A Universal Phenomenon in Unconventional Superconductivity?

Total Page:16

File Type:pdf, Size:1020Kb

A Universal Phenomenon in Unconventional Superconductivity? S S symmetry Article Fluctuating Charge Order: A Universal Phenomenon in Unconventional Superconductivity? Erminald Bertel * and Alexander Menzel Institute of Physical Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria; [email protected] * Correspondence: [email protected]; Tel.: +43-512-507-58000 Academic Editor: Sergey Borisenko Received: 6 May 2016; Accepted: 31 May 2016; Published: 10 June 2016 Abstract: Unconventional superconductors are characterized by various competing ordering phenomena in the normal state, such as antiferromagnetism, charge order, orbital order or nematicity. According to a widespread view, antiferromagnetic fluctuations are the dominant ordering phenomenon in cuprates and Fe based superconductors and are responsible for electron pairing. In contrast, charge order is believed to be subdominant and compete with superconductivity. Here, we argue that fluctuating charge order in the (0,π) direction is a feature shared by the cuprates and the Fe based superconductors alike. Recent data and theoretical models suggest that superconductivity is brought about by charge order excitations independently from spin fluctuations. Thus, quantum fluctuations of charge order may provide an alternative to spin fluctuations as a mechanism of electron pairing in unconventional superconductors. Keywords: iron-based superconductors; cuprates; charge density wave; charge order; spin order; fluctuations; phase transition; quantum critical point 1. Introduction Superconductivity arises from the interplay of several mechanisms. First, there is the exchange of bosonic excitations, which gives rise to an indirect electron-electron attraction competing with the Coulomb repulsion. In classical BCS superconductivity, the bosonic excitations are phonons. Basically, an electron with momentum k scatters into a state k ´ q creating a phonon with energy }wq. The phonon is absorbed by another electron, whereupon it changes its momentum from k1 to k1 ` q (see Figure1). The corresponding interaction is expressed as [1]: 1 1 1 xi|Hint | f y “ x f | He´ph |hy xh| He´ph |iy ` (1.1) 2 ˜ Ei ´ Eh Ef ´ Eh ¸ ¸h here, the initial state |iy “ k, k1; 0 is composed of the electron wave functions before scattering and phonon emission. The final state | f y “ k ´ q, k1 ` q; 0 contains the scattered electron wave functions ˇ D after scattering and phononˇ absorption. The intermediate, virtually excited states |hy “ k ´ q, k1; w ˇ D } q with energy E “ E ` E 1 ` w correspondˇ to the excitation of a phonon by one of the electrons. h k´q k } q ˇ D ˇ The perturbation operator He´ph is expressed as: ´iqr † ˚ iqr He´ph “ Aqe aq ` Aq e aq (1.2) † with aq and aq being the phonon creation and annihilation operators, respectively. Aq gauges the strength of the electron–phonon interaction. In order to qualitatively appreciate the meaning of Symmetry 2016, 8, 45; doi:10.3390/sym8060045 www.mdpi.com/journal/symmetry Symmetry 2016, 8, 45 2 of 14 Symmetry †2016, 8, 45 2 of 14 with aq and aq being the phonon creation and annihilation operators, respectively. Aq gauges † withthe strength aq and of atheq being electron the– phononphonon interaction.creation and In annihilation order to qualitatively operators, appreciate respectively. the meaningAq gauges of the strength of the electron–phonon interaction. In order to qualitatively appreciate the meaning of Equation (1.1), we assume for simplicity that the scattering amplitude is the same for f He ph h Equation (1.1), we assume for simplicity that the scattering amplitude is the same for f H h and i H h and is constant. This yields e ph e ph , and i He ph h and is constant. This yields Symmetry 2016, 8,, 45 2 of 14 12 1 1 i H f M int (1.3) 12 2 h EEEE 