Electronic Correlations in Multiorbital Systems

Total Page:16

File Type:pdf, Size:1020Kb

Electronic Correlations in Multiorbital Systems Electronic correlations in multiorbital systems by José María Pizarro Blanco Submitted to the Department of Condensed Matter Physics in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Physics at the UNIVERSIDAD AUTÓNOMA DE MADRID PhD Supervisor: Dr. Elena Bascones Fernández de Velasco Instituto de Ciencia de Materiales de Madrid Consejo Superior de Investigaciones Científicas Madrid, Mar 2019 Acknowledgements Para comenzar, me gustaría agradecer a mi directora, Leni Bascones, por la oportunidad de realizar esta tesis junto a ella. Gracias por haber tenido tanta paciencia y haberme enseñado tanto en estos años. Gracias también por haberme dado la oportunidad de viajar e intercambiar conocimientos con otros compañeros de profesión en diferentes conferencias y escuelas. Y gracias también por haberte preocupado por mi presente y futuro y para que pudiese salir adelante. Aprovecho y también te doy las gracias junto a Maria José Calderón y Belen Valenzuela por haberme permitido ayudar a fomentar la Ciencia y la Física de Materiales en diferentes eventos de divulgación. También quiero agradecer a mi familia el apoyo durante estos años. A mis hermanos (y sobrinos), a mis tíos (en especial a mi tía Marisa) y demás por preocuparse por mí. Gracias a mi padre por todo el apoyo que me ha brindado durante años y por la confianza en que lograría ser un buen científico. Gracias también a Enrique y Mila. Gracias a los compañeros y compañeras que me han ido acompañando en mi carrera científica. Gracias a Fer, Teje, a otro Fer, Carol, Gloria, Nadia, Miguel Ángel, Carlos, Jordi. Gracias también a los compañeros del ICMM por haber hecho este camino más ameno: Mónica, Fernando, Sigmund, Bea, Álvaro, José Carlos, Jorge, Guillem, Jesús y Jordi (otra vez). I would also like to thank all of the co-workers from Frankfurt: Ying, Sananda, Emanuelle, Hendrik, Karim, Fabian, Vladislav, Steve, Kira, Anand, Thomas. Y por supuesto, gracias a Roser Valentí por acogerme en su grupo y permitirme aprender tantas cosas. Por último, quiero dar las gracias a Laura por haber estado ahí durante todos estos años. Muchas gracias por haber estado ahí todos estos días y por haberme escuchado y animado. Y gracias por haberme ayudado en la escritura y revisión de esta tesis. Sin tí, esta tesis no habría salido adelante. iv Para Laura v Electronic correlations in multiorbital systems by José María Pizarro Blanco Abstract The role of electronic correlations in Condensed Matter is at the heart of various important systems, like magnetic materials, superconductors, topological materials, optical lattices, etc. Electronic correlations are those which change the motion of individual electrons when con- sidering the interaction with other electrons in the material. Among the available systems to study electronic correlation effects, in this thesis I focus on unconventional superconductors, specifically in high-Tc iron-based superconductors, and on two-dimensional materials, like the recent magic-angle twisted bilayer graphene or the itinerant ferromagnet F e3GeT e2. In the first chapter, I will briefly review the band theory and Fermi liquid theory for solid systems. In certain situations, the long-range character of the Coulomb interaction can be safely ignored, and short-range Coulomb interaction will result in various interesting behaviors, such as the Mott insulator and the Hund metal, which can change the expectations from band theory. I will constraint to onsite (local) correlations, i.e. those between electrons sitting in the same lattice site. I will also briefly review some of the most important properties of unconventional superconductors and two-dimensional materials. In the second chapter, I will review the effects of local correlations in multiorbital systems. I will compare with experimental results for high-Tc iron-based superconductors with the expectations given by local correlations, arguing that the iron superconductors are in the Hund metal regime, in which the Hund’s coupling plays a major role. Last chapters are dedicated to the work done during this thesis. I studied the effects of local correlations in various high-Tc iron superconductors, as well as in the magic-angle twisted bilayer graphene. A brief chapter about my ongoing work in F e3GeT e2 is presented at the end of the