87 November 2014—PROGRAM and ABSTRACTS
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Download Full Article in PDF Format
A new marine vertebrate assemblage from the Late Neogene Purisima Formation in Central California, part II: Pinnipeds and Cetaceans Robert W. BOESSENECKER Department of Geology, University of Otago, 360 Leith Walk, P.O. Box 56, Dunedin, 9054 (New Zealand) and Department of Earth Sciences, Montana State University 200 Traphagen Hall, Bozeman, MT, 59715 (USA) and University of California Museum of Paleontology 1101 Valley Life Sciences Building, Berkeley, CA, 94720 (USA) [email protected] Boessenecker R. W. 2013. — A new marine vertebrate assemblage from the Late Neogene Purisima Formation in Central California, part II: Pinnipeds and Cetaceans. Geodiversitas 35 (4): 815-940. http://dx.doi.org/g2013n4a5 ABSTRACT e newly discovered Upper Miocene to Upper Pliocene San Gregorio assem- blage of the Purisima Formation in Central California has yielded a diverse collection of 34 marine vertebrate taxa, including eight sharks, two bony fish, three marine birds (described in a previous study), and 21 marine mammals. Pinnipeds include the walrus Dusignathus sp., cf. D. seftoni, the fur seal Cal- lorhinus sp., cf. C. gilmorei, and indeterminate otariid bones. Baleen whales include dwarf mysticetes (Herpetocetus bramblei Whitmore & Barnes, 2008, Herpetocetus sp.), two right whales (cf. Eubalaena sp. 1, cf. Eubalaena sp. 2), at least three balaenopterids (“Balaenoptera” cortesi “var.” portisi Sacco, 1890, cf. Balaenoptera, Balaenopteridae gen. et sp. indet.) and a new species of rorqual (Balaenoptera bertae n. sp.) that exhibits a number of derived features that place it within the genus Balaenoptera. is new species of Balaenoptera is relatively small (estimated 61 cm bizygomatic width) and exhibits a comparatively nar- row vertex, an obliquely (but precipitously) sloping frontal adjacent to vertex, anteriorly directed and short zygomatic processes, and squamosal creases. -
How to Cite Complete Issue More Information About This Article
Boletín de la Sociedad Geológica Mexicana ISSN: 1405-3322 Sociedad Geológica Mexicana, A.C. Hernández Cisneros, Atzcalli Ehécatl; González Barba, Gerardo; Fordyce, Robert Ewan Oligocene cetaceans from Baja California Sur, Mexico Boletín de la Sociedad Geológica Mexicana, vol. 69, no. 1, January-April, 2017, pp. 149-173 Sociedad Geológica Mexicana, A.C. Available in: http://www.redalyc.org/articulo.oa?id=94350664007 How to cite Complete issue Scientific Information System Redalyc More information about this article Network of Scientific Journals from Latin America and the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Project academic non-profit, developed under the open access initiative Boletín de la Sociedad Geológica Mexicana / 2017 / 149 Oligocene cetaceans from Baja California Sur, Mexico Atzcalli Ehécatl Hernández Cisneros, Gerardo González Barba, Robert Ewan Fordyce ABSTRACT Atzcalli Ehecatl Hernández Cisneros ABSTRACT RESUMEN [email protected] Museo de Historia Natural de la Universidad Autónoma de Baja California Sur, Univer- Baja California Sur has an import- Baja California Sur tiene un importante re- sidad Autónoma de Baja California Sur, ant Cenozoic marine fossil record gistro de fósiles marinos del Cenozoico que Carretera al Sur Km 5.5, Apartado Postal which includes diverse but poorly incluye los restos poco conocidos de cetáceos 19-B, C.P. 23080, La Paz, Baja California Sur, México. known Oligocene cetaceans from del Oligoceno de México. En este estudio Instituto Politécnico Nacional, Centro Inter- Mexico. Here we review the cetacean ofrecemos más detalles sobre estos fósiles de disciplinario de Ciencias Marinas (CICMAR), fossil record including new observa- cetáceos, incluyendo nuevas observaciones Av. Instituto Politécnico Nacional s/n, Col. -
Vestibular Evidence for the Evolution of Aquatic Behaviour in Early