1 1 i h f h Equation (1.1), we assume for simplicityi Hint f thatthe M scattering amplitude is the same for x f | H |hy and(1.3) 2 EEEE e´ph h i h f h xThei| He ´summationph |hy, and is constant.is subject This to yields the constraint that the electrons can only be scattered into The summation is subject to the constrainth that the electrons can only be scattered into unoccupied states. Note that the virtual states1 are1 short-lived1 and hence need not obey energy xi|H | f y “ |M|2 ` (1.3) unoccupied states. Note that the virtualint states2 h areE ´ shortE -livedE ´ E and hence need not obey energy E h ˜ i h f h ¸ conservation. Since h includes the phonon energy¸ , q , resonance occurs for electron energies conservation.e Since E includes the phonon energy, , resonance occurs for electron energies The summationh is subject to the constraint that the electronsq can only be scattered into unoccupied EEh i q in the virtual state Eik2 . With hardly any empty states available below F e states. Note that the virtual states |hy are short-lived and hence need not obey energy conservation. ´ EEh i q in the virtual state Eik2 . With hardly any empty statese available below F EiqSince , Eith isincludes clear that the phonon the matrix energy, elemen}wq, resonancet Equation occurs (1.3) for is electron negative, energies i.e., leadsEh “ toEi ´an} wattractiveq in the virtual state Ei « 2#kF . With hardly any empty states available below Ei ´ }wq, it is clear that the interactionEiq, it (seeis clear Figure that 2). the matrix element Equation (1.3) is negative, i.e., leads to an attractive matrix element Equation (1.3) is negative, i.e., leads to an attractive interaction (see Figure2). interaction (see Fig`ure 2). ˘ Figure 1. Pairing interaction between electrons at the Fermi level via exchange of phonons q . FigureThe Figurediagram 1. Pairing 1. refersPairing interaction to interactionone term between in between the sum electrons electrons Equation at at the the(1.1) Fermi Fermi. The level leveltotal momentum via exchangeexchange of of ofthe phonons phonons electron}w pairq. q is. Theassumed diagramThe diagram to refersbe referszero to one to(this one term maximizes term in in the the sum sumthe Equation Equationphase space (1.1).(1.1). TheThefor total thetotal momentumsummation momentum of Equation theof the electron electron (1.1) pair). pair is Only is assumed to be zero (this maximizes the phase space for the summation Equation (1.1)). Only electrons assumedelectrons withinto be zeroa shell (this of widthmaximizes thearound phase EF canspace participate for the summationin the pairing Equation interaction. (1.1) ). Only within a shell of width }wq around EqF can participate in the pairing interaction. electrons within a shell of width q around EF can participate in the pairing interaction. FigureFigure 2. Electron 2. Electron energy energy diagram for for the the evaluation evaluation of matrix of matrix element eleme Equationnt Equation (1.3). Here, (1.3) the. widthHere, the Figurewidthof theof2. the FermiElectron Fermi distribution energy distribution isdiagram assumed is assumedfor to bethe negligible evaluation to be innegligible comparison of matrix in tocomparisoneleme the phononnt Equation to energy the (1.3)}phwqonon.. Hence, Here energy, the Ei “ Ef « 2#k . The configuration space available for the virtual states is shown as the shaded area. width . ofHence the ,Fermi EEF distribution2 . The is configurationassumed to be space negligible available in forcomparison the virtual to states the ph is ononshown energy as the q i f kF The. Hence attractive, EE interaction2 . The Equation configuration (1.3) is space a bare available interaction for the competing virtual states with is theshown Coulomb as the shadedq area. i f kF repulsion. Whether it can actually give rise to a sufficient Cooper pair density and a superconducting