A Case Study of Scale Insects
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cravens Peak Scientific Study Report
Geography Monograph Series No. 13 Cravens Peak Scientific Study Report The Royal Geographical Society of Queensland Inc. Brisbane, 2009 The Royal Geographical Society of Queensland Inc. is a non-profit organization that promotes the study of Geography within educational, scientific, professional, commercial and broader general communities. Since its establishment in 1885, the Society has taken the lead in geo- graphical education, exploration and research in Queensland. Published by: The Royal Geographical Society of Queensland Inc. 237 Milton Road, Milton QLD 4064, Australia Phone: (07) 3368 2066; Fax: (07) 33671011 Email: [email protected] Website: www.rgsq.org.au ISBN 978 0 949286 16 8 ISSN 1037 7158 © 2009 Desktop Publishing: Kevin Long, Page People Pty Ltd (www.pagepeople.com.au) Printing: Snap Printing Milton (www.milton.snapprinting.com.au) Cover: Pemberton Design (www.pembertondesign.com.au) Cover photo: Cravens Peak. Photographer: Nick Rains 2007 State map and Topographic Map provided by: Richard MacNeill, Spatial Information Coordinator, Bush Heritage Australia (www.bushheritage.org.au) Other Titles in the Geography Monograph Series: No 1. Technology Education and Geography in Australia Higher Education No 2. Geography in Society: a Case for Geography in Australian Society No 3. Cape York Peninsula Scientific Study Report No 4. Musselbrook Reserve Scientific Study Report No 5. A Continent for a Nation; and, Dividing Societies No 6. Herald Cays Scientific Study Report No 7. Braving the Bull of Heaven; and, Societal Benefits from Seasonal Climate Forecasting No 8. Antarctica: a Conducted Tour from Ancient to Modern; and, Undara: the Longest Known Young Lava Flow No 9. White Mountains Scientific Study Report No 10. -
Zootaxa,Phylogeny and Higher Classification of the Scale Insects
Zootaxa 1668: 413–425 (2007) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2007 · Magnolia Press ISSN 1175-5334 (online edition) Phylogeny and higher classification of the scale insects (Hemiptera: Sternorrhyncha: Coccoidea)* P.J. GULLAN1 AND L.G. COOK2 1Department of Entomology, University of California, One Shields Avenue, Davis, CA 95616, U.S.A. E-mail: [email protected] 2School of Integrative Biology, The University of Queensland, Brisbane, Queensland 4072, Australia. Email: [email protected] *In: Zhang, Z.-Q. & Shear, W.A. (Eds) (2007) Linnaeus Tercentenary: Progress in Invertebrate Taxonomy. Zootaxa, 1668, 1–766. Table of contents Abstract . .413 Introduction . .413 A review of archaeococcoid classification and relationships . 416 A review of neococcoid classification and relationships . .420 Future directions . .421 Acknowledgements . .422 References . .422 Abstract The superfamily Coccoidea contains nearly 8000 species of plant-feeding hemipterans comprising up to 32 families divided traditionally into two informal groups, the archaeococcoids and the neococcoids. The neococcoids form a mono- phyletic group supported by both morphological and genetic data. In contrast, the monophyly of the archaeococcoids is uncertain and the higher level ranks within it have been controversial, particularly since the late Professor Jan Koteja introduced his multi-family classification for scale insects in 1974. Recent phylogenetic studies using molecular and morphological data support the recognition of up to 15 extant families of archaeococcoids, including 11 families for the former Margarodidae sensu lato, vindicating Koteja’s views. Archaeococcoids are represented better in the fossil record than neococcoids, and have an adequate record through the Tertiary and Cretaceous but almost no putative coccoid fos- sils are known from earlier. -
Lepidoptera of North America 5
Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera by Valerio Albu, 1411 E. Sweetbriar Drive Fresno, CA 93720 and Eric Metzler, 1241 Kildale Square North Columbus, OH 43229 April 30, 2004 Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Cover illustration: Blueberry Sphinx (Paonias astylus (Drury)], an eastern endemic. Photo by Valeriu Albu. ISBN 1084-8819 This publication and others in the series may be ordered from the C.P. Gillette Museum of Arthropod Diversity, Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, CO 80523 Abstract A list of 1531 species ofLepidoptera is presented, collected over 15 years (1988 to 2002), in eleven southern West Virginia counties. A variety of collecting methods was used, including netting, light attracting, light trapping and pheromone trapping. The specimens were identified by the currently available pictorial sources and determination keys. Many were also sent to specialists for confirmation or identification. The majority of the data was from Kanawha County, reflecting the area of more intensive sampling effort by the senior author. This imbalance of data between Kanawha County and other counties should even out with further sampling of the area. Key Words: Appalachian Mountains, -
Aspidiotus Nerii Bouchè (Insecta: Hemipthera: Diaspididae)
University of Massachusetts Amherst ScholarWorks@UMass Amherst Masters Theses 1911 - February 2014 2003 Molecular systematics of a sexual and parthenogenetic species complex : Aspidiotus nerii Bouchè (Insecta: Hemipthera: Diaspididae). Lisa M. Provencher University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/theses Provencher, Lisa M., "Molecular systematics of a sexual and parthenogenetic species complex : Aspidiotus nerii Bouchè (Insecta: Hemipthera: Diaspididae)." (2003). Masters Theses 1911 - February 2014. 3090. Retrieved from https://scholarworks.umass.edu/theses/3090 This thesis is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses 1911 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. MOLECULAR SYSTEMATICS OF A SEXUAL AND PARTHENOGENETIC SPECIES COMPLEX: Aspidiotus nerii BOUCHE (INSECTA: HEMIPTERA: DIASPIDIDAE). A Thesis Presented by LISA M. PROVENCHER Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 2003 Entomology MOLECULAR SYSTEMATICS OF A SEXUAL AND PARTHENOGENETIC SPECIES COMPLEX: Aspidiotus nerii BOUCHE (INSECTA: HEMIPTERA: DIASPIDIDAE). A Thesis Presented by Lisa M. Provencher Roy G. V^n Driesche, Department Head Department of Entomology What is the opposite of A. nerii? iuvf y :j3MSuy ACKNOWLEDGEMENTS I thank Edward and Mari, for their patience and understanding while I worked on this master’s thesis. And a thank you also goes to Michael Sacco for the A. nerii jokes. I would like to thank my advisor Benjamin Normark, and a special thank you to committee member Jason Cryan for all his generous guidance, assistance and time. -
Contributions Toward a Lepidoptera (Psychidae, Yponomeutidae, Sesiidae, Cossidae, Zygaenoidea, Thyrididae, Drepanoidea, Geometro
Contributions Toward a Lepidoptera (Psychidae, Yponomeutidae, Sesiidae, Cossidae, Zygaenoidea, Thyrididae, Drepanoidea, Geometroidea, Mimalonoidea, Bombycoidea, Sphingoidea, & Noctuoidea) Biodiversity Inventory of the University of Florida Natural Area Teaching Lab Hugo L. Kons Jr. Last Update: June 2001 Abstract A systematic check list of 489 species of Lepidoptera collected in the University of Florida Natural Area Teaching Lab is presented, including 464 species in the superfamilies Drepanoidea, Geometroidea, Mimalonoidea, Bombycoidea, Sphingoidea, and Noctuoidea. Taxa recorded in Psychidae, Yponomeutidae, Sesiidae, Cossidae, Zygaenoidea, and Thyrididae are also included. Moth taxa were collected at ultraviolet lights, bait, introduced Bahiagrass (Paspalum notatum), and by netting specimens. A list of taxa recorded feeding on P. notatum is presented. Introduction The University of Florida Natural Area Teaching Laboratory (NATL) contains 40 acres of natural habitats maintained for scientific research, conservation, and teaching purposes. Habitat types present include hammock, upland pine, disturbed open field, cat tail marsh, and shallow pond. An active management plan has been developed for this area, including prescribed burning to restore the upland pine community and establishment of plots to study succession (http://csssrvr.entnem.ufl.edu/~walker/natl.htm). The site is a popular collecting locality for student and scientific collections. The author has done extensive collecting and field work at NATL, and two previous reports have resulted from this work, including: a biodiversity inventory of the butterflies (Lepidoptera: Hesperioidea & Papilionoidea) of NATL (Kons 1999), and an ecological study of Hermeuptychia hermes (F.) and Megisto cymela (Cram.) in NATL habitats (Kons 1998). Other workers have posted NATL check lists for Ichneumonidae, Sphecidae, Tettigoniidae, and Gryllidae (http://csssrvr.entnem.ufl.edu/~walker/insect.htm). -