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Publications of the IAS Fellows letters to nature .............................................................. cetacean evolution, leading to full independence from life on land. Vestibular evidence for the Early cetacean evolution, marked by the emergence of obligate evolution of aquatic behaviour aquatic behaviour, represents one of the major morphological shifts in the radiation of mammals. Modifications to the postcranial in early cetaceans skeleton during this process are increasingly well-documented3–9. Pakicetids, early Eocene basal cetaceans, were terrestrial quadrupeds 9 F. Spoor*, S. Bajpai†, S. T. Hussain‡, K. Kumar§ & J. G. M. Thewissenk with a long neck and cursorial limb morphology . By the late middle Eocene, obligate aquatic dorudontids approached modern ceta- * Department of Anatomy & Developmental Biology, University College London, ceans in body form, having a tail fluke, a strongly shortened neck, Rockefeller Building, University Street, London WC1E 6JJ, UK and near-absent hindlimbs10. Taxa which represent bridging nodes † Department of Earth Sciences, Indian Institute of Technology, Roorkee 247 667, on the cladogram show intermediate morphologies, which have India been inferred to correspond with otter-like swimming combined ‡ Department of Anatomy, College of Medicine, Howard University, with varying degrees of terrestrial capability4–8,11. Our knowledge of Washington DC 20059, USA § Wadia Institute of Himalayan Geology, Dehradun 248 001, India the behavioural changes that crucially must have driven the post- k Department of Anatomy, Northeastern Ohio Universities College of Medicine, cranial adaptations is based on functional analysis of the affected Rootstown, Ohio 44272, USA morphology itself. This approach is marred by the difficulty of ............................................................................................................................................................................ -
The Biology of Marine Mammals
Romero, A. 2009. The Biology of Marine Mammals. The Biology of Marine Mammals Aldemaro Romero, Ph.D. Arkansas State University Jonesboro, AR 2009 2 INTRODUCTION Dear students, 3 Chapter 1 Introduction to Marine Mammals 1.1. Overture Humans have always been fascinated with marine mammals. These creatures have been the basis of mythical tales since Antiquity. For centuries naturalists classified them as fish. Today they are symbols of the environmental movement as well as the source of heated controversies: whether we are dealing with the clubbing pub seals in the Arctic or whaling by industrialized nations, marine mammals continue to be a hot issue in science, politics, economics, and ethics. But if we want to better understand these issues, we need to learn more about marine mammal biology. The problem is that, despite increased research efforts, only in the last two decades we have made significant progress in learning about these creatures. And yet, that knowledge is largely limited to a handful of species because they are either relatively easy to observe in nature or because they can be studied in captivity. Still, because of television documentaries, ‘coffee-table’ books, displays in many aquaria around the world, and a growing whale and dolphin watching industry, people believe that they have a certain familiarity with many species of marine mammals (for more on the relationship between humans and marine mammals such as whales, see Ellis 1991, Forestell 2002). As late as 2002, a new species of beaked whale was being reported (Delbout et al. 2002), in 2003 a new species of baleen whale was described (Wada et al. -
Novitates PUBLISHED by the AMERICAN MUSEUM of NATURAL HISTORY CENTRAL PARK WEST at 79TH STREET, NEW YORK, N.Y
AMERICANt MUSEUM Novitates PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, N.Y. 10024 Number 2870, pp. 1-8, figs. 1-3 April 6, 1987 Selected Features of the Desmostylian Skeleton and Their Phylogenetic Implications MICHAEL J. NOVACEK1 AND ANDRE R. WYSS2 ABSTRACT According to several standard descriptions, des- pertaining to these traits are either in error, or have mostylians lack certain specializations shared by alternative phylogenetic implications. Hence, proboscideans, sirenians, and hyracoids. These comparisons of these conditions do not exclude specializations are amastoidy and the serial ar- desmostylians from the superordinal group Teth- rangement ofthe carpals with the concomitant loss ytheria (proboscideans and sirenians) or the more of contact between the lunar and unciform. We inclusive Paenungulata (tethytheres and hyra- argue that original descriptions of desmostylians coids). INTRODUCTION The Desmostylia are an extinct order of be more conservative than sirenians (and, by mammals with specializations ofthe skeleton implication, proboscideans) with respect to suitable for an amphibious mode of life. Al- the reduction