shaded area. phase transition depends on the response of the other electrons in the Fermi sea. The next step, therefore, is to calculate the Cooper pair susceptibility χpair pq “ 0, !q. As mentioned, the choice q “ 0 yields the largest interaction Equation (1.1), and, therefore, in the lowest energy state, the total Symmetry 2016, 8, 45 3 of 14 momentum of the pairs is zero, i.e., electron pairs with momentum k and ´k are formed. One obtains [2] χ0 p0, !q χ pair pair p0, wq “ 0 (1.4) 1 ` Uχpair p0, !q with 0 1 f pxkq ´ f p´x´kq cpair p0, wq “ (1.5) W w ´ xk ´ x´k ` id ¸k W being the volume of the system and f pxkq the Fermi factor at the energy xk “ #k ´ EF. Equation (1.4) 0 signals a phase transition once the denominator goes to zero. Since cpair p0, wq is positive, this may be the case for attractive interactions U pU ă 0q such as Equation (1.3). The exchange of phonons, however, is not the only possible source for attractive electron interactions. As mentioned above, other bosonic excitations could serve a similar purpose. In particular, there is a general consensus that paramagnon excitations are likely candidates in the case of cuprates and also of the iron-based unconventional superconductors. A third possibility arises in the presence of (fluctuating) charge density waves (CDW). The complex CDW order parameter is characterized by the amplitude and the phase of the CDW modulation. The normal modes of these two degrees of freedom are amplitudon and phason [3] (see Figure3). The dispersion of the normal modes resembles the dispersion of optical and acustic phonons, respectively. For an incommensurate CDW, a uniform phase shift of the charge modulation relative to the ionic lattice does not change the energy, thus the phason mode dispersion starts at wphason “ 0 for q “ 0. In contrast, the amplitudon has a finite energy even at q “ 0. Note that the phason involves a shift of the electronic charge with respect to the ionic background and therefore is associated with an optically excitable dipole moment, while the amplitudon changes the polarizability and is detectable in Raman spectroscopy.
Recommended publications
  • Arxiv:1701.03127V1 [Cond-Mat.Supr-Con] 11 Jan 2017 Scnre Ytesmcnutn Rpriso E.G
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by HZB Repository Antiferromagnetic structure and electronic properties of BaCr2As2 and BaCrFeAs2 Kai A. Filsinger,1 Walter Schnelle,1 Peter Adler,1 Gerhard H. Fecher,1 Manfred Reehuis,2 Andreas Hoser,2 Jens-Uwe Hoffmann,2 Peter Werner,3 Martha Greenblatt,4 and Claudia Felser1 1Max Planck Institute for Chemical Physics of Solids, N¨othnitzer Straße 40, 01187 Dresden, Germany 2Helmholtz-Zentrum Berlin f¨ur Materialien und Energie, 14109 Berlin, Germany 3Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle (Saale), Germany 4Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA (Dated: January 13, 2017) The chromium arsenides BaCr2As2 and BaCrFeAs2 with ThCr2Si2 type structure (space group I4/mmm; also adopted by ‘122’ iron arsenide superconductors) have been suggested as mother com- pounds for possible new superconductors. DFT-based calculations of the electronic structure evi- dence metallic antiferromagnetic ground states for both compounds. By powder neutron diffraction we confirm for BaCr2As2 a robust ordering in the antiferromagnetic G-type structure at TN = 580 K with µCr = 1.9 µB at T = 2 K. Anomalies in the lattice parameters point to magneto-structural cou- pling effects. In BaCrFeAs2 the Cr and Fe atoms randomly occupy the transition-metal site and 57 G-type order is found below 265 K with µCr/Fe = 1.1 µB. Fe M¨ossbauer spectroscopy demonstrates that only a small ordered moment is associated with the Fe atoms, in agreement with electronic structure calculations with µFe ∼ 0. The temperature dependence of the hyperfine field does not follow that of the total moments.
