Exploring the Acceptance of Social Robots in Public Spaces: Industrial

Total Page:16

File Type:pdf, Size:1020Kb

Exploring the Acceptance of Social Robots in Public Spaces: Industrial Exploring the acceptance of social robots in Public Spaces: A user-centred approach Model Manuel Mirante Granate Thesis to obtain the Master of Science Degree in Industrial Engineering and Management Supervisors: Prof. Carlos Manuel Ferreira Monteiro Prof. Carlos Baptista Cardeira Examination Committee Chairperson: Prof. Miguel Simões Torres Preto Supervisor: Prof. Carlos Manuel Ferreira Monteiro Member of Committee: Prof. João Agostinho de Oliveira Soares November 2019 Abstract Over the last years, the technological progresses achieved in Artificial Intelligence (AI) and in other technologies such as sensors, batteries, processors, cloud-based systems and the Internet of Things (IoT), have given the field of robotics the necessary tools to develop and deploy social robots. Social robots are designed to work, cooperate and socially interact with humans, and are expected to become ubiquitous in our society.Notwithstanding, the mere presence of these systems does not increase people’s acceptance and willingness to interact. Thus, it is necessary to perform user-centred studies that evaluate the factors that influence user acceptance of social robots, to understand the attitudes and perceptions potential users have towards social robots, better meeting their expectations and needs. This study aims to propose a social robot acceptance model in public places. The proposed model is an extended version of the UTAUT2 and was tested using PLS-SEM. Results showed that the main determinants of the intention to use social robots in public spaces are performance expectancy and hedonic motivation, meaning the usefulness of the robot and the fun-related experience directly affect the acceptance of these systems in public spaces. Also, the moderating effects of age, gender and experience were evaluated with Multi-Group Analysis and no statistically significant differences between path coefficients were found. This way, by understanding the factors that influence the acceptance of social robots by potential users, in these environments, this study pushes the field of social robotics forward and contributes with guidelines and implications to future developers. Keywords: social robot acceptance model, user-centred product development, public spaces, PLS-SEM. I Resumo Ao longo dos últimos anos, os progressos alcançados em Inteligência Artificial (AI), sensores, processadores, sistemas de cloud e Internet of things (IoT), levaram ao desenvolvimento e implementação de robôs sociais. Estes robôs são desenvolvidos para trabalhar, cooperar e interagir socialmente com seres humanos. É esperado que estes se tornem omnipresentes na nossa sociedade; não obstante, a mera presença destes sistemas não aumenta a sua aceitação, nem a vontade de interagir com os mesmos. É por isso necessário realizar estudos centrados no utilizador que avaliem os fatores influenciadores da aceitação de robôs sociais, para entender as suas atitudes e perceções, de modo cumprir com expectativas e necessidades. Este estudo propõe um modelo de aceitação de robôs sociais em espaços públicos. Este modelo é uma versão estendida do UTAUT2 e foi testado usando PLS-SEM. Os resultados mostraram que os principais determinantes da intenção de usar robôs sociais em espaços públicos são a expectativa de desempenho e a motivação hedónica, o que significa que a utilidade do robô e a diversão associada à interação afetam diretamente a aceitação destes sistemas em espaços públicos. Além disso, os efeitos moderadores da idade, sexo e experiência também foram avaliados com análise multi-grupo (Multi-Group Analysis) e não foram encontradas diferenças estatisticamente significativas entre os coeficientes de percurso (path coefficients). Desta forma, ao entender os fatores que influenciam a aceitação destes robôs por potenciais utilizadores nestes ambientes, este estudo impulsiona o ramo da robótica social e contribui com diretrizes e implicações para o desenvolvimento de futuros robôs sociais. Palavras-Chave: Modelo de aceitação de robôs sociais, desenvolvimento de produto centrado no utilizador, espaços públicos, PLS-SEM. II Acknowledgements I would like to share my deepest and sincere appreciation to all the individuals that, by any means, contributed, supported and helped me accomplish this important milestone. First, I would like to thank my supervisors, Prof. Carlos Manuel Ferreira Monteiro and Prof. Carlos Baptista Cardeira for all commitment, time and patience that they had to put in during this period and the trust that was deposited in me. Most importantly, I would like to express my honest gratitude to Prof. Carlos Manuel Ferreira Monteiro, for his availability, dedication, encouragement and interest in the work developed during all this process. I am grateful for all the recommendations and explanations, which highly contributed towards the improvement of this research. Without his guidance and perseverance, this dissertation would not have been possible. Moreover, I would like to thank all the participants in this study, who have put time and effort to answer online questionnaire, without them no results could have been gathered. Also, I would like to thank all my friends, for all the support and motivation they gave me during this period. Special thanks to my colleague Luísa Lubomirska, who took the time to read and provide improvements to this document. Furthermore, I would like to share my gratitude to my family, for all the support they gave and for patience had, specially my parents, who have given me the opportunity to ingress in this Masters and to follow the educational background I desired. To my three brothers, who have given me many advices throughout this period and to my grandmother, who has given me great motivation for the accomplishment of this document. In addition, I would like to thank my girlfriend, Luísa Teixeira Pinto for all the support she gave me, in the best and