thesis. Through this thesis, I used the Slave-Spin Mean-Field technique to address the local correlations behavior in these multiorbital systems. In the third chapter, we proposed to search a new family of high-Tc superconductors in the chromium analogues of iron-based superconductors. We argue that, due to the similar strength of electronic correlations, plus a superconducting instability driven by magnetic fluctuations, chromium-based pnictides and chalcogenides could host unconventional super- conductivity. This argument is based on the fact that iron-based superconductors can be viewed as electron-doped Mott insulators, where the strength of correlations increases when doping these iron superconductors with holes, and decreases when doping them with elec- trons. In this picture, chromium pnictides and chalcogenides will be the hole-doped Mott insulator, and we found a similar trend: electronic correlations increase when doping the cromium-based systems with electrons (and decrease when doping with holes). In the fourth chapter, I studied the strength of local correlations in the quasi-1D two-leg ladder iron-based superconductor BaF e2S3 for two different pressures. Contrary to other iron-based superconductors, BaF e2S3 (and related materials) is an insulator. Other authors have pointed out that these quasi-1D systems are Mott insulators. In this chapter, I calcu- lated the strength of local correlations to check the behavior of these systems at T = 0 K. I found a metallic behavior instead, so that we concluded by stating that the insulating behavior could be driven by finite temperature effects. I found a substantial Fermi sur- face reconstruction due to local correlations, contrary to what happen in other iron-based superconductors. In the fifth chapter, I studied the nature of the insulating states in magic-angle twisted bilayer graphene. I implemented the Zeeman effect in the Slave-Spin Mean-Field formalism to address the behavior of the insulating states when varying an onsite magnetic field in the local correlations picture. I found that the behavior is opposite to the experimental evidences. We argued that local correlations by themselves cannot explain the insulating states in magic-angle twisted bilayer graphene. We reviewed the last works done in non-local correlations in other lattices, concluding that the insulating states in magic-angle twisted bilayer graphene could be explained by using the non-local correlations picture. In the sixth chapter, I obtained the band structure and tight-binding model of the 2D itin- erant ferromagnet F e3GeT e2. This is a brief chapter about the current status on my work in this system. A final chapter is devoted to the conclusions and a final overview that can be extracted from this thesis. Various appendices indicate the details of the techniques used during this thesis, as well as some interesting mathematical proofs. Keywords: Unconventional superconductivity, strongly correlated electron systems, Mott insulator, multiorbital systems, Hund metal, metal-to-insulator transition, many-body tech- niques, Slave-Spin Mean Field formalism, local correlations, magic-angle twisted bilayer graphene. Correlaciones electrónicas en sistemas multi-orbitales por José María Pizarro Blanco Resumen Las correlaciones electrónicas en Física de la Materia Condensada juegan un papel fundamen- tal en varios sistemas importantes, como son los materiales magnéticos, los superconductores, los materiales topológicos, las redes ópticas, etc. Las correlaciones electrónicas son aquellas que modifican el movimiento de electrones individuales cuando se considera su interacción con otros electrones dentro del material. Dentro de los sistemas disponibles para estudiar los efectos de las correlaciones electrónicas, en esta tesis voy a centrarme en los superconductores no convencionales, específicamente en los superconductores de alta Tc basados en hierro, y en sistemas bidimensionales, como el recientemente descubierto grafeno bicapa rotado en ángulo mágico o el ferromagneto itinerante F e3GeT e2. En el primer capítulo, resumiré brevemente la teoría de bandas y la teoría del líquido de Fermi para sistemas sólidos. En ciertas situaciones, el cáracter de largo alcance de la interacción de Coulomb puede ignorarse, y la interacción de Coulomb de corto alcance resulta en varios comportamientos interesantes, tales como el aislante de Mott y el metal de Hund, los cuales cambian las expectativas dadas por la teoría de bandas. Me centraré en las correlaciones en el mismo sitio (locales), es decir, aquellas entre electrones que están localizados en el mismo sitio de la red. También resumiré brevemente algunos de las propiedades más importantes de los superconductores no convencionales y de los materiales bidimensionales. En el segundo capítulo, repasaré los efectos de las correlaciones locales en sistemas multi- orbitales. Compararé los resultados experimentales para los superconductores de alta Tc basados en hierro con las expectativas dadas por las correlaciones locales, y argumentaré que los superconductores de hierro están en el régimen del metal de Hund, en el cual el acoplo Hund juega un papel esencial. Los últimos capítulos están dedicados a los trabajos
Recommended publications
  • Arxiv:1701.03127V1 [Cond-Mat.Supr-Con] 11 Jan 2017 Scnre Ytesmcnutn Rpriso E.G
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by HZB Repository Antiferromagnetic structure and electronic properties of BaCr2As2 and BaCrFeAs2 Kai A. Filsinger,1 Walter Schnelle,1 Peter Adler,1 Gerhard H. Fecher,1 Manfred Reehuis,2 Andreas Hoser,2 Jens-Uwe Hoffmann,2 Peter Werner,3 Martha Greenblatt,4 and Claudia Felser1 1Max Planck Institute for Chemical Physics of Solids, N¨othnitzer Straße 40, 01187 Dresden, Germany 2Helmholtz-Zentrum Berlin f¨ur Materialien und Energie, 14109 Berlin, Germany 3Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle (Saale), Germany 4Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA (Dated: January 13, 2017) The chromium arsenides BaCr2As2 and BaCrFeAs2 with ThCr2Si2 type structure (space group I4/mmm; also adopted by ‘122’ iron arsenide superconductors) have been suggested as mother com- pounds for possible new superconductors. DFT-based calculations of the electronic structure evi- dence metallic antiferromagnetic ground states for both compounds. By powder neutron diffraction we confirm for BaCr2As2 a robust ordering in the antiferromagnetic G-type structure at TN = 580 K with µCr = 1.9 µB at T = 2 K. Anomalies in the lattice parameters point to magneto-structural cou- pling effects. In BaCrFeAs2 the Cr and Fe atoms randomly occupy the transition-metal site and 57 G-type order is found below 265 K with µCr/Fe = 1.1 µB. Fe M¨ossbauer spectroscopy demonstrates that only a small ordered moment is associated with the Fe atoms, in agreement with electronic structure calculations with µFe ∼ 0. The temperature dependence of the hyperfine field does not follow that of the total moments.
    [Show full text]
  • Neutron Scattering Principal Investigators' Meeting
    Neutron Scattering Principal Investigators’ Meeting July 28-30, 2014 Hilton Washington DC North/Gaithersburg Gaithersburg, Maryland Office of Basic Energy Sciences Division of Materials Sciences and Engineering On the Cover Top Left: Numerical simulation of the magnetic inhomogeneity (red = magnetism, blue = superconductivity) caused by replacing 1% of the indium atoms in a superconductor (CeCoIn5) with cadmium atoms. The field of view is approximately 100 nanometers along each edge (Cover Image from Seo et al., Nature Physics, 10, 120–125, 2014). Top Middle: Resonant scattering with coherent x-rays on the size and the dynamics of magnetic domains in a Dysprosium crystal with three different domains (shown in three colors in the schematic). Above 85K, this material exhibits a spiral magnetic state wherein the magnetic moments in a given layer in each domain are parallel, but oriented at a fixed angle with respect to the moments in the adjacent layers (Cover Image from Chen et al., Physics Review Letters, 110, 217201, 2013). Top Right: Schematic illustration of cylinder-forming diblock copolymers, where the first block is a protein at the surface and the second block is the covalently attached synthetic polymer at the interior (Cover Image from Lam and Olsen, Soft Matter, 9, 2392–2402, 2013). Bottom Left: Inelastic neutron scattering of high-quality single-crystal samples of the mineral ZnCu3(OD)6Cl2 revealed that the scattered neutrons have a broad spread of energies (light green diffuse regions in figure), a hallmark signature predicted by theory (Han et al., Nature, 492, 406–410, 2012). Bottom Middle: High-energy x-ray diffraction pattern from a single grain of a gadolinium – cadmium alloy (shown in center) displaying the novel five-fold rotational symmetry, characteristic of an icosahedral quasicrystal.