    [Show full text]
  • Neutron Scattering Principal Investigators' Meeting
    Neutron Scattering Principal Investigators’ Meeting July 28-30, 2014 Hilton Washington DC North/Gaithersburg Gaithersburg, Maryland Office of Basic Energy Sciences Division of Materials Sciences and Engineering On the Cover Top Left: Numerical simulation of the magnetic inhomogeneity (red = magnetism, blue = superconductivity) caused by replacing 1% of the indium atoms in a superconductor (CeCoIn5) with cadmium atoms. The field of view is approximately 100 nanometers along each edge (Cover Image from Seo et al., Nature Physics, 10, 120–125, 2014). Top Middle: Resonant scattering with coherent x-rays on the size and the dynamics of magnetic domains in a Dysprosium crystal with three different domains (shown in three colors in the schematic). Above 85K, this material exhibits a spiral magnetic state wherein the magnetic moments in a given layer in each domain are parallel, but oriented at a fixed angle with respect to the moments in the adjacent layers (Cover Image from Chen et al., Physics Review Letters, 110, 217201, 2013). Top Right: Schematic illustration of cylinder-forming diblock copolymers, where the first block is a protein at the surface and the second block is the covalently attached synthetic polymer at the interior (Cover Image from Lam and Olsen, Soft Matter, 9, 2392–2402, 2013). Bottom Left: Inelastic neutron scattering of high-quality single-crystal samples of the mineral ZnCu3(OD)6Cl2 revealed that the scattered neutrons have a broad spread of energies (light green diffuse regions in figure), a hallmark signature predicted by theory (Han et al., Nature, 492, 406–410, 2012). Bottom Middle: High-energy x-ray diffraction pattern from a single grain of a gadolinium – cadmium alloy (shown in center) displaying the novel five-fold rotational symmetry, characteristic of an icosahedral quasicrystal.
    [Show full text]
  • Tt 40.1–40.18
    Thursday TT 40: Superconductivity: Ferropnictides 1 Time: Thursday 14:00–19:00 Location: HSZ 03 TT 40.1 Thu 14:00 HSZ 03 sruhe, Institut f¨urFestk¨orperphysik, 76021 Karlsruhe, Germany — Antiferromagnetic correlations in the normal state of 2Physikalisches Institut, Universit¨atKarlsruhe, 76128 Karlsruhe, Ger- LaFeAsO1−xFx with 0 ≤ x ≤ 0.125 — •Rudiger¨ Klingeler, Nor- many man Leps, Liran Wang, Christian Hess, Gunter¨ Behr, Vladislav Since the discovery of the new high-Tc iron pnictides, many scenar- Kataev, and Bernd Buchner¨ — IFW Dresden, P.O. Box 270116, ios were put forward to describe the symmetry of the order parameter 01171 Dresden, Germany including d-wave and unconventional s-wave. Early heat capacity mea- We have studied the interplay of magnetism and superconductivity in surements suggested that the electron-doped 1111 compounds show a LaFeAsO1−xFx with 0 ≤ x ≤ 0.125. For low doping with x ≤ 0.04, our nodal gap, while K-hole-doped 122 materials are fully gapped. Here we data confirm a moderate suppression of both the structural transition present a critical analysis of our own specific-heat data on Co-doped and the antiferromagnetic spin density wave formation. For x ≥ 0.05, 122 single crystals, in which we pay particular attention to the details both anomalies are completely suppressed and superconductivity is ob- of the phonon background subtraction as well as to the contribution served. Remarkably, the temperature dependence of the normal state of impurity phases. We also discuss an interesting field-dependence of susceptibility well above TC is almost independent of doping, i.e. both the thermal expansivity below Tc(H).
