A Dissertation Entitled Solution Processed High Efficiency Thin Film

Total Page:16

File Type:pdf, Size:1020Kb

A Dissertation Entitled Solution Processed High Efficiency Thin Film A Dissertation entitled Solution Processed High Efficiency Thin Film Solar Cells: from Copper Indium Chalcogenides to Methylammonium Lead Halides by Zhaoning Song Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Physics ________________________________________ Dr. Michael J. Heben, Committee Chair ________________________________________ Dr. Robert W. Collins, Committee Member ________________________________________ Dr. Randy J. Ellingson, Committee Member ________________________________________ Dr. Terry P. Bigioni, Committee Member ________________________________________ Dr. Lawrence S. Anderson-Huang, Committee Member ________________________________________ Dr. Amanda Bryant-Friedrich, Dean College of Graduate Studies The University of Toledo August 2016 Copyright 2016, Zhaoning Song This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of Solution Processed High Efficiency Thin Film Solar Cells: from Copper Indium Chalcogenides to Methylammonium Lead Halides by Zhaoning Song Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Physics The University of Toledo August 2016 Photovoltaics (PV) is increasingly recognized as an important component of renewable energy sources after the rapid progress in the last decade due to increasing energy demand and reducing manufacturing costs. Despite the enormous growth of the PV market, the present solar technologies that are dominated by crystalline silicon are still limited by the relatively more expensive cost of electricity compared with power generation in the conventional fossil fuel plants. Consequently, there is an urgent need to increase the performance and reduce the manufacturing costs of solar cells. While the commercial thin film solar cells (CdTe and CuInGaSe2) have already demonstrated high efficiencies, the current fabrication processes heavily rely on intensive capital investment on expensive vacuum-based techniques. To reduce solar module costs, solution-processing techniques have been proposed as a promising route towards low cost, high throughput, large scale manufacturing of high efficiency thin film solar cells. In this thesis, we investigate the solution-processing of copper indium chalcogenides and methylammonium lead halides materials and their applications as high efficiency photovoltaic cells. iii In the first approach, we develop an ultrasonic spray deposition system to prepare the CuIn(S,Se)2 thin films. Spray deposition is a controllable, scalable, and high throughput process that is suitable for industrial manufacturing. Here we first explore the Cu-In-S films prepared by an aqueous precursor ink. By controlling the precursor composition, we fabricate PV devices consisting of the n-type In2S3 window and p-type CuInS2 absorber layers and demonstrate 2% efficiency in the preliminary devices. After replacing the aqueous ink by a hydrazine-based precursor solution and incorporating a selenization process, we are able to fabricate high quality CuIn(S,Se)2 thin film solar cells in both conventional substrate and the backwall superstrate configurations. The efficiency of 7.2% has been achieved in the sprayed CuIn(S,Se)2 devices in the substrate configuration. In the second approach, we investigate solution-processing of the inorganic-organic hybrid metal halide perovskites. We study the impact of reaction temperature and precursor composition on the formation of perovskite materials and propose a pseudo binary phase diagram to guide the processing of the materials. We develop a laser beam induced current (LBIC) technique to spatially resolve the photocurrent collection in the solution-processed devices. Processing defects and impurities phases have been identified as the origins of lower current generation. On the basis of these results, we apply advanced processing techniques in device processing and obtain the champion perovskite device with a 16% efficiency. Additionally, we image the photocurrent generated in the sub-cells of the Si/perovskite tandem devices. The result can be used to improve the design the device structure. Finally, to study the stability of perovskite solar cells, we investigate the spatial and temporal evolution of photocurrent collection across the devices and observe the partially reversible phase transition of perovskite in humid air. iv I dedicate my dissertation to my wife Yachun Zhang and my parents. Their love gives me the strength to advance and makes it all worthwhile. Acknowledgements First, I would like to express my sincere gratitude to my advisor Dr. Michael Heben for his wise advice and guidance during my research and study at The University of Toledo. I especially want to thank him for giving me the freedom to pursue my research interests and supporting me throughout the years. I would also like to thank Dr. Robert Collins, Dr. Randy Ellingson, Dr. Terry Bigioni, and Dr. Lawrence Anderson for serving on my committee and providing valuable feedback and suggestions. I am grateful to Dr. Adam Phillips for his countless efforts and contributions to my research. I also appreciate the help from our research group members and alumni, the faculty members, staff, and fellows of the Department of Physics and Astronomy and the Wright Center for Photovoltaics Innovation and Commercialization (PVIC). Additionally, I would also like to thank our collaborators, Dr. Antonio Abate, Dr. Ullrich Steiner, Jérémie Werner, Dr. Bjöern Niesen, Dr. Stefaan De Wolf, Dr. Yanfa Yan, Ilke Celik, Dr. Defne Apul, Dr. Paul Roland, Corey Grice, and Niraj Shrestha for making contributions to my research work. Finally, my special thanks also go to my friends Yao Xie, Xinxuan Tan, Yue Yu, Chuanxiao Xiao, Dr. Tingting Shi, Dr. Nanke Jiang, Dr. Zhu Wang, Dr. Rui Yang, Dr. Changyong Chen, and Dr. Zhi Ren whose friendships have sustained me. v Table of Contents Abstract .............................................................................................................................. iii Acknowledgements ..............................................................................................................v Table of Contents ............................................................................................................... vi List of Tables ................................................................................................................... xi List of Figures ................................................................................................................... xii List of Abbreviations .........................................................................................................xx List of Symbols ............................................................................................................... xxii 1 Introduction ….. .......................................................................................................1 1.1 Background and Motivation ..............................................................................1 1.2 Focus of the Dissertation ...................................................................................7 1.3 Dissertation Overview .......................................................................................9 2 Device Fabrication and Characterization Methods ................................................13 2.1 Materials Preparation and Device Fabrication .................................................13 2.1.1 Ultrasonic Spray Deposition .............................................................13 2.1.2 Fabrication of CuInSe2 Based Solar Cells ........................................15 2.1.3 Fabrication of CH3NH3PbI3 Based Solar Cells .................................17 2.2 Materials and Device Characterization ............................................................18 2.2.1 Material Characterization Methods ...................................................18 2.2.2 Device Characterization Methods .....................................................18 2.2.3 Laser Beam Induced Current (LBIC) ...........................................................22 vi 3 Spray Pyrolysis of Copper Indium Sulfide Thin Film Solar Cells ........................26 3.1 Introduction and Motivation ............................................................................26 3.1.1 History of CuInS2 Based Solar Cells................................................26 3.1.2 Structural Properties of CuInS2 Based Materials ..............................28 3.2 Cu-In-S Thin Films Prepared by Spray Pyrolysis ...........................................31 3.2.1 Mechanism of Spray Pyrolysis of Cu-In-S Thin Films ....................31 3.2.2 Spray Pyrolysis of Cu2-xS Thin Films ...............................................33 3.2.3 Spray Pyrolysis of CuInS2 and In2S3 thin films ................................35 3.3 Spray Pyrolysis of CuInS2/In2S3 Thin Film Solar Cells ..................................40 3.4 Factors Limited the Performance of the CuInS2 Solar Cells ...........................44 3.5 Conclusion .......................................................................................................46 4 Hydrazine Based Copper Indium Selenide Thin Film Solar Cells ........................48 4.1 Introduction and Motivation ............................................................................48 4.2
Recommended publications
  • Nanosolar Is Leading the “Third Wave” of Solar Power Technology: the First
    Nanosolar is leading the “Third Wave” of solar power technology: ▪ The First Wave started with the introduction of silicon-wafer based solar cells over three decades ago. While ground-breaking, it is visible until today that this technology came out of a market environment with little concern for cost, capital efficiency, and the product cost / performance ratio. Despite continued incremental improvements, silicon-wafer cells have a built-in disadvantage of fundamentally high materials cost and poor capital efficiency. Because silicon does not absorb light very strongly, silicon wafer cells have to be very thick. And because wafers are fragile, their intricate handling complicates processing all the way up to the panel product. ▪ The Second Wave came about a decade ago with the arrival of the first commercial "thin-film" solar cells. This established that new solar cells based on a stack of layers 100 times thinner than silicon wafers can make a solar cell that is just as good. However, the first thin-film approaches were handicapped by two issues: 1. The cell's semiconductor was deposited using slow and expensive high-vacuum based processes because it was not known how to employ much simpler and higher-yield printing processes (and how to develop the required semiconductor ink). 2. The thin films were deposited directly onto glass as a substrate, eliminating the opportunity of ▪ using a conductive substrate directly as electrode (and thus avoiding bottom-electrode deposition cost), ▪ achieving a low-cost top electrode of high performance, ▪ employing the yield and performance advantages of individual cell matching & sorting, ▪ employing high-yield continuous roll-to-roll processing, and ▪ developing high-power high-current panels with lower balance-of-system cost.
    [Show full text]
  • A Review Paper Ondevelopment in Material Used in Solar Pannel As
    SSRG International Journal of Mechanical Engineering Volume 6 Issue 6, 35-41, June 2019 ISSN: 2348–8360 /doi: 10.14445/23488360/IJME-V6I6P107 © 2019 Seventh Sense Research Group® A Review Paper on Development in Material Used in Solar Pannel as Solar Cell Material Ankur Kumar Bansal, Dinesh Kumar, Dr. Mukesh Kumar M.tech Mechanical, AKTU Lucknow, India Abstract electron flow when photons from sunlight absorbed In the present era, While seeing the increasing and ejected electrons, leaving a hole that is further demand for energy and depletion of resources from filled by the surrounding electrons. This phenomenon which we obtained energy, solar energy suggest as is called the photovoltaic effect. The PV cell directs the best alternative energy resource. The light from the electrons in one direction, which gives rise to the the sun is not only a non-vanishing resource of flow of current. The amount of current is directly energy but also it is an Eco- Friendly resource of proportional to the humble of absorbed photons. So it energy(free from the environment pollution and can be easily said that PV cells are a variable current noise). It can easily compensate for the energy source. The first solar cell was built by Charles Fritts requirements fulfilled by the other resources, which in 1883 by the use of a thin layer of gold, and a are depleting and environment challenges, such as coating of selenium formed a junction. In the starting Fossil Fuel and petroleum deposits. era, the PCE was very low, about 1% only, but Basically, we receive solar energy from the further improvements make it increase.
    [Show full text]
  • How Founders Use External Advice to Improve Their Firm's Chance of Succeeding
    The dynamics of forming a technology based start-up: How founders use external advice to improve their firm's chance of succeeding by Nick Cravalho B.S. Mechanical Engineering University of California, Berkeley, 2000 Submitted to the System Design and Management Program in Partial Fulfillment of the Requirements for the Degree of Master of Science in Engineering and Management at the Massachusetts Institute of Technology May 2007 2007 Nick Cravalho. All rights reserved The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium not known or hereafter created. Signature of Author Nick Cravalho System Design and Management Program May 2007 Certified by Diane Burton Thesis Supervisor Sloan School of Management Certified by _ Patrick Hale Director OASSACHUSETTS INS System Design and Management Program OF TECHNOLOGY FEB 0 1 2008 BARKER LIBRARIES The dynamics of forming a technology based start-up: How founders use external advice to improve their firm's chance of succeeding by Nick Cravalho Submitted to the System Design and Management Program on May 11, 2007 in Partial Fulfillment of the Requirements for the Degree of Master of Science in Engineering and Management Abstract External advice can be a valuable resource for founders of high technology startup companies. As with any resource, the pursuit and efficient use of the external advice resource is one of the greatest challenges for founders. This thesis examines how the founders of eleven US venture-backed high-tech companies leveraged external advice to their advantage.