    [Show full text]
  • Tt 40.1–40.18
    Thursday TT 40: Superconductivity: Ferropnictides 1 Time: Thursday 14:00–19:00 Location: HSZ 03 TT 40.1 Thu 14:00 HSZ 03 sruhe, Institut f¨urFestk¨orperphysik, 76021 Karlsruhe, Germany — Antiferromagnetic correlations in the normal state of 2Physikalisches Institut, Universit¨atKarlsruhe, 76128 Karlsruhe, Ger- LaFeAsO1−xFx with 0 ≤ x ≤ 0.125 — •Rudiger¨ Klingeler, Nor- many man Leps, Liran Wang, Christian Hess, Gunter¨ Behr, Vladislav Since the discovery of the new high-Tc iron pnictides, many scenar- Kataev, and Bernd Buchner¨ — IFW Dresden, P.O. Box 270116, ios were put forward to describe the symmetry of the order parameter 01171 Dresden, Germany including d-wave and unconventional s-wave. Early heat capacity mea- We have studied the interplay of magnetism and superconductivity in surements suggested that the electron-doped 1111 compounds show a LaFeAsO1−xFx with 0 ≤ x ≤ 0.125. For low doping with x ≤ 0.04, our nodal gap, while K-hole-doped 122 materials are fully gapped. Here we data confirm a moderate suppression of both the structural transition present a critical analysis of our own specific-heat data on Co-doped and the antiferromagnetic spin density wave formation. For x ≥ 0.05, 122 single crystals, in which we pay particular attention to the details both anomalies are completely suppressed and superconductivity is ob- of the phonon background subtraction as well as to the contribution served. Remarkably, the temperature dependence of the normal state of impurity phases. We also discuss an interesting field-dependence of susceptibility well above TC is almost independent of doping, i.e. both the thermal expansivity below Tc(H).
    [Show full text]
  • Spin Dynamics in 122-Type Iron-Based Superconductors
    Spin Dynamics in 122-Type Iron-Based Superconductors Von der Fakultät Mathematik und Physik der Universität Stuttgart zur Erlangung der Würde eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung vorgelegt von Jitae Park aus Seoul (Südkorea) Hauptberichter: Prof. Dr. Bernhard Keimer Mitberichter: Prof. Dr. Harald Giessen Tag der mündlichen Prüfung: 16. Juli 2012 Max-Planck-Institut für Festkörperforschung Stuttgart 2012 Contents Zusammenfassung in deutscher Sprache 3 1 Introduction 7 1.1 General overview . 7 1.2 Scope of thesis . 9 2 Iron-based superconductors 13 2.1 Basic characteristics . 13 2.1.1 Zoo of iron-based superconductors . 13 2.1.2 Crystal structure and reciprocal-space structure . 14 2.1.3 Electronic band structure . 18 2.2 Phase diagram . 21 2.2.1 External parameters for modification of the system . 22 2.2.2 Long-range magnetic order and its spin dynamics . 27 2.2.3 Coexistence of magnetic and superconducting phases . 31 2.2.4 Spin dynamics in the parent compound . 34 2.3 Superconducting properties . 42 2.3.1 Pairing symmetry . 43 Δ/ 2.3.2 Coupling constant 2 kB Tc ...................... 45 2.4 Magnetic resonant mode in the spin-excitation spectra . 47 2.4.1 Theoretical approach . 48 2.4.2 Experimental observations . 49 3 Experimental methods 51 3.1 Preparation of single crystalline samples . 51 3.1.1 Flux method for single crystal growth . 51 3.1.2 Sample characterization . 54 3.2 Neutron scattering technique . 59 3.2.1 Scattering formulae . 60 3.2.2 Triple-axis neutron spectrometer . 70 3.2.3 Spurions .
    [Show full text]
  • Superconductivity, Magnetism and Crystal Chemistry of Ba1-Xkxfe2as2
    Superconductivity, magnetism and crystal chemistry of Ba1−xKxFe2As2 Dirk Johrendta,* and Rainer Pöttgenb a Department Chemie und Biochemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5–13 (Haus D), 81377 München, Germany E-mail: [email protected] b Institut für Anorganische und Analytische Chemie and NRW Graduate School of Chemistry, Universität Münster, Corrensstrasse 30, 48149 Münster, Germany E-mail: [email protected] A B S T R A C T BaFe2As2 is the parent compound of the ‘122’ iron arsenide superconductors and crystallizes with the tetragonal ThCr2Si2 type structure, space group I4/mmm. A spin density wave transition at 140 K is accompanied by a symmetry reduction to space group Fmmm and simultaneously by antiferromagnetic ordering. Hole-doping induces superconductivity in Ba1−xKxFe2As2 with a maximum Tc of 38 K at x ≈ 0.4. The upper critical fields approach 75 T with rather small anisotropy of Hc2. At low potassium concentrations (x ≤ 0.2), superconductivity apparently co-exists with the orthorhombic distorted and magnetically ordered phase. At doping levels x ≥ 0.3, the structural distortion and antiferromagnetic ordering is completely suppressed and the Tc is maximized. No magnetically ordered domains could be detected in optimally doped 57 Ba1−xKxFe2As2 (x ≥ 0.3) by Fe-Mössbauer spectroscopy in contrast µSR results obtained with single crystals. The magnetic hyperfine interactions investigated by 57Fe Mössbauer spectroscopy are discussed and compared to the ZrCuSiAs-type materials. 57 Keywords: BaFe2As2, Superconductivity, SDW anomaly, Fe-Mössbauer spectroscopy PACS: 74.10.+v, 74.25.Ha, 74.25.Dw, 74.62.Bf, 33.45.+x *Corresponding author. E-mail address: [email protected] (D.
    [Show full text]
  • Arxiv:1701.03127V1 [Cond-Mat.Supr-Con] 11 Jan 2017 Scnre Ytesmcnutn Rpriso E.G
    Antiferromagnetic structure and electronic properties of BaCr2As2 and BaCrFeAs2 Kai A. Filsinger,1 Walter Schnelle,1 Peter Adler,1 Gerhard H. Fecher,1 Manfred Reehuis,2 Andreas Hoser,2 Jens-Uwe Hoffmann,2 Peter Werner,3 Martha Greenblatt,4 and Claudia Felser1 1Max Planck Institute for Chemical Physics of Solids, N¨othnitzer Straße 40, 01187 Dresden, Germany 2Helmholtz-Zentrum Berlin f¨ur Materialien und Energie, 14109 Berlin, Germany 3Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle (Saale), Germany 4Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA (Dated: September 9, 2021) The chromium arsenides BaCr2As2 and BaCrFeAs2 with ThCr2Si2 type structure (space group I4/mmm; also adopted by ‘122’ iron arsenide superconductors) have been suggested as mother com- pounds for possible new superconductors. DFT-based calculations of the electronic structure evi- dence metallic antiferromagnetic ground states for both compounds. By powder neutron diffraction we confirm for BaCr2As2 a robust ordering in the antiferromagnetic G-type structure at TN = 580 K with µCr = 1.9 µB at T = 2 K. Anomalies in the lattice parameters point to magneto-structural cou- pling effects. In BaCrFeAs2 the Cr and Fe atoms randomly occupy the transition-metal site and 57 G-type order is found below 265 K with µCr/Fe = 1.1 µB. Fe M¨ossbauer spectroscopy demonstrates that only a small ordered moment is associated with the Fe atoms, in agreement with electronic structure calculations with µFe ∼ 0. The temperature dependence of the hyperfine field does not follow that of the total moments. Both compounds are metallic but show large enhancements of the linear specific heat coefficient γ with respect to the band structure values.
    [Show full text]
  • APS Science 2009
    APS Science 2009 Science APS Advanced Photon Source ANL-10/06 ISSN 1931-5015 Argonne National Laboratory May 2010 9700 South Cass Avenue Argonne, IL 60439 USA May 2010 May www.anl.gov www.aps.anl.gov APS Science 2009 Argonne National Laboratory ANL-10/06 ISSN ANL-10/06 1931-5007 Research and Engineering Highlights from the Advanced Photon Source at Argonne National Laboratory U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC ANL-10/06 ISSN 1931-5015 May 2010 The Advanced Photon Source at Argonne National Laboratory is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-ACO2-06CH11357 About Argonne National Laboratory Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under contract DE-ACO2-06CH11357. The Laboratory’s main facility is outside Chicago, at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne and its pioneering science and technology programs, see www.anl.gov. Availability of This Report This report is available, at no cost, at http://www.osti.gov/bridge. It is also available on paper to the U.S. Department of Energy and its contractors, for a processing fee, from: U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 phone (865) 576-8401 fax (865) 576-5728 [email protected] Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government.