Butterflies and Moths of Llano County, Texas, United States
Heliothis ononis Flax Bollworm Moth Coptotriche aenea Blackberry Leafminer Argyresthia canadensis Apyrrothrix araxes Dull Firetip Phocides pigmalion Mangrove Skipper Phocides belus Belus Skipper Phocides palemon Guava Skipper Phocides urania Urania skipper Proteides mercurius Mercurial Skipper Epargyreus zestos Zestos Skipper Epargyreus clarus Silver-spotted Skipper Epargyreus spanna Hispaniolan Silverdrop Epargyreus exadeus Broken Silverdrop Polygonus leo Hammock Skipper Polygonus savigny Manuel's Skipper Chioides albofasciatus White-striped Longtail Chioides zilpa Zilpa Longtail Chioides ixion Hispaniolan Longtail Aguna asander Gold-spotted Aguna Aguna claxon Emerald Aguna Aguna metophis Tailed Aguna Typhedanus undulatus Mottled Longtail Typhedanus ampyx Gold-tufted Skipper Polythrix octomaculata Eight-spotted Longtail Polythrix mexicanus Mexican Longtail Polythrix asine Asine Longtail Polythrix caunus (Herrich-Schäffer, 1869) Zestusa dorus Short-tailed Skipper Codatractus carlos Carlos' Mottled-Skipper Codatractus alcaeus White-crescent Longtail Codatractus yucatanus Yucatan Mottled-Skipper Codatractus arizonensis Arizona Skipper Codatractus valeriana Valeriana Skipper Urbanus proteus Long-tailed Skipper Urbanus viterboana Bluish Longtail Urbanus belli Double-striped Longtail Urbanus pronus Pronus Longtail Urbanus esmeraldus Esmeralda Longtail Urbanus evona Turquoise Longtail Urbanus dorantes Dorantes Longtail Urbanus teleus Teleus Longtail Urbanus tanna Tanna Longtail Urbanus simplicius Plain Longtail Urbanus procne Brown Longtail -
ISSUE #38, Page 68...72 Pickering + State Coordinators
SOUTHERN LEPIDOPTERISTS’ NEWS VOLUME 38 NO.1 (2016), PG. 67 WHY FLY NOW? PUPA BANKS, APOSEMATISM, AND OTHER FACTORS THAT MAY EXPLAIN OBSERVED MOTH FLIGHT ACTIVITY BY JOHN PICKERING Abstract – This paper addresses factors that affect insect flight activity. It presents a 5-year time series of nightly activity at a site in Clarke County, Georgia for Epimecis hortaria, Tulip-tree Beauty (Geometridae: Ennominae)p Nigetia formosalis, Thin-winged Owlet (Erebidae: Scolecocampinae), and Dryocampa rubicunda, Rosy Maple Moth (Saturniidae: Ceratocampinae). These species exemplify three seasonal flight patterns, here defined as diffuse, synchronized, and complex. I propose that diffuse flight patterns are typical of many cryptic species and that synchronized ones are typical of aposematic species and species restricted by the phenology of their hosts. The complex pattern of D. rubicunda shows variation in when individuals broke pupal diapause and eclosed. Because some insects have pupa banks, similar to seed banks in plants, their observed flights and generations may be decoupled. I caution against using terms such as brood, generation, or voltinism to describe observed seasonal adult activity. Instead, I propose that we use the term flight to describe their activity. _____________________________________ Introduction – Many biotic and abiotic factors interact to affect the seasonal flight activity of moths and our ability to sample them accurately (Tauber et al. 1986p Valtonen et al. 2011). They include processes fundamental to each species’ natural history and life cycle. By what means do they disperse, avoid natural enemies, find mates, lay eggs on or near hosts, avoid natural enemies, and in the grand scheme of things, survive for millions of years beyond the next mega-drought, warming period, and ice age? Science has barely begun to explore the complexity of these questions. -
The Molecular Basis for the Neofunctionalization of the Juvenile Hormone Esterase Duplication in Drosophila T
Insect Biochemistry and Molecular Biology 106 (2019) 10–18 Contents lists available at ScienceDirect Insect Biochemistry and Molecular Biology journal homepage: www.elsevier.com/locate/ibmb The molecular basis for the neofunctionalization of the juvenile hormone esterase duplication in Drosophila T ∗ Davis H. Hopkinsa,b, , Rahul V. Raneb, Faisal Younusa,b, Chris W. Coppinb, Gunjan Pandeyb, Colin J. Jacksona, John G. Oakeshottb a Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, 2601, Australia b CSIRO Land and Water, Black Mountain, Canberra, Australian Capital Territory, 2601, Australia ARTICLE INFO ABSTRACT Keywords: The Drosophila melanogaster enzymes juvenile hormone esterase (DmJHE) and its duplicate, DmJHEdup, present Neofunctionalization ideal examples