    [Show full text]
  • Spin Dynamics in 122-Type Iron-Based Superconductors
    Spin Dynamics in 122-Type Iron-Based Superconductors Von der Fakultät Mathematik und Physik der Universität Stuttgart zur Erlangung der Würde eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung vorgelegt von Jitae Park aus Seoul (Südkorea) Hauptberichter: Prof. Dr. Bernhard Keimer Mitberichter: Prof. Dr. Harald Giessen Tag der mündlichen Prüfung: 16. Juli 2012 Max-Planck-Institut für Festkörperforschung Stuttgart 2012 Contents Zusammenfassung in deutscher Sprache 3 1 Introduction 7 1.1 General overview . 7 1.2 Scope of thesis . 9 2 Iron-based superconductors 13 2.1 Basic characteristics . 13 2.1.1 Zoo of iron-based superconductors . 13 2.1.2 Crystal structure and reciprocal-space structure . 14 2.1.3 Electronic band structure . 18 2.2 Phase diagram . 21 2.2.1 External parameters for modification of the system . 22 2.2.2 Long-range magnetic order and its spin dynamics . 27 2.2.3 Coexistence of magnetic and superconducting phases . 31 2.2.4 Spin dynamics in the parent compound . 34 2.3 Superconducting properties . 42 2.3.1 Pairing symmetry . 43 Δ/ 2.3.2 Coupling constant 2 kB Tc ...................... 45 2.4 Magnetic resonant mode in the spin-excitation spectra . 47 2.4.1 Theoretical approach . 48 2.4.2 Experimental observations . 49 3 Experimental methods 51 3.1 Preparation of single crystalline samples . 51 3.1.1 Flux method for single crystal growth . 51 3.1.2 Sample characterization . 54 3.2 Neutron scattering technique . 59 3.2.1 Scattering formulae . 60 3.2.2 Triple-axis neutron spectrometer . 70 3.2.3 Spurions .
    [Show full text]
  • Superconductivity, Magnetism and Crystal Chemistry of Ba1-Xkxfe2as2
    Superconductivity, magnetism and crystal chemistry of Ba1−xKxFe2As2 Dirk Johrendta,* and Rainer Pöttgenb a Department Chemie und Biochemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5–13 (Haus D), 81377 München, Germany E-mail: [email protected] b Institut für Anorganische und Analytische Chemie and NRW Graduate School of Chemistry, Universität Münster, Corrensstrasse 30, 48149 Münster, Germany E-mail: [email protected] A B S T R A C T BaFe2As2 is the parent compound of the ‘122’ iron arsenide superconductors and crystallizes with the tetragonal ThCr2Si2 type structure, space group I4/mmm. A spin density wave transition at 140 K is accompanied by a symmetry reduction to space group Fmmm and simultaneously by antiferromagnetic ordering. Hole-doping induces superconductivity in Ba1−xKxFe2As2 with a maximum Tc of 38 K at x ≈ 0.4. The upper critical fields approach 75 T with rather small anisotropy of Hc2. At low potassium concentrations (x ≤ 0.2), superconductivity apparently co-exists with the orthorhombic distorted and magnetically ordered phase. At doping levels x ≥ 0.3, the structural distortion and antiferromagnetic ordering is completely suppressed and the Tc is maximized. No magnetically ordered domains could be detected in optimally doped 57 Ba1−xKxFe2As2 (x ≥ 0.3) by Fe-Mössbauer spectroscopy in contrast µSR results obtained with single crystals. The magnetic hyperfine interactions investigated by 57Fe Mössbauer spectroscopy are discussed and compared to the ZrCuSiAs-type materials. 57 Keywords: BaFe2As2, Superconductivity, SDW anomaly, Fe-Mössbauer spectroscopy PACS: 74.10.+v, 74.25.Ha, 74.25.Dw, 74.62.Bf, 33.45.+x *Corresponding author. E-mail address: [email protected] (D.