    [Show full text]
  • High-Pressure Effects on Isotropic Superconductivity in the Iron-Free Layered Pnictide Superconductor Bapd2as2
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Kyutacar : Kyushu Institute of Technology Academic Repository High-pressure effects on isotropic superconductivity in the iron-free layered pnictide superconductor BaPd2As2 著者 Abdel-Hafiez M., Zhao Y., Huang Z., Cho C.-w., Wong C. H., Hassen A., Ohkuma M., Fang Y.-W., Pan B.-J., Ren Z.-A., Sadakov A., Usoltsev A., Pudalov V., Mito M., Lortz R., Krellner C., Yang W. journal or Physical Review B publication title volume 97 number 13 page range 134508-1-134508-9 year 2018-04-12 URL http://hdl.handle.net/10228/00007071 doi: info:doi/10.1103/PhysRevB.97.134508 PHYSICAL REVIEW B 97, 134508 (2018) High-pressure effects on isotropic superconductivity in the iron-free layered pnictide superconductor BaPd2As2 M. Abdel-Hafiez,1,2,3,* Y. Zhao,4 Z. Huang,5 C.-w. Cho,5 C. H. Wong,6 A. Hassen,7 M. Ohkuma,8 Y.-W. Fang,9 B.-J. Pan,10 Z.-A. Ren,10 A. Sadakov,11 A. Usoltsev,11 V. Pudalov,11 M. Mito,8 R. Lortz,5 C. Krellner,2 and W. Yang4,12 1Center for High Pressure Science and Technology Advanced Research, Beijing, 100094, China 2Institute of Physics, Goethe University Frankfurt, 60438 Frankfurt/M, Germany 3National University of Science and Technology “MISiS,” Moscow 119049, Russia 4Center for High Pressure Science and Technology Advanced Research, Shanghai, 201203, China 5Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 6Institute of Physics and Technology, Ural Federal University, Yekaterinburg, Russia 7Faculty of Science, Physics Department, Fayoum University, 63514-Fayoum, Egypt 8Graduate School of Engineering, Kyushu Institute of Technology, Kitakyushu 804-8550, Japan 9Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronic Engineering, East China Normal University, Shanghai 200241, China 10Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China 11P.N.
    [Show full text]
  • Itinerant Spin Dynamics in Iron-Based Superconductors and Cerium-Based Heavy-Fermion Antiferromagnets
    Itinerant Spin Dynamics in Iron-based Superconductors and Cerium-based Heavy-Fermion Antiferromagnets Von der Fakultät Mathematik und Physik der Universität Stuttgart zur Erlangung der Würde eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung vorgelegt von Gerd Friemel aus Meißen Hauptberichter: Prof. Dr. Bernhard Keimer Mitberichter: Prof. Dr. Martin Dressel Tag der mündlichen Prüfung: 26. Mai 2014 Max Planck Institut für Festkörperforschung Stuttgart 2014 Contents Abbreviations vii Zusammenfassung in deutscher Sprache ix Abstract xiii 1 Introduction1 1.1 Scope of the thesis.............................3 2 The phase diagram of correlated electron systems7 2.1 The family of iron arsenide superconductors...............7 2.1.1 Electronic structure and Fermi surface of FeSC......... 10 2.1.2 Reciprocal-space structure of the spin fluctuations in FeSC.. 12 2.1.3 Unconventional order parameter in the superconducting phase of FeSC............................... 13 2.2 The family of alkali-metal iron selenide superconductors........ 15 2.2.1 Electronic structure of the superconducting phase........ 16 2.2.2 AxFe2−ySe2: Phase separation into insulating A2Fe4Se5 and su- perconducting AxFe2Se2 ...................... 17 2.3 Unconventional superconductivity in heavy-fermion compounds.... 20 2.4 The magnetic phase diagram of CeB6 ................... 21 2.4.1 Crystal structure and ground state of CeB6 ............ 21 2.4.2 Magnetic structure in the antiferromagnetic and antiferroquadrupo- lar phase of CeB6 .......................... 23 2.4.3 Mean-field description of the phase diagram........... 26 2.4.4 Electronic properties of CeB6 ................... 29 2.4.5 Alternative approach to phase II................. 33 2.4.6 Appearance of phase IV in Ce1−xLaxB6 ............. 35 2.4.7 Non-Fermi-liquid regime of Ce1−xLaxB6 ............