ofmastoid exposure (Hay, 1915; though this group was formerly associated Abel, 1922; VanderHoof, 1937) and the se- with the aquatic Sirenia (Simpson, 1945), and rial arrangement ofthe carpal elements (Shi- is now placed within a superordinal category kama, 1966). These differences have influ- Tethytheria, which also includes the Probos- enced more recent students of the problem cidea and Sirenia (McKenna, 1975), these (e.g., Tassy, 1981), who have opted for a close avowed relationships present some prob- association ofProboscidea (including the late lems. According to standard descriptions, Eocene-early Oligocene genus Moeritheri- desmostylians lack certain skeletal special- um) and Sirenia to the exclusion of Desmo- izations shared by Proboscidea and Sirenia. -
Protocetid Cetaceans (Mammalia) from the Eocene of India
Palaeontologia Electronica palaeo-electronica.org Protocetid cetaceans (Mammalia) from the Eocene of India Sunil Bajpai and J.G.M. Thewissen ABSTRACT Protocetid cetaceans were first described from the Eocene of India in 1975, but many more specimens have been discovered since then and are described here. All specimens are from District Kutch in the State of Gujarat and were recovered in depos- its approximately 42 million years old. Valid species described in the past include Indocetus ramani, Babiacetus indicus and B. mishrai. We here describe new material for Indocetus, including lower teeth and deciduous premolars. We also describe two new genera and species: Kharodacetus sahnii and Dhedacetus hyaeni. Kharodacetus is mostly based on a very well preserved rostrum and mandibles with teeth, and Dhe- dacetus is based on a partial skull with vertebral column. The Kutch protocetid fauna differs from the protocetid fauna of the Pakistani Sulaiman Range, possibly because the latter is partly older, and/or because it samples a different environment, being located on the trailing edge of the Indian Plate, directly exposed to the Indian Ocean. Sunil Bajpai. Department of Earth Sciences, Indian Institute of Technology, Roorkee 247667, Uttarakhand, India. Current address: Birbal Sahni Institute of Palaeobotany, Lucknow 226007, Uttar Pradesh, India. [email protected]; [email protected]. J.G.M. Thewissen (corresponding author). Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio 44272, U.S.A. [email protected]. Keywords: Eocene; Mammalia; Cetacea; India; New species; New genus INTRODUCTION 1998, 2000; Thewissen and Hussain, 1998) and many specimens of the remingtonocetine genera The earliest cetaceans, pakicetids and ambu- Remingtonocetus (Bajpai et al., 2011), Dalanistes locetids are only known from the Eocene of India (Thewissen and Bajpai, 2001) and the andrewsi- and Pakistan (reviewed by Thewissen et al., 2009). -
Two New Oligocene Desmostylians and a Discussion of Tethytherian Systematics
SMITHSONIAN CONTRIBUTIONS TO PALEOBIOLOGY • NUMBER 59 Two New Oligocene Desmostylians and a Discussion of Tethytherian Systematics Daryl P. Domning, Clayton E. Ray, and Malcolm C. McKenna SMITHSONIAN INSTITUTION PRESS City of Washington 1986 ABSTRACT Domning, Daryl P., Clayton E. Ray, and Malcolm C. McKenna. Two New Oligocene Desmostylians and a Discussion of Tethytherian Systematics. Smith sonian Contributions to Paleobiology, number 59, 56 pages, 23 figures, 1986.— A new genus, comprising two new species of desmostylians, is de scribed from marine Oligocene deposits of the Pacific Northwest. Behemotops proteus, new genus, new species, is based on an immature mandibular ramus and apparently associated skeletal fragments from the middle or (more likely) upper Oligocene lower part of the Pysht Formation of Clallam County, Washington. A related new species, Behemotops emlongi, is founded on a mandibular ramus of an old individual and a mandibular fragment with canine tusk from the uppermost Oligocene (early Arikareean equivalent) Yaquina Formation of Lincoln County, Oregon. The two new species are the most primitive known desmostylians and compare favorably with the primitive Eocene proboscideans Anthracobune and Moeritherium, and to the still more primitive tethythere Minchenella from the Paleocene of China. For many years the Desmostylia were widely regarded as members of the mammalian order Sirenia before being accepted as a taxon coordinate with the Sirenia and Proboscidea (Reinhart, 1953). On the basis of cladistic analysis we go a step further and regard the Desmostylia as more closely related to Proboscidea than to Sirenia because the Desmostylia and Proboscidea are interpreted herein to share a more recent common ancestor than either order does with the Sirenia. -