    [Show full text]
  • Solar Energy: a New Day Dawning?: Silicon Valley Sunrise Oliver Morton Oliver Morton Is Nature's Chief News and Features Editor
    Solar energy: A new day dawning?: Silicon Valley sunrise Oliver Morton Oliver Morton is Nature's chief news and features editor. Abstract Sunlight is a ubiquitous form of energy, but not as yet an economic one. In the first of two features, Oliver Morton looks at how interest in photovoltaic research is heating up in California's Silicon Valley. In the second, Carina Dennis talks to Australian researchers hoping to harness the dawn Sun's heat. The Sun provides Earth with as much energy every hour as human civilization uses every year. If you are a solar­energy enthusiast, that says it all. No other energy supply could conceivably be as plentiful as the 120,000 terawatts the Sun provides ceaselessly and unbidden. If the tiniest fraction of that sunlight were to be captured by photovoltaic cells that turn it straight into electricity, there would be no need to emit any greenhouse gases from any power plant. Thanks to green thoughts like that, and to generous subsidies from governments in Japan and Germany, the solar­cell market has been growing on average by a heady 31% a year for the past decade (see chart, below). One of the most bullish industry analysts, Michael Rogol, sees the industry increasing from about US$12 billion in 2005 to as much as $70 billion in 2010. Although not everyone predicts such impressive growth, a 20–25% annual rise is widely expected. The market for shares in solar­energy companies is correspondingly buoyant. And yet in the projections of energy supply made by policy analysts and climate wonks, solar remains so marginal as to be barely on the map at all.
    [Show full text]
  • Solar Cells They Rely on Are Notoriously Expensive to Produce
    THE PRESENT PROBLEM WITH SOLAR POWER is price. Ironically, sunlight, which is abundant beyond the energy needs of the entire human race and completely free, is frequently deemed too expensive to harness. Photovoltaic panels, systems to make them compatible with grid electricity, and batteries to squirrel away energy for when it’s cloudy—all these add cost. And while such hardware and installation costs will continue to diminish over time, the standard silicon solar cells they rely on are notoriously expensive to produce. Naturally, the scientific community has taken great interest in identifying alternative materials for solar cells. Solar-harvesting materials under development at Los Alamos and elsewhere include specialized thin films, organic layers, semi- conductor nanodevices, and others. Each has promise, and each has drawbacks. But a new class of challengers emerged a few years ago and has been improving with surprising speed since then. Known as perovskites, they are any crystalline material with the same broad class of chemical structure as a natural mineral of the same name. Perovskite solar cells are generally easy to work with, easy to adjust for improved performance, and very easy to afford. And in recent experi- mentation at Los Alamos, a particular recipe has been shown to reliably generate perovskite crystals that exhibit solar conversion efficiencies comparable to those of silicon. “Silicon solar cells are still the gold standard. They’re reliable and efficient, and they’ve been thoroughly demonstrated in the field,” says Los Alamos materials scientist Aditya Mohite. “I can’t wait to render them obsolete.” Anatomy of a cell A standard solar cell contains an active layer, usually silicon, sandwiched between two electrode layers.
    [Show full text]
  • Summary of the High-Efficiency Crystalline Solar Cell Research Forum
    SUMMARY OF THE HIGH-EFFICIENCY CRYSTALLINE SOLAR CELL RESEARCH FORUM UNIVERSITY OF PENNSYLVANIA M. Wolf Session I: OVERVIEW P. Landsberg Some Aspects of the Minority Carrier Lifetime in Silicon. C.T. Sah Review of Recombination Phenomena in Righ- Efficiency Solar Cells. Session 11: EGR EFFICIENCY CONCEPTS n. Wolf Silicon Solar Cell Efficiency Improvement: Status and Outlook. Some Practical Considerattons far Econoaical Back Contact Fovaaaticn on High-Efficiency Solar Cells. High-Efficiency Cell Concepts on Low-Cost Silicon Sheet. R, Swanson High Lifetime Silicon Processing. L. Olsen Silicon HINP Solar Cells. Session 111: SURFACE/INTERFACE EFFECTS D. Chadi Atomic Structure of the Annealed Si (111) Surface. L. Kazaerski Surface and Interface Characteristics, S. Lai Nitridation of SiO2 for Surface Passivatfon. S. Panash Surface Passivation and Junction Formation Using Low-Energy Hydrogen Implants. P, Grunthaner Chemical Structure of Interfaces. PLENARY SESS!ONS Session IV: BULK BPFRCTS E. Sirtl Structural Defects in Crystalline Silicon. C. Pierce Oxygen and Carbon Impurities and Related Defects in Silicon. T. Tan Current Understanding of Point Defects and Diffusion Processes in Silicon. G. Schwuttke Defects in Web Dendrite Silicon Ribbon Crystals and Their Influences on Hinority Carrier Lifetime. J. Hanoka EBLC Characterization and dydrogen Passivation in Silicon Sheet. A. Neugrsschel Measurement of Electrical Parameters and Current Components in the Bulk of Silicon Solar Cells. Session V: MODEL-- I NG - R. Schwartz Current Status of One and Two Dimensional Numer- ical Models: Successes and Limitations. M. Lamorte Application of Closed-Form Solution Using Re- cursion Relationship in Silicon Solar Cells. P. Lindholm PIenomena Simulation for Heavy Doping and Surface ! Recombination Velocity.
    [Show full text]
  • Solar PV Technology Development Report 2020
    EUR 30504 EN This publication is a Technical report by the Joint Research Centre (JRC), the European Commission’s science and knowledge service. It aims to provide evidence-based scientific support to the European policymaking process. The scientific output expressed does not imply a policy position of the European Commission. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use that might be made of this publication. For information on the methodology and quality underlying the data used in this publication for which the source is neither Eurostat nor other Commission services, users should contact the referenced source. The designations employed and the presentation of material on the maps do not imply the expression of any opinion whatsoever on the part of the European Union concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Contact information Name: Nigel TAYLOR Address: European Commission, Joint Research Centre, Ispra, Italy Email: [email protected] Name: Maria GETSIOU Address: European Commission DG Research and Innovation, Brussels, Belgium Email: [email protected] EU Science Hub https://ec.europa.eu/jrc JRC123157 EUR 30504 EN ISSN 2600-0466 PDF ISBN 978-92-76-27274-8 doi:10.2760/827685 ISSN 1831-9424 (online collection) ISSN 2600-0458 Print ISBN 978-92-76-27275-5 doi:10.2760/215293 ISSN 1018-5593 (print collection) Luxembourg: Publications Office of the European Union, 2020 © European Union, 2020 The reuse policy of the European Commission is implemented by the Commission Decision 2011/833/EU of 12 December 2011 on the reuse of Commission documents (OJ L 330, 14.12.2011, p.
    [Show full text]
  • Thin Film Deposition Methods for Cuinse2 Solar Cells
    Critical Reviews in Solid State and Materials Sciences, 30:1–31, 2005 Copyright c Taylor and Francis Inc. ISSN: 1040-8436 print DOI: 10.1080/10408430590918341 Thin Film Deposition Methods for CuInSe2 Solar Cells Marianna Kemell,∗ Mikko Ritala, and Markku Leskel¨a Laboratory of Inorganic Chemistry, Department of Chemistry, University of Helsinki, Helsinki, Finland CuInSe2 and its alloys with Ga and/or S are among the most promising absorber materials for thin film solar cells. CuInSe2-based solar cells have shown long-term stability and the highest conversion efficiencies of all thin film solar cells, above 19%. Solar cells based on these materials are also very stable, thus allowing long operational lifetimes. The preparation of a thin film solar cell is a multistage process where every step affects the resulting cell performance and the production cost. CuInSe2 and other Cu chalcopyrites can be prepared by a variety of methods, ranging from physical vapor deposition methods such as evaporation and sputtering to low- temperature liquid phase methods such as electrodeposition. The present review discusses first the concept and operation principle of thin film solar cells, as well as the most important thin film solar cell materials. Next, the properties of CuInSe2 and related compounds, as well as features of solar cells made thereof are reviewed. The last part of the text deals with deposition methods used for the preparation of CuInSe2 and Cu(In,Ga)Se2 thin film absorbers and solar cells. Although the emphasis here is on absorber preparation methods, buffer and conducting oxide preparation are discussed as well. Keywords photovoltaics, copper chalcopyrites, absorber layer, buffer layer, transparent conducting oxide Table of Contents LIST OF SYMBOLS AND ABBREVIATIONS .............................................................................................................
    [Show full text]
  • Maximizing Thermoelectric Figures of Merit by Uniaxially Straining Indium Selenide † † † ‡ † Leonard W
    Article Cite This: J. Phys. Chem. C 2019, 123, 25437−25447 pubs.acs.org/JPCC Maximizing Thermoelectric Figures of Merit by Uniaxially Straining Indium Selenide † † † ‡ † Leonard W. Sprague Jr., Cancan Huang, Jeong-Pil Song,*, , and Brenda M. Rubenstein † Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States ‡ Department of Physics, University of Arizona, Tucson, Arizona 85721, United States *S Supporting Information ABSTRACT: A majority of the electricity currently generated is regrettably lost as heat. Engineering high-efficiency thermo- electric materials which can convert waste heat back into electricity is therefore vital for reducing our energy fingerprint. ZT, a dimensionless figure of merit, acts as a beacon of promising thermoelectric materials. However, engineering materials with large ZT values is practically challenging, since maximizing ZT requires optimizing many interdepend- ent material properties. Motivated by recent studies on bulk indium selenide that suggest it may have favorable thermo- electric properties, here we present the thermoelectric properties of monolayer indium selenide in the presence of uniaxial strain using first-principles calculations conjoined with semiclassical Boltzmann transport theory. Our calculations indicate that conduction band convergence occurs at a compressive strain of −6% along the zigzag direction and results in an enhancement of ZT for p-type indium selenide at room temperature. Further enhancements occur at −7% as the valence bands similarly converge, reaching a maximum ZT value of 0.46, which is one of the largest monolayer InSe figures of merit recorded to date at room temperature. The importance of strain is directly reflected by the enhanced transport coefficients observed at strains nearing those which give rise to the band degeneracies we observe.
    [Show full text]
  • Hybrid Nanocomposite Thin Films for Photovoltaic Applications: a Review
    nanomaterials Review Hybrid Nanocomposite Thin Films for Photovoltaic Applications: A Review Marcela Socol *,† and Nicoleta Preda *,† National Institute of Materials Physics, 405A Atomistilor Street, P.O. Box MG-7, 077125 Magurele, Romania * Correspondence: marcela.socol@infim.ro (M.S.); nicol@infim.ro (N.P.) † These authors contributed equally. Abstract: Continuing growth in global energy consumption and the growing concerns regarding climate change and environmental pollution are the strongest drivers of renewable energy deploy- ment. Solar energy is the most abundant and cleanest renewable energy source available. Nowadays, photovoltaic technologies can be regarded as viable pathways to provide sustainable energy genera- tion, the achievement attained in designing nanomaterials with tunable properties and the progress made in the production processes having a major impact in their development. Solar cells involving hybrid nanocomposite layers have, lately, received extensive research attention due to the possibility to combine the advantages derived from the properties of both components: flexibility and process- ability from the organic part and stability and optoelectronics features from the inorganic part. Thus, this review provides a synopsis on hybrid solar cells developed in the last decade which involve composite layers deposited by spin-coating, the most used deposition method, and matrix-assisted pulsed laser evaporation, a relatively new deposition technique. The overview is focused on the hybrid nanocomposite films that can use conducting polymers and metal phthalocyanines as p-type materials, fullerene derivatives and non-fullerene compounds as n-type materials, and semiconductor nanostructures based on metal oxide, chalcogenides, and silicon. A survey regarding the influence of various factors on the hybrid solar cell efficiency is given in order to identify new strategies for Citation: Socol, M.; Preda, N.
    [Show full text]
  • Vince Thesis Online
    KELVIN PROBE EXAMINATION OF ORGANIC/METALLIC SEMICONDUCTORS ______________________________________ A Thesis Presented to The Honors Tutorial College Ohio University ______________________________________ In Partial Fulfillment of the Requirements for Graduation from the Honors Tutorial College with the degree of Bachelor of Science in Physics ______________________________________ By Vincent Roberts June 2012 Table of Contents I. Introduction 4 A. An Energy Crisis 4 B. The Advent of the Solar Cell 6 II. Background and Theory 8 A. Solar Cell Technology: The Photoelectric . 8 B. Work Function and Charge Transfer . 11 C. Background on Kelvin Probe 15 D. “Seeing” at the Quantum Level 18 E. Principles of the Kelvin Method 19 III. Molecules and Preparation 25 A. Organic Molecule F4-TCNQ 25 B. Zinc Oxide 29 C. Sample Substrate Preparation 32 D. F4-TCNQ Preparation 34 IV. Data Collection 35 A. Kelvin Probe Preparation 35 B. Sample Probing 37 --2-- C. Data Collection Parameters 41 D. Discerning Between Good and Bad Data 42 V. Results and Conclusions 45 A. Discussion 45 B. Conclusions 50 C. Suggestion for Further Experimentation 54 Acknowledgements 56 References 57 --3-- I. Introduction An Energy Crisis Nano- and quantum technology are terms often used in science- fiction during the past several decades. They have become very much akin to “buzz” words of modern-day companies and technologies. The world is in the midst of a technological boom, yet it is also in a severe energy crisis. It’s no exaggeration to say that fossil fuels will be running short in the foreseeable future, and the call by environmentalists to save the planet have only added flames to the proverbial fire regarding the question of humanity’s sustainable energy dilemma.
    [Show full text]
  • Structures of Bulk Hexagonal Post-Transition-Metal Chalcogenides from Dispersion-Corrected Density-Functional Theory
    Structures of bulk hexagonal post-transition-metal chalcogenides from dispersion-corrected density-functional theory S. J. Magorrian National Graphene Institute, University of Manchester, Booth Street East, Manchester M13 9PL, United Kingdom V. Z´olyomi Hartree Centre, STFC Daresbury Laboratory, Daresbury WA4 4AD, United Kingdom N. D. Drummond Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom (Dated: March 31, 2021) We use dispersion-corrected density-functional theory to determine the relative energies of com- peting polytypes of bulk layered hexagonal post-transition-metal chalcogenides, to search for the most stable structures of these potentially technologically important semiconductors. We show that there is some degree of consensus among dispersion-corrected exchange-correlation functionals re- garding the energetic orderings of polytypes, but we find that for each material there are multiple stacking orders with relative energies of less than 1 meV per monolayer unit cell, implying that stacking faults are expected to be abundant in all post-transition-metal chalcogenides. By fitting a simple model to all our energy data, we predict that the most stable hexagonal structure has P63/mmc space group in each case, but that the stacking order differs between GaS, GaSe, GaTe, and InS on the one hand and InSe and InTe on the other. At zero pressure, the relative energies obtained with different functionals disagree by around 1{5 meV per monolayer unit cell, which is not sufficient to identify the most stable structure unambiguously; however, multi-GPa pressures reduce the number of competing phases significantly. At higher pressures, an AB0-stacked structure of the most stable monolayer polytype is found to be the most stable bulk structure; this structure has not been reported in experiments thus far.
    [Show full text]