, Y., Iono, D., Kurono, Y.: 2015, The 2014 Collaboration, Virgo Collaboration: 2016, Astrophysical Implications ALMA Long Baseline Campaign: Observations of the Strongly of the Binary Black Hole Merger GW150914, ApJ, 818, L22. Lensed Submillimeter Galaxy HATLAS J090311.6+003906 at z = Abbott, B. P., et al. including Flaminio, R., LIGO Scientific 3.042, ApJ, 808, L4. Collaboration, Virgo Collaboration: 2016, Observation of ALMA Partnership, et al. including Asaki, Y., Hirota, A., Nakanishi, Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. K., Espada, D., Kameno, S., Sawada, T., Takahashi, S., Kurono, Lett., 116, 061102. Y., Tatematsu, K.: 2015, The 2014 ALMA Long Baseline Campaign: Abbott, B. P., et al. including Flaminio, R., LIGO Scientific Observations of Asteroid 3 Juno at 60 Kilometer Resolution, ApJ, Collaboration, Virgo Collaboration: 2016, GW150914: Implications 808, L2. for the Stochastic Gravitational-Wave Background from Binary Black Alonso-Herrero, A., et al. including Imanishi, M.: 2016, A mid-infrared Holes, Phys.
    [Show full text]
  • Progress with Litebird
    LiteBIRD Lite (Light) Satellite for the Studies of B-mode Polarization and Inflation from Cosmic Background Radiation Detection Progress with LiteBIRD Masashi Hazumi (KEK/Kavli IPMU/SOKENDAI/ISAS JAXA) for the LiteBIRD working group 1 LiteBIRD JAXA Osaka U. Kavli IPMU Kansei U. Tsukuba APC Paris T. Dotani S. Kuromiya K. Hattori Gakuin U. M. Nagai R. Stompor H. Fuke M. Nakajima N. Katayama S. Matsuura H. Imada S. Takakura Y. Sakurai TIT Cardiff U. I. Kawano K. Takano H. Sugai Kitazato U. S. Matsuoka G. Pisano UC Berkeley / H. Matsuhara T. Kawasaki R. Chendra LBNL T. Matsumura Osaka Pref. U. KEK Paris ILP D. Barron K. Mitsuda M. Inoue M. Hazumi Konan U. U. Tokyo J. Errard J. Borrill T. Nishibori K. Kimura (PI) I. Ohta S. Sekiguchi Y. Chinone K. Nishijo H. Ogawa M. Hasegawa T. Shimizu CU Boulder A. Cukierman A. Noda N. Okada N. Kimura NAOJ S. Shu N. Halverson T. de Haan A. Okamoto K. Kohri A. Dominjon N. Tomita N. Goeckner-wald S. Sakai Okayama U. M. Maki T. Hasebe McGill U. P. Harvey Y. Sato T. Funaki Y. Minami J. Inatani Tohoku U. M. Dobbs C. Hill K. Shinozaki N. Hidehira T. Nagasaki K. Karatsu M. Hattori W. Holzapfel H. Sugita H. Ishino R. Nagata S. Kashima MPA Y. Hori Y. Takei A. Kibayashi H. Nishino T. Noguchi Nagoya U. E. Komatsu O. Jeong S. Utsunomiya Y. Kida S. Oguri Y. Sekimoto K. Ichiki NIST R. Keskitalo T. Wada K. Komatsu T. Okamura M. Sekine T. Kisner G. Hilton R. Yamamoto S. Uozumi N.
    [Show full text]
  • Updated Design of the CMB Polarization Experiment Satellite Litebird
    Journal of Low Temperature Physics (2020) 199:1107–1117 https://doi.org/10.1007/s10909-019-02329-w Updated Design of the CMB Polarization Experiment Satellite LiteBIRD H. Sugai, et al. [full author details at the end of the article] Received: 30 August 2019 / Accepted: 26 December 2019 / Published online: 27 January 2020 © The Author(s) 2020 Abstract Recent developments of transition-edge sensors (TESs), based on extensive experi- ence in ground-based experiments, have been making the sensor techniques mature enough for their application on future satellite cosmic microwave background (CMB) polarization experiments. LiteBIRD is in the most advanced phase among such future satellites, targeting its launch in Japanese Fiscal Year 2027 (2027FY) with JAXA’s H3 rocket. It will accommodate more than 4000 TESs in focal planes of refective low-frequency and refractive medium-and-high-frequency telescopes in order to detect a signature imprinted on the CMB by the primordial gravitational waves predicted in cosmic infation. The total wide frequency coverage between 34 and 448 GHz enables us to extract such weak spiral polarization patterns through the precise subtraction of our Galaxy’s foreground emission by using spectral dif- ferences among CMB and foreground signals. Telescopes are cooled down to 5 K for suppressing thermal noise and contain polarization modulators with transmis- sive half-wave plates at individual apertures for separating sky polarization signals from artifcial polarization and for mitigating from instrumental 1/f noise. Passive cooling by using V-grooves supports active cooling with mechanical coolers as well as adiabatic demagnetization refrigerators. Sky observations from the second Sun– Earth Lagrangian point, L2, are planned for 3 years.
    [Show full text]
  • Building the Coolest X-Ray Satellite
    National Aeronautics and Space Administration Building the Coolest X-ray Satellite 朱雀 Suzaku A Video Guide for Teachers Grades 9-12 Probing the Structure & Evolution of the Cosmos http://suzaku-epo.gsfc.nasa.gov/ www.nasa.gov The Suzaku Learning Center Presents “Building the Coolest X-ray Satellite” Video Guide for Teachers Written by Dr. James Lochner USRA & NASA/GSFC Greenbelt, MD Ms. Sara Mitchell Mr. Patrick Keeney SP Systems & NASA/GSFC Coudersport High School Greenbelt, MD Coudersport, PA This booklet is designed to be used with the “Building the Coolest X-ray Satellite” DVD, available from the Suzaku Learning Center. http://suzaku-epo.gsfc.nasa.gov/ Table of Contents I. Introduction 1. What is Astro-E2 (Suzaku)?....................................................................................... 2 2. “Building the Coolest X-ray Satellite” ....................................................................... 2 3. How to Use This Guide.............................................................................................. 2 4. Contents of the DVD ................................................................................................. 3 5. Post-Launch Information ........................................................................................... 3 6. Pre-requisites............................................................................................................. 4 7. Standards Met by Video and Activities ...................................................................... 4 II. Video Chapter 1
    [Show full text]
  • Arxiv:2006.06594V1 [Astro-Ph.CO]
    Mitigating the optical depth degeneracy using the kinematic Sunyaev-Zel'dovich effect with CMB-S4 1, 2, 2, 1, 3, 4, 5, 6, 5, 6, Marcelo A. Alvarez, ∗ Simone Ferraro, y J. Colin Hill, z Ren´eeHloˇzek, x and Margaret Ikape { 1Berkeley Center for Cosmological Physics, Department of Physics, University of California, Berkeley, CA 94720, USA 2Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA 3Department of Physics, Columbia University, New York, NY, USA 10027 4Center for Computational Astrophysics, Flatiron Institute, New York, NY, USA 10010 5Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St George Street, Toronto ON, M5S 3H4, Canada 6David A. Dunlap Department of Astronomy and Astrophysics, University of Toronto, 50 St George Street, Toronto ON, M5S 3H4, Canada The epoch of reionization is one of the major phase transitions in the history of the universe, and is a focus of ongoing and upcoming cosmic microwave background (CMB) experiments with im- proved sensitivity to small-scale fluctuations. Reionization also represents a significant contaminant to CMB-derived cosmological parameter constraints, due to the degeneracy between the Thomson- scattering optical depth, τ, and the amplitude of scalar perturbations, As. This degeneracy subse- quently hinders the ability of large-scale structure data to constrain the sum of the neutrino masses, a major target for cosmology in the 2020s. In this work, we explore the kinematic Sunyaev-Zel'dovich (kSZ) effect as a probe of reionization, and show that it can be used to mitigate the optical depth degeneracy with high-sensitivity, high-resolution data from the upcoming CMB-S4 experiment.