    [Show full text]
  • Arxiv:1701.03127V1 [Cond-Mat.Supr-Con] 11 Jan 2017 Scnre Ytesmcnutn Rpriso E.G
    Antiferromagnetic structure and electronic properties of BaCr2As2 and BaCrFeAs2 Kai A. Filsinger,1 Walter Schnelle,1 Peter Adler,1 Gerhard H. Fecher,1 Manfred Reehuis,2 Andreas Hoser,2 Jens-Uwe Hoffmann,2 Peter Werner,3 Martha Greenblatt,4 and Claudia Felser1 1Max Planck Institute for Chemical Physics of Solids, N¨othnitzer Straße 40, 01187 Dresden, Germany 2Helmholtz-Zentrum Berlin f¨ur Materialien und Energie, 14109 Berlin, Germany 3Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle (Saale), Germany 4Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA (Dated: September 9, 2021) The chromium arsenides BaCr2As2 and BaCrFeAs2 with ThCr2Si2 type structure (space group I4/mmm; also adopted by ‘122’ iron arsenide superconductors) have been suggested as mother com- pounds for possible new superconductors. DFT-based calculations of the electronic structure evi- dence metallic antiferromagnetic ground states for both compounds. By powder neutron diffraction we confirm for BaCr2As2 a robust ordering in the antiferromagnetic G-type structure at TN = 580 K with µCr = 1.9 µB at T = 2 K. Anomalies in the lattice parameters point to magneto-structural cou- pling effects. In BaCrFeAs2 the Cr and Fe atoms randomly occupy the transition-metal site and 57 G-type order is found below 265 K with µCr/Fe = 1.1 µB. Fe M¨ossbauer spectroscopy demonstrates that only a small ordered moment is associated with the Fe atoms, in agreement with electronic structure calculations with µFe ∼ 0. The temperature dependence of the hyperfine field does not follow that of the total moments. Both compounds are metallic but show large enhancements of the linear specific heat coefficient γ with respect to the band structure values.
    [Show full text]
  • APS Science 2009
    APS Science 2009 Science APS Advanced Photon Source ANL-10/06 ISSN 1931-5015 Argonne National Laboratory May 2010 9700 South Cass Avenue Argonne, IL 60439 USA May 2010 May www.anl.gov www.aps.anl.gov APS Science 2009 Argonne National Laboratory ANL-10/06 ISSN ANL-10/06 1931-5007 Research and Engineering Highlights from the Advanced Photon Source at Argonne National Laboratory U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC ANL-10/06 ISSN 1931-5015 May 2010 The Advanced Photon Source at Argonne National Laboratory is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-ACO2-06CH11357 About Argonne National Laboratory Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under contract DE-ACO2-06CH11357. The Laboratory’s main facility is outside Chicago, at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne and its pioneering science and technology programs, see www.anl.gov. Availability of This Report This report is available, at no cost, at http://www.osti.gov/bridge. It is also available on paper to the U.S. Department of Energy and its contractors, for a processing fee, from: U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 phone (865) 576-8401 fax (865) 576-5728 [email protected] Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government.
    [Show full text]
  • High-Pressure Effects on Isotropic Superconductivity in the Iron-Free Layered Pnictide Superconductor Bapd2as2
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Kyutacar : Kyushu Institute of Technology Academic Repository High-pressure effects on isotropic superconductivity in the iron-free layered pnictide superconductor BaPd2As2 著者 Abdel-Hafiez M., Zhao Y., Huang Z., Cho C.-w., Wong C. H., Hassen A., Ohkuma M., Fang Y.-W., Pan B.-J., Ren Z.-A., Sadakov A., Usoltsev A., Pudalov V., Mito M., Lortz R., Krellner C., Yang W. journal or Physical Review B publication title volume 97 number 13 page range 134508-1-134508-9 year 2018-04-12 URL http://hdl.handle.net/10228/00007071 doi: info:doi/10.1103/PhysRevB.97.134508 PHYSICAL REVIEW B 97, 134508 (2018) High-pressure effects on isotropic superconductivity in the iron-free layered pnictide superconductor BaPd2As2 M. Abdel-Hafiez,1,2,3,* Y. Zhao,4 Z. Huang,5 C.-w. Cho,5 C. H. Wong,6 A. Hassen,7 M. Ohkuma,8 Y.-W. Fang,9 B.-J. Pan,10 Z.-A. Ren,10 A. Sadakov,11 A. Usoltsev,11 V. Pudalov,11 M. Mito,8 R. Lortz,5 C. Krellner,2 and W. Yang4,12 1Center for High Pressure Science and Technology Advanced Research, Beijing, 100094, China 2Institute of Physics, Goethe University Frankfurt, 60438 Frankfurt/M, Germany 3National University of Science and Technology “MISiS,” Moscow 119049, Russia 4Center for High Pressure Science and Technology Advanced Research, Shanghai, 201203, China 5Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 6Institute of Physics and Technology, Ural Federal University, Yekaterinburg, Russia 7Faculty of Science, Physics Department, Fayoum University, 63514-Fayoum, Egypt 8Graduate School of Engineering, Kyushu Institute of Technology, Kitakyushu 804-8550, Japan 9Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronic Engineering, East China Normal University, Shanghai 200241, China 10Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China 11P.N.
    [Show full text]
  • Itinerant Spin Dynamics in Iron-Based Superconductors and Cerium-Based Heavy-Fermion Antiferromagnets
    Itinerant Spin Dynamics in Iron-based Superconductors and Cerium-based Heavy-Fermion Antiferromagnets Von der Fakultät Mathematik und Physik der Universität Stuttgart zur Erlangung der Würde eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung vorgelegt von Gerd Friemel aus Meißen Hauptberichter: Prof. Dr. Bernhard Keimer Mitberichter: Prof. Dr. Martin Dressel Tag der mündlichen Prüfung: 26. Mai 2014 Max Planck Institut für Festkörperforschung Stuttgart 2014 Contents Abbreviations vii Zusammenfassung in deutscher Sprache ix Abstract xiii 1 Introduction1 1.1 Scope of the thesis.............................3 2 The phase diagram of correlated electron systems7 2.1 The family of iron arsenide superconductors...............7 2.1.1 Electronic structure and Fermi surface of FeSC......... 10 2.1.2 Reciprocal-space structure of the spin fluctuations in FeSC.. 12 2.1.3 Unconventional order parameter in the superconducting phase of FeSC............................... 13 2.2 The family of alkali-metal iron selenide superconductors........ 15 2.2.1 Electronic structure of the superconducting phase........ 16 2.2.2 AxFe2−ySe2: Phase separation into insulating A2Fe4Se5 and su- perconducting AxFe2Se2 ...................... 17 2.3 Unconventional superconductivity in heavy-fermion compounds.... 20 2.4 The magnetic phase diagram of CeB6 ................... 21 2.4.1 Crystal structure and ground state of CeB6 ............ 21 2.4.2 Magnetic structure in the antiferromagnetic and antiferroquadrupo- lar phase of CeB6 .......................... 23 2.4.3 Mean-field description of the phase diagram........... 26 2.4.4 Electronic properties of CeB6 ................... 29 2.4.5 Alternative approach to phase II................. 33 2.4.6 Appearance of phase IV in Ce1−xLaxB6 ............. 35 2.4.7 Non-Fermi-liquid regime of Ce1−xLaxB6 ............
    [Show full text]
  • 論文 / 著書情報 Article / Book Information
    論文 / 著書情報 Article / Book Information 題目(和文) Title(English) Exploration of new iron pnictide superconductors utilizing high pressure synthesis 著者(和文) 村場善行 Author(English) Yoshinori Muraba 出典(和文) 学位:博士(工学), 学位授与機関:東京工業大学, 報告番号:甲第9505号, 授与年月日:2014年3月26日, 学位の種別:課程博士, 審査員:細野 秀雄,阿藤 敏行,須崎 友文,平松 秀典,松石 聡 Citation(English) Degree:Doctor (Engineering), Conferring organization: Tokyo Institute of Technology, Report number:甲第9505号, Conferred date:2014/3/26, Degree Type:Course doctor, Examiner:,,,, 学位種別(和文) 博士論文 Type(English) Doctoral Thesis Powered by T2R2 (Tokyo Institute Research Repository) Exploration of new iron pnictide superconductors utilizing high pressure synthesis Yoshinori Muraba Department of Materials Science and Engineering Interdisciplinary Graduate School of Science and Engineering Tokyo Institute of Technology 2014 Contents Chapter 1 1 General introduction 1.1. Background of present study.........................…...................................................................1 1.1.1. Histroy of superconductor....................................................................................................1 1.1.2. Crystal structures of iron-based superconductors...............................................................3 1.1.3. Superconductivity induced by various doping modes..........................................................4 1.1.4. Generic phase diagrams......................................................................................................6 1.1.5. Electronic structures............................................................................................................7