    [Show full text]
  • 論文 / 著書情報 Article / Book Information
    論文 / 著書情報 Article / Book Information 題目(和文) Title(English) Exploration of new iron pnictide superconductors utilizing high pressure synthesis 著者(和文) 村場善行 Author(English) Yoshinori Muraba 出典(和文) 学位:博士(工学), 学位授与機関:東京工業大学, 報告番号:甲第9505号, 授与年月日:2014年3月26日, 学位の種別:課程博士, 審査員:細野 秀雄,阿藤 敏行,須崎 友文,平松 秀典,松石 聡 Citation(English) Degree:Doctor (Engineering), Conferring organization: Tokyo Institute of Technology, Report number:甲第9505号, Conferred date:2014/3/26, Degree Type:Course doctor, Examiner:,,,, 学位種別(和文) 博士論文 Type(English) Doctoral Thesis Powered by T2R2 (Tokyo Institute Research Repository) Exploration of new iron pnictide superconductors utilizing high pressure synthesis Yoshinori Muraba Department of Materials Science and Engineering Interdisciplinary Graduate School of Science and Engineering Tokyo Institute of Technology 2014 Contents Chapter 1 1 General introduction 1.1. Background of present study.........................…...................................................................1 1.1.1. Histroy of superconductor....................................................................................................1 1.1.2. Crystal structures of iron-based superconductors...............................................................3 1.1.3. Superconductivity induced by various doping modes..........................................................4 1.1.4. Generic phase diagrams......................................................................................................6 1.1.5. Electronic structures............................................................................................................7
    [Show full text]
  • Superstripes 2017
    SUPERSTRIPES 2017 edited by Antonio Bianconi superstripes press S u p e r s t r i p e s P r e ss science series SUPERSTRIPES 2017 Quantum in Complex Matter: Superconductivity, Magnetism & Ferroelectricity edited by Antonio Bianconi superstripes press S u p e r s t r i p e s P r e ss science series Science Series No.11 Title: Superstripes 2017 Published on June 2017 by Superstripes Press, Rome, Italy http://www.superstripes.net/science/science.htm © 2017 Superstripes Press © 2017 Multiple authors ISBN 978-88-6683-069-6 ISBN-A 10.978.886683/0696 This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA. Authors : Abbamonte P., Aeppli G., Alarco J.A., Albertini R., Aoki D., Attanasio C., Avigo I., Babaev E., Bachar N., Badoux S., Balakirev F.F., Balicas L., Bao W., Barbiellini B., Berciu M., Berthod C., Bianconi A., Billinge S.J.L., Bonca J., Boris A., Borisenko S., Borzenets I., Bozin E.S., Brazovskii S., Brun C., Bussmann-Holder A., Capone M., Carlström J., Chang J., Chávez I., Chu P.C.W., Conradson S.D., Coslovich G., Crisan A., Daghero D., de Llano M., de’ Medici L., Dean M. P. M., Degiorgi L., Destraz D., Deutscher G., Di Gioacchino M., Di Giorgio C., Dobrosavljevic V., Drechsler S.L., Efremov D., Egami T., Einaga M., Eremets M.I., Eremin I., Eremin M., Fanfarillo L., Farina D., Feng S., Fine B.V., Fink J., Flammia L., Frésard R.,
    [Show full text]
  • High-Pressure Effects on Isotropic Superconductivity in the Iron-Free
    High pressure effects on isotropic superconductivity in the iron-free layered pnictide superconductor BaPd2As2 Mahmoud Abdel-Hafiez,1, 2, 3, ∗ Y. Zhao,4 Z. Huang,5 C.-w. Cho,5 C. H. Wong,6 A. Hassen,7 M. Ohkuma,8 Y.-W. Fang,9 B.-J. Pan,10 Z.-A. Ren,10 A. Sadakov,11 A. Usoltsev,11 V. Pudalov,11 M. Mito,8 R. Lortz,5 C. Krellner,2 and W. Yang4, 12 1Center for High Pressure Science and Technology Advanced Research, Beijing, 100094, China 2Institute of Physics, Goethe University Frankfurt, 60438 Frankfurt/M, Germany 3National University of Science and Technology "MISiS", Moscow 119049, Russia 4Center for High Pressure Science and Technology Advanced Research, Shanghai, 201203, China 5Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 6Institute of Physics and Technology, Ural Federal University, Yekaterinburg, Russia 7Faculty of science, Physics department, Fayoum University, 63514-Fayoum- Egypt 8Graduate School of Engineering, Kyushu Institute of Technology, Kitakyushu 804-8550, Japan 9Department of Electronic Engineering, East China Normal University, Shanghai 200241, China 10Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China 11P.N. Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia 12High Pressure Synergetic Consortium (HPSynC), Carnegie Institution of Washington, Argonne, Illinois, 60439, USA. (Dated: May 22, 2018) While the layered 122 iron arsenide superconductors are highly anisotropic, unconventional, and exhibit several forms of electronic orders that coexist or compete with superconductivity in different regions of their phase diagrams, we find in the absence of iron in the structure that the superconduct- ing characteristics of the end member BaPd2As2 are surprisingly conventional.
    [Show full text]