    [Show full text]
  • Science from Litebird
    Prog. Theor. Exp. Phys. 2012, 00000 (27 pages) DOI: 10.1093=ptep/0000000000 Science from LiteBIRD LiteBIRD Collaboration: (Fran¸coisBoulanger, Martin Bucher, Erminia Calabrese, Josquin Errard, Fabio Finelli, Masashi Hazumi, Sophie Henrot-Versille, Eiichiro Komatsu, Paolo Natoli, Daniela Paoletti, Mathieu Remazeilles, Matthieu Tristram, Patricio Vielva, Nicola Vittorio) 8/11/2018 ............................................................................... The LiteBIRD satellite will map the temperature and polarization anisotropies over the entire sky in 15 microwave frequency bands. These maps will be used to obtain a clean measurement of the primordial temperature and polarization anisotropy of the cosmic microwave background in the multipole range 2 ` 200: The LiteBIRD sensitivity will be better than that of the ESA Planck satellite≤ by≤ at least an order of magnitude. This document summarizes some of the most exciting new science results anticipated from LiteBIRD. Under the conservatively defined \full success" criterion, LiteBIRD will 3 measure the tensor-to-scalar ratio parameter r with σ(r = 0) < 10− ; enabling either a discovery of primordial gravitational waves from inflation, or possibly an upper bound on r; which would rule out broad classes of inflationary models. Upon discovery, LiteBIRD will distinguish between two competing origins of the gravitational waves; namely, the quantum vacuum fluctuation in spacetime and additional matter fields during inflation. We also describe how, under the \extra success" criterion using data external to Lite- BIRD, an even better measure of r will be obtained, most notably through \delensing" and improved subtraction of polarized synchrotron emission using data at lower frequen- cies. LiteBIRD will also enable breakthrough discoveries in other areas of astrophysics. We highlight the importance of measuring the reionization optical depth τ at the cosmic variance limit, because this parameter must be fixed in order to allow other probes to measure absolute neutrino masses.
    [Show full text]
  • Macquarie University Researchonline
    Macquarie University ResearchOnline This is the published version of: Anand Sivaramakrishnan ; David Lafrenière ; K. E. Saavik Ford ; Barry McKernan ; Anthony Cheetham ; Alexandra Z. Greenbaum ; Peter G. Tuthill ; James P. Lloyd ; Michael J. Ireland ; René Doyon ; Mathilde Beaulieu ; André Martel ; Anton Koekemoer ; Frantz Martinache ; Peter Teuben " Non- redundant Aperture Masking Interferometry (AMI) and segment phasing with JWST-NIRISS," in Space telescopes and instrumentation 2012 : optical, infared, and millimeter wave 1-6 July 2012 Amsterdam, Netherlands, edited by Mark C. Clampin, Giovanni G. Fazio, Howard A. MacEwen, Jacobus M. Oschmann, Proceedings of SPIE Vol. 8442 (SPIE, Bellingham, WA, 2012) Article CID Number 84422S. Access to the published version: http://dx.doi.org/10.1117/12.925565 Copyright: Copyright 2012 Society of Photo Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited. Non-Redundant Aperture Masking Interferometry (AMI) and Segment Phasing with JWST-NIRISS Anand Sivaramakrishnana,j, David Lafreni`ereb, K. E. Saavik Fordc,j,k, Barry McKernanc,j,k, Anthony Cheethamd, Alexandra Z. Greenbaume, Peter G. Tuthilld, James P. Lloydf, Michael J. Irelandg, Ren´eDoyonb, Mathilde Beaulieub, Andr´eMartela, Anton Koekemoera, Frantz Martinacheh, Peter Teubeni a Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, United States b D´epartement de Physique, Universit´ede Montr´eal,Montr´eal,Qc, H3C 3J7, Canada c Dept. of Science, Borough of Manhattan Community College, City University of New York, 199 Chambers Street, NY 10007 United States d School of Physics, University of Sydney, NSW 2006, Australia e Johns Hopkins University, Department of Physics & Astronomy, 366 Bloomberg Center, 3400 N.
    [Show full text]
  • Cosmic Microwave Background
    1 29. Cosmic Microwave Background 29. Cosmic Microwave Background Revised August 2019 by D. Scott (U. of British Columbia) and G.F. Smoot (HKUST; Paris U.; UC Berkeley; LBNL). 29.1 Introduction The energy content in electromagnetic radiation from beyond our Galaxy is dominated by the cosmic microwave background (CMB), discovered in 1965 [1]. The spectrum of the CMB is well described by a blackbody function with T = 2.7255 K. This spectral form is a main supporting pillar of the hot Big Bang model for the Universe. The lack of any observed deviations from a 7 blackbody spectrum constrains physical processes over cosmic history at redshifts z ∼< 10 (see earlier versions of this review). Currently the key CMB observable is the angular variation in temperature (or intensity) corre- lations, and to a growing extent polarization [2–4]. Since the first detection of these anisotropies by the Cosmic Background Explorer (COBE) satellite [5], there has been intense activity to map the sky at increasing levels of sensitivity and angular resolution by ground-based and balloon-borne measurements. These were joined in 2003 by the first results from NASA’s Wilkinson Microwave Anisotropy Probe (WMAP)[6], which were improved upon by analyses of data added every 2 years, culminating in the 9-year results [7]. In 2013 we had the first results [8] from the third generation CMB satellite, ESA’s Planck mission [9,10], which were enhanced by results from the 2015 Planck data release [11, 12], and then the final 2018 Planck data release [13, 14]. Additionally, CMB an- isotropies have been extended to smaller angular scales by ground-based experiments, particularly the Atacama Cosmology Telescope (ACT) [15] and the South Pole Telescope (SPT) [16].
    [Show full text]
  • Solar Flares
    https://ntrs.nasa.gov/search.jsp?R=20150005791 2019-08-31T11:04:12+00:00Z Solar Flares Sabrina Savage (NASA/MSFC) Heliophysics System Observatory (HSO) • Fleet of solar, heliospheric, geospace, and planetary satellites designed to work independently while enabling large-scale collaborative investigations. http://www.nasa.gov/mission_pages/sunearth/missions/ Heliophysics System Observatory (HSO): http://www.nasa.gov/mission_pages/sunearth/missions/ The Sun in Layers Converts 4 million tons of matter into energy every second. Core is as dense as lead. Interplay between magnetic pressure and gas (plasma) pressure. 15 000 000 ∘C “Mysteries of the Sun”: NASA / Jenny Mottar Sun Facts: http://solarscience.msfc.nasa.gov/ The Sun in Layers 15 000 000 ∘C European Space Agency (ESA) Smithsonian Astrophysical Observatory (SAO) “Mysteries of the Sun”: NASA / Jenny Mottar Sun Facts: http://solarscience.msfc.nasa.gov/ Sunspots & Active Regions 1625 May: Christoph Scheiner 2014 April 14: SDO HMI 6173 A European Space Agency (ESA) / Royal Observatory Belgium (ROB) NOAA Active Regions: SolarMonitor.org PROBA2 Science Center (ROB): http://proba2.sidc.be/ Sunspots & Active Regions Formation 4500 A 193 A 131 A SDO / AIA 2014 Apr 13 - 15 JHelioviewer — Explore the Sun: http://jhelioviewer.org/ Sunspots & Active Regions Hinode SOT: NASA / JAXA / NAOJ Sunspot Magnetic fields ~ 3000-6000 times stronger than Earth’s field. Magnetic pressure dominates gas pressure in spot, thus inhibiting convective flow of heat. JHelioviewer SDO / AIA 2014 Apr 04 SOT (CN line 3883 A); 2007 May 2 SOHO animation gallery SOT Picture of the Day (POD): http://sot.lmsal.com/pod?cmd=view-gallery Sunspots & Active Regions Solar Dynamics Observatory (GSFC) Jewel Box: http://svs.gsfc.nasa.gov/vis/a000000/a004100/a004117/ Sunspots & Active Regions Courtesy of Milo Littenberg Sunspots & Active Regions “SDO Jewel Box” Solar features as seen with 10 different filters (i.e., plasma at different temperatures).