Evolution and Development of Cetacean Appendages Across the Cetartiodactylan Land-To-Sea Transition
EVOLUTION AND DEVELOPMENT OF CETACEAN APPENDAGES A dissertation submitted to Kent State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy by Lisa Noelle Cooper December, 2009 Dissertation written by Lisa Noelle Cooper B.S., Montana State University, 1999 M.S., San Diego State University, 2004 Ph.D., Kent State University, 2009 Approved by _____________________________________, Chair, Doctoral Dissertation Committee J.G.M. Thewissen _____________________________________, Members, Doctoral Dissertation Committee Walter E. Horton, Jr. _____________________________________, Christopher Vinyard _____________________________________, Jeff Wenstrup Accepted by _____________________________________, Director, School of Biomedical Sciences Robert V. Dorman _____________________________________, Dean, College of Arts and Sciences Timothy Moerland ii TABLE OF CONTENTS LIST OF FIGURES ........................................................................................................................... v LIST OF TABLELS ......................................................................................................................... vii ACKNOWLEDGEMENTS .............................................................................................................. viii Chapters Page I INTRODUCTION ................................................................................................................ 1 The Eocene Raoellid Indohyus ........................................................................................ -
Phylogeny of All Major Groups of Cetaceans Based on DNA Sequences from Three Mitochondrial Genes
Phylogeny of All Major Groups of Cetaceans Based on DNA Sequences from Three Mitochondrial Genes Michel C. Milinkovitch,* Axe1 Meyer) and Jeffrey R. Powell * *Department of Biology, Yale University and +Department of Ecology and Evolution, State University of New York at Stony Brook Traditionally, living cetaceans (order Cetacea) are classified into two highly distinct suborders: the echolocating toothed whales, Odontoceti, and the filter-feeding baleen whales, Mysticeti. A molecular phylogeny based on 1,352 base pairs of two mitochondrial ribosomal gene segments and the mitochondrial cytochrome b gene for all major groups of cetaceans contradicts this long-accepted taxonomic subdivision. One group of toothed whales, the sperm whales, is more closely related to the morphologically highly divergent baleen whales than to other odontocetes. This finding suggests that the suborder Odontoceti constitutes an unnatural grouping and challenges the conventional scenario of a long, independent evolutionary history of odontocetes and mysticetes. The superfamily Delphinoidea (dolphins, porpoises, and white whales) appears to be monophyletic; the Amazon River dolphin, Inia geofiensis, is its sister species. This river dolphin is genetically more divergent from the morphologically similar marine dolphins than the sperm whales are from the morphologically dissimilar baleen whales. The phylogenetic relationships among the three families of Delphinoidea remain uncertain, and we suggest that the two cladogenetic events that generated these three clades occurred within a very short period of time. Among the baleen whales, the bowhead is basal, and the gray whale is the sister species to the rorquals (family Balaenopteridae). The phylogenetic position of beaked whales (Ziphioidea) remains weakly supported by molecular data. -
A Partial Skeleton of Behemotops (Desmostylia