for studying the structural changes involved in the neofunctionalization of enzyme duplicates. Structural evolution DmJHE is a hormone esterase with precise regulation and highly specific activity for its substrate, juvenile Juvenile hormone esterase hormone. DmJHEdup is an odorant degrading esterase (ODE) responsible for processing various kairomones in Odorant degrading enzyme antennae. Our phylogenetic analysis shows that the JHE lineage predates the hemi/holometabolan split and that several duplications of JHEs have been templates for the evolution of secreted β-esterases such as ODEs through the course of insect evolution. Our biochemical comparisons further show that DmJHE has sufficient substrate promiscuity and activity against odorant esters for a duplicate to evolve a general ODE function against a range of mid-long chain food esters, as is shown in DmJHEdup. This substrate range complements that of the only other general ODE known in this species, Esterase 6. Homology models of DmJHE and DmJHEdup enabled compar- isons between each enzyme and the known structures of a lepidopteran JHE and Esterase 6. -
Acizzia Jamatonica (Hemiptera: Psyllidae) and Bruchidius Terrenus (Coleoptera: Chrysomelidae: Bruchinae): Additional U.S
The Great Lakes Entomologist Volume 46 Numbers 3 & 4 - Fall/Winter 2013 Numbers 3 & Article 8 4 - Fall/Winter 2013 October 2013 Acizzia Jamatonica (Hemiptera: Psyllidae) and Bruchidius Terrenus (Coleoptera: Chrysomelidae: Bruchinae): Additional U.s. Records of Asian Specialists on Mimosa (Albizia Julibrissin; Fabaceae) A. G. Wheeler Jr. E. Richard Hoebeke University of Georgia Follow this and additional works at: https://scholar.valpo.edu/tgle Part of the Entomology Commons Recommended Citation Wheeler, A. G. and Hoebeke, E. Richard 2013. "Acizzia Jamatonica (Hemiptera: Psyllidae) and Bruchidius Terrenus (Coleoptera: Chrysomelidae: Bruchinae): Additional U.s. Records of Asian Specialists on Mimosa (Albizia Julibrissin; Fabaceae)," The Great Lakes Entomologist, vol 46 (2) Available at: https://scholar.valpo.edu/tgle/vol46/iss2/8 This Peer-Review Article is brought to you for free and open access by the Department of Biology at ValpoScholar. It has been accepted for inclusion in The Great Lakes Entomologist by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at [email protected]. Wheeler and Hoebeke: <i>Acizzia Jamatonica</i> (Hemiptera: Psyllidae) and <i>Bruchidiu 2013 THE GREAT LAKES ENTOMOLOGIST 225 Acizzia jamatonica (Hemiptera: Psyllidae) and Bruchidius terrenus (Coleoptera: Chrysomelidae: Bruchinae): Additional U.S. Records of Asian Specialists on Mimosa (Albizia julibrissin; Fabaceae) A. G. Wheeler, Jr.1 and E. Richard Hoebeke2 Abstract Previously published U.S. records are reviewed for two recently detected Asian insects that have become established on mimosa, or silk tree (Albizia julibrissin), in the southeastern United States: Acizzia jamatonica (Kuwayama) (Hemiptera: Psyllidae) and Bruchidius terrenus (Sharp) (Coleoptera: Chrysomel- idae: Bruchinae). -
CHECKLIST of WISCONSIN MOTHS (Superfamilies Mimallonoidea, Drepanoidea, Lasiocampoidea, Bombycoidea, Geometroidea, and Noctuoidea)
WISCONSIN ENTOMOLOGICAL SOCIETY SPECIAL PUBLICATION No. 6 JUNE 2018 CHECKLIST OF WISCONSIN MOTHS (Superfamilies Mimallonoidea, Drepanoidea, Lasiocampoidea, Bombycoidea, Geometroidea, and Noctuoidea) Leslie A. Ferge,1 George J. Balogh2 and Kyle E. Johnson3 ABSTRACT A total of 1284 species representing the thirteen families comprising the present checklist have been documented in Wisconsin, including 293 species of Geometridae, 252 species of Erebidae and 584 species of Noctuidae. Distributions are summarized using the six major natural divisions of Wisconsin; adult flight periods and statuses within the state are also reported. Examples of Wisconsin’s diverse native habitat types in each of the natural divisions have been systematically inventoried, and species associated with specialized habitats such as peatland, prairie, barrens and dunes are listed. INTRODUCTION This list is an updated version of the Wisconsin moth checklist by Ferge & Balogh (2000). A considerable amount of new information from has been accumulated in the 18 years since that initial publication. Over sixty species have been added, bringing the total to 1284 in the thirteen families comprising this checklist. These families are estimated to comprise approximately one-half of the state’s total moth fauna. Historical records of Wisconsin moths are relatively meager. Checklists including Wisconsin moths were compiled by Hoy (1883), Rauterberg (1900), Fernekes (1906) and Muttkowski (1907). Hoy's list was restricted to Racine County, the others to Milwaukee County. Records from these publications are of historical interest, but unfortunately few verifiable voucher specimens exist. Unverifiable identifications and minimal label data associated with older museum specimens limit the usefulness of this information. Covell (1970) compiled records of 222 Geometridae species, based on his examination of specimens representing at least 30 counties. -
Five New Species of Aspidiotini (Hemiptera, Diaspididae, Aspidiotinae) from Argentina, with a Key to Argentine Species
ZooKeys 948: 47–73 (2020) A peer-reviewed open-access journal doi: 10.3897/zookeys.948.54618 RESEARCH ARTICLE https://zookeys.pensoft.net Launched to accelerate biodiversity research Five new species of Aspidiotini (Hemiptera, Diaspididae, Aspidiotinae) from Argentina, with a key to Argentine species Scott A. Schneider1, Lucia E. Claps2, Jiufeng Wei3, Roxanna D. Normark4, Benjamin B. Normark4,5 1 USDA, Agricultural Research Service, Henry A. Wallace Beltsville Agricultural Research Center, Systematic Entomology Laboratory, Building 005 - Room 004, 10300 Baltimore Avenue, Beltsville, MD 20705, USA 2 Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo, Instituto Su- perior de Entomología “Dr. Abraham Willink”, Batalla de Ayacucho 491, T4000 San Miguel de Tucumán, Tucumán, Argentina 3 College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, 030801, China 4 Department of Biology, University of Massachusetts, 221 Morrill Science Center III 611 North Pleasant Street, Amherst, MA 01003, USA 5 Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, 204C French Hall, 230 Stockbridge Road Amherst, MA 01003, USA Corresponding author: Scott A. Schneider ([email protected]) Academic editor: Roger Blackman | Received 22 May 2020 | Accepted 5 June 2020 | Published 13 July 2020 http://zoobank.org/1B7C483E-56E1-418D-A816-142EFEE8D925 Citation: Schneider SA, Claps LE, Wei J, Normark RD, Normark BB (2020) Five new species of Aspidiotini (Hemiptera, Diaspididae, Aspidiotinae) from Argentina, with a key to Argentine species. ZooKeys 948: 47–73. https:// doi.org/10.3897/zookeys.948.54618 Abstract Five new species of armored scale insect from Argentina are described and illustrated based upon morpho- logical and molecular evidence from adult females: Chortinaspis jujuyensis sp. -
References, Sources, Links
History of Diaspididae Evolution of Nomenclature for Diaspids 1. 1758: Linnaeus assigned 17 species of “Coccus” (the nominal genus of the Coccoidea) in his Systema Naturae: 3 of his species are still recognized as Diaspids (aonidum,ulmi, and salicis). 2. 1828 (circa) Costa proposes 3 subdivisions including Diaspis. 3. 1833, Bouche describes the Genus Aspidiotus 4. 1868 to 1870: Targioni-Tozzetti. 5. 1877: The Signoret Catalogue was the first compilation of the first century of post-Linnaeus systematics of scale insects. It listed 9 genera consisting of 73 species of the diaspididae. 6. 1903: Fernaldi Catalogue listed 35 genera with 420 species. 7. 1966: Borschenius Catalogue listed 335 genera with 1890 species. 8. 1983: 390 genera with 2200 species. 9. 2004: Homptera alone comprised of 32,000 known species. Of these, 2390 species are Diaspididae and 1982 species of Pseudococcidae as reported on Scalenet at the Systematic Entomology Lab. CREDITS & REFERENCES • G. Ferris Armored Scales of North America, (1937) • “A Dictionary of Entomology” Gordh & Headrick • World Crop Pests: Armored Scale Insects, Volume 4A and 4B 1990. • Scalenet (http://198.77.169.79/scalenet/scalenet.htm) • Latest nomenclature changes are cited by Scalenet. • Crop Protection Compendium Diaspididae Distinct sexual dimorphism Immatures: – Nymphs (mobile, but later stages sessile and may develop exuviae). – Pupa & Prepupa (sessile under exuviae, Males Only). Adults – Male (always mobile). – Legs. – 2 pairs of Wing. – Divided head, thorax, and abdomen. – Elongated genital organ (long style & penal sheath). – Female (sessile under exuviae). – Legless (vestigial legs may be present) & Wingless. – Flattened sac-like form (head/thorax/abdomen fused). – Pygidium present (Conchaspids also have exuvia with legs present).