    [Show full text]
  • Smallsat Solar Axion X-Ray Imager (SSAXI)
    SSC18-VII-02 SmallSat Solar Axion X-ray Imager (SSAXI) Jaesub Hong Harvard University Cambridge, MA 02138; 617-496-7512 [email protected] Suzanne Romaine, Christopher S. Moore, Katharine Reeves, Almus Kenter Smithsonian Astrophysical Observatory Cambridge, MA 02138; 617-496-7719 [email protected] Brian D. Ramsey, Kiranmayee Kilrau NASA Marshall Space Flight Center Huntsville, AL 35812; 256-961-7784 [email protected] Kerstin Perez Massachusetts Institute of Technology Cambridge, MA 02139; 617-324-1522 [email protected] Julia Vogel, Jaime Ruz Armendariz Lawrence Livermore National Laboratory Livermore, CA 94550; 925-424-4815 [email protected] Hugh Hudson Space Science Laboratory UC Berkeley, CA 94720; 510-643-0333 [email protected] ABSTRACT The axion is a promising dark matter candidate as well as a solution to the strong charge-parity (CP) problem in quantum chromodynamics (QCD). Therefore, discovery of axions will have far-reaching consequences in astrophysics, cosmology and particle physics. We describe a new concept for SmallSat Solar Axion X-ray Telescope (SSAXI) to search for solar axions or axion-like particles (ALPs). Axions or ALPs are expected to emerge abundantly from the core of stars like the Sun. SSAXI employs Miniature lightweight Wolter-I focusing X-ray optics (MiXO) and monolithic CMOS X-ray sensors to form a sensitive X-ray imaging spectrometer in a compact package (~10 x 10 x 60 cm). The wide energy range (~0.5 – 5 keV) of SSAXI is suitable for capturing the prime spectral feature of axion-converted X-rays (peaking at ~3 – 4 keV) from solar X-ray spectra.
    [Show full text]
  • Securing Japan an Assessment of Japan´S Strategy for Space
    Full Report Securing Japan An assessment of Japan´s strategy for space Report: Title: “ESPI Report 74 - Securing Japan - Full Report” Published: July 2020 ISSN: 2218-0931 (print) • 2076-6688 (online) Editor and publisher: European Space Policy Institute (ESPI) Schwarzenbergplatz 6 • 1030 Vienna • Austria Phone: +43 1 718 11 18 -0 E-Mail: [email protected] Website: www.espi.or.at Rights reserved - No part of this report may be reproduced or transmitted in any form or for any purpose without permission from ESPI. Citations and extracts to be published by other means are subject to mentioning “ESPI Report 74 - Securing Japan - Full Report, July 2020. All rights reserved” and sample transmission to ESPI before publishing. ESPI is not responsible for any losses, injury or damage caused to any person or property (including under contract, by negligence, product liability or otherwise) whether they may be direct or indirect, special, incidental or consequential, resulting from the information contained in this publication. Design: copylot.at Cover page picture credit: European Space Agency (ESA) TABLE OF CONTENT 1 INTRODUCTION ............................................................................................................................. 1 1.1 Background and rationales ............................................................................................................. 1 1.2 Objectives of the Study ................................................................................................................... 2 1.3 Methodology
    [Show full text]
  • MIT Japan Program Working Paper 01.10 the GLOBAL COMMERCIAL
    MIT Japan Program Working Paper 01.10 THE GLOBAL COMMERCIAL SPACE LAUNCH INDUSTRY: JAPAN IN COMPARATIVE PERSPECTIVE Saadia M. Pekkanen Assistant Professor Department of Political Science Middlebury College Middlebury, VT 05753 [email protected] I am grateful to Marco Caceres, Senior Analyst and Director of Space Studies, Teal Group Corporation; Mark Coleman, Chemical Propulsion Information Agency (CPIA), Johns Hopkins University; and Takashi Ishii, General Manager, Space Division, The Society of Japanese Aerospace Companies (SJAC), Tokyo, for providing basic information concerning launch vehicles. I also thank Richard Samuels and Robert Pekkanen for their encouragement and comments. Finally, I thank Kartik Raj for his excellent research assistance. Financial suppport for the Japan portion of this project was provided graciously through a Postdoctoral Fellowship at the Harvard Academy of International and Area Studies. MIT Japan Program Working Paper Series 01.10 Center for International Studies Massachusetts Institute of Technology Room E38-7th Floor Cambridge, MA 02139 Phone: 617-252-1483 Fax: 617-258-7432 Date of Publication: July 16, 2001 © MIT Japan Program Introduction Japan has been seriously attempting to break into the commercial space launch vehicles industry since at least the mid 1970s. Yet very little is known about this story, and about the politics and perceptions that are continuing to drive Japanese efforts despite many outright failures in the indigenization of the industry. This story, therefore, is important not just because of the widespread economic and technological merits of the space launch vehicles sector which are considerable. It is also important because it speaks directly to the ongoing debates about the Japanese developmental state and, contrary to the new wisdom in light of Japan's recession, the continuation of its high technology policy as a whole.
    [Show full text]