consistent across both monophyodont and diphyodont taxa, thus falsifying the hypothesis. Poster Session IV, (Saturday) Therefore the relative size of the developing dentition does not influence the size of the THEROPOD TEETH FROM THE LATE CRETACEOUS OF CHERA (VALENCIA, mandible, and its utility in dietary reconstruction, in the taxa studied here. This finding has EASTERN SPAIN) important implications for our understanding of the coordinated development and evolution COMPANY, Julio, Universidad Politecnica de Valencia , Valencia , Spain; TORICES, of the dentition and skeletal masticatory system. Angelica, Universidad Complutense, Madrid, Spain; PEREDA-SUBERBIOLA, Xabier, Universidad del Pais Vasco/EHU, Bilbao, Spain; RUIZ-OMEÑACA, José, Museo del Jurasico de Asturias (MUJA), Colunga, Spain Poster Session IV, (Saturday) A PARTIAL SKELETON OF BEHEMOTOPS (DESMOSTYLIA, MAMMALIA) Several exposures of the Late Campanian-Early Maastrichtian palustrine deposits of the FROM VANCOUVER ISLAND, BRITISH COLUMBIA Sierra Perenchiza Formation at Chera Basin (Valencia province, Eastern Spain) have COCKBURN, Thomas, Royal British Columbia Museum, Victoria, BC, Canada; BEATTY, provided abundant micro- and macrovertebrate fossil remains. The vertebrate assemblage Brian, New York College of Osteopathic Medicine, Old Westbury, NY, USA recovered includes remains of actinopterygians, amphibians, squamates, chelonians, crocodyliforms, pterosaurs and dinosaurs. Among the last ones, there are representatives of In July of 2007, a partial articulated skeleton of a desmostylian -
Aquatic Adaptation and Swimming Mode Inferred from Skeletal Proportions in the Miocene Desmostylian Desmostylus
Journal of Mammalian Evolution, Vol. 12, Nos. 1/2, June 2005 (C 2005) DOI: 10.1007/s10914-005-5719-1 Aquatic Adaptation and Swimming Mode Inferred from Skeletal Proportions in the Miocene Desmostylian Desmostylus Philip D. Gingerich1,2 Desmostylians are enigmatic, extinct, semiaquatic marine mammals that inhabited coastlines of the northern Pacific Rim during the late Oligocene through middle Miocene. Principal components analysis (PCA) of trunk and limb proportions provides a rational multivariate context for separating living semiaquatic mammals on three orthogonal axes: a size axis (PC-I), a degree of aquatic adaptation axis (PC-II), and a forelimb- versus hind-limb-dominated locomotion axis (PC-III). The necessary skeletal measurements are available for Desmostylus hesperus but not for other desmostylians. Among species similar in size to Desmostylus in the study set, the one most similarly proportioned is the polar bear. Projection of Desmostylus on PC-II shows it to have been more aquatic than a polar bear (indicated by its relatively short ilium and femur, combined with relatively long metapodals and phalanges). Projection of Desmostylus on PC-III suggests that its aquatic locomotion was even more forelimb-dominated than that of a bear (indicated by its relatively long metacarpal III and corresponding proximal phalanx, combined with a relatively short metatarsal III and corresponding proximal phalanx). Desmostylians were different from all living semiaquatic mammals, and desmostylians are properly classified in their own extinct order, but their skeletal proportions suggest that bears provide an appropriate baseline for imagining what desmostylians were like in life. KEY WORDS: Swimming style, Locomotion, Semiaquatic mammals, Desmostylus,Desmo- stylia. -
The Victoria Naturalist – 1946
FOSSILS FROM THE SOOKE FORMATION. • U9 THE VICTORIA NATURAL 1ST Major Allan Brooks Death has removed one of our best loved natural• ists in the person of Major Allan Brooks. Born in India where he spent his early life , Brooks came to Canada in 189 7 and lived for several years at Mount Forest, Ontario. Later he and his parents moved to Chilliwack where he took up an Outdoor life roaming the country and collecting specimens. Here he began to sketch and paint, activities which, coupled with I his keen powers of observation and his photographic mind , resulted in him becoming one of the leading bird illustrators of our time. Although he made his subsequent home in Comox and j at Okanagan Landing he travelled much over the conti- i nent painting and collecting birds and mammals taking j time out to give distinguished service during the 1 First World War. He has become known the world over through his illustrations which have appeared in "The Birds of Y/ashington" by Dawson and Bowles, "Ducks" by Phillips, "Birds of Arizona", the National Geographic, Taverner's "Birds of Canada" and many others. Less widely known are his scientific papers which have been published in many ornithological journals such as the "Auk", "Condor" and "Murrelet". Examples of his beautifully prepared skins are in many museums and || a portion of his personal collection is already housed.| by the University of California. At 76 he was still actively engaged in studying wildlife and in preparing illustrations when his outstanding career was brought to an end on January 3rd of this year.