    [Show full text]
  • Superstripes 2017
    SUPERSTRIPES 2017 edited by Antonio Bianconi superstripes press S u p e r s t r i p e s P r e ss science series SUPERSTRIPES 2017 Quantum in Complex Matter: Superconductivity, Magnetism & Ferroelectricity edited by Antonio Bianconi superstripes press S u p e r s t r i p e s P r e ss science series Science Series No.11 Title: Superstripes 2017 Published on June 2017 by Superstripes Press, Rome, Italy http://www.superstripes.net/science/science.htm © 2017 Superstripes Press © 2017 Multiple authors ISBN 978-88-6683-069-6 ISBN-A 10.978.886683/0696 This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA. Authors : Abbamonte P., Aeppli G., Alarco J.A., Albertini R., Aoki D., Attanasio C., Avigo I., Babaev E., Bachar N., Badoux S., Balakirev F.F., Balicas L., Bao W., Barbiellini B., Berciu M., Berthod C., Bianconi A., Billinge S.J.L., Bonca J., Boris A., Borisenko S., Borzenets I., Bozin E.S., Brazovskii S., Brun C., Bussmann-Holder A., Capone M., Carlström J., Chang J., Chávez I., Chu P.C.W., Conradson S.D., Coslovich G., Crisan A., Daghero D., de Llano M., de’ Medici L., Dean M. P. M., Degiorgi L., Destraz D., Deutscher G., Di Gioacchino M., Di Giorgio C., Dobrosavljevic V., Drechsler S.L., Efremov D., Egami T., Einaga M., Eremets M.I., Eremin I., Eremin M., Fanfarillo L., Farina D., Feng S., Fine B.V., Fink J., Flammia L., Frésard R.,
    [Show full text]
  • High-Pressure Effects on Isotropic Superconductivity in the Iron-Free
    High pressure effects on isotropic superconductivity in the iron-free layered pnictide superconductor BaPd2As2 Mahmoud Abdel-Hafiez,1, 2, 3, ∗ Y. Zhao,4 Z. Huang,5 C.-w. Cho,5 C. H. Wong,6 A. Hassen,7 M. Ohkuma,8 Y.-W. Fang,9 B.-J. Pan,10 Z.-A. Ren,10 A. Sadakov,11 A. Usoltsev,11 V. Pudalov,11 M. Mito,8 R. Lortz,5 C. Krellner,2 and W. Yang4, 12 1Center for High Pressure Science and Technology Advanced Research, Beijing, 100094, China 2Institute of Physics, Goethe University Frankfurt, 60438 Frankfurt/M, Germany 3National University of Science and Technology "MISiS", Moscow 119049, Russia 4Center for High Pressure Science and Technology Advanced Research, Shanghai, 201203, China 5Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 6Institute of Physics and Technology, Ural Federal University, Yekaterinburg, Russia 7Faculty of science, Physics department, Fayoum University, 63514-Fayoum- Egypt 8Graduate School of Engineering, Kyushu Institute of Technology, Kitakyushu 804-8550, Japan 9Department of Electronic Engineering, East China Normal University, Shanghai 200241, China 10Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China 11P.N. Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia 12High Pressure Synergetic Consortium (HPSynC), Carnegie Institution of Washington, Argonne, Illinois, 60439, USA. (Dated: May 22, 2018) While the layered 122 iron arsenide superconductors are highly anisotropic, unconventional, and exhibit several forms of electronic orders that coexist or compete with superconductivity in different regions of their phase diagrams, we find in the absence of iron in the structure that the superconduct- ing characteristics of the end member BaPd2As2 are surprisingly conventional.
    [Show full text]