in the worst moments. For all the patience she had, for always encouraging and trying to give me motivation and for all the help that she provided, being available to help me with anything, including in reviewing the entire document thoroughly and providing many helpful recommendations, for the improvement of this document. Last but not least, I would like to thank Instituto Superior Técnico, for all the knowledge that was provided to me, and for giving me this opportunity to give something back, and share this research. III Table of Contents Abstract ......................................................................................................................... I Resumo ........................................................................................................................ II Acknowledgements ...................................................................................................... III Table of Contents ........................................................................................................ IV List of Figures .............................................................................................................. VI List of Tables ............................................................................................................. VIII List of Abbreviations ..................................................................................................... X 1. Introduction ............................................................................................................... 1 1.1. Problem Context and Motivation ........................................................................................ 1 1.2. Dissertation Goals .............................................................................................................. 2 1.3. Dissertation Structure ......................................................................................................... 2 2. Literature Review ...................................................................................................... 3 2.1. Background ........................................................................................................................ 3 2.1.1. Brief History of Robotics .............................................................................................. 4 2.1.2. The Market of Robotics: Industrial and Service Robotics ........................................... 6 2.1.3. Background Summary ................................................................................................. 9 2.2. The Social Robot .............................................................................................................. 10 2.2.1. Defining Social Robot ................................................................................................ 10 2.2.2. Social Robot Application Fields ................................................................................ 11 2.2.3. Social robot review Summary .................................................................................. 20 2.3. Towards the Acceptance of Social Robots ...................................................................... 21 2.3.1. Acceptance of Prior Technology ............................................................................... 21 2.3.2. Social Robot Acceptance Studies ............................................................................. 25 2.3.3. Review of acceptance studies Summary .................................................................. 32 2.4. Literature Review Conclusions ........................................................................................
Recommended publications
  • Fun Facts and Activities
    Robo Info: Fun Facts and Activities By: J. Jill Rogers & M. Anthony Lewis, PhD Robo Info: Robot Activities and Fun Facts By: J. Jill Rogers & M. Anthony Lewis, PhD. Dedication To those young people who dare to dream about the all possibilities that our future holds. Special Thanks to: Lauren Buttran and Jason Coon for naming this book Ms. Patti Murphy’s and Ms. Debra Landsaw’s 6th grade classes for providing feedback Liudmila Yafremava for her advice and expertise i Iguana Robotics, Inc. PO Box 625 Urbana, IL 61803-0625 www.iguana-robotics.com Copyright 2004 J. Jill Rogers Acknowledgments This book was funded by a research Experience for Teachers (RET) grant from the National Science Foundation. Technical expertise was provided by the research scientists at Iguana Robotics, Inc. Urbana, Illinois. This book’s intended use is strictly for educational purposes. The author would like to thank the following for the use of images. Every care has been taken to trace copyright holders. However, if there have been unintentional omissions or failure to trace copyright holders, we apologize and will, if informed, endeavor to make corrections in future editions. Key: b= bottom m=middle t=top *=new page Photographs: Cover-Iguana Robotics, Inc. technical drawings 2003 t&m; http://robot.kaist.ac.kr/~songsk/robot/robot.html b* i- Iguana Robotics, Inc. technical drawings 2003m* p1- http://www.history.rochester.edu/steam/hero/ *p2- Encyclopedia Mythica t *p3- Museum of Art Neuchatel t* p5- (c) 1999-2001 EagleRidge Technologies, Inc. b* p9- Copyright 1999 Renato M.E. Sabbatini http://www.epub.org.br/cm/n09/historia/greywalter_i.htm t ; http://www.ar2.com/ar2pages/uni1961.htm *p10- http://robot.kaist.ac.kr/~songsk/robot/robot.html /*p11- http://robot.kaist.ac.kr/~songsk/robot/robot.html; Sojourner, http://marsrovers.jpl.nasa.gov/home/ *p12- Sony Aibo, The Sony Corporation of America, 550 Madison Avenue, New York, NY 10022 t; Honda Asimo, Copyright, 2003 Honda Motor Co., Ltd.
    [Show full text]
  • Hospitality Robots at Your Service WHITEPAPER
    WHITEPAPER Hospitality Robots At Your Service TABLE OF CONTENTS THE SERVICE ROBOT MARKET EXAMPLES OF SERVICE ROBOTS IN THE HOSPITALITY SPACE IN DEPTH WITH SAVIOKE’S HOSPITALITY ROBOTS PEPPER PROVIDES FRIENDLY, FUN CUSTOMER ASSISTANCE SANBOT’S HOSPITALITY ROBOTS AIM FOR HOTELS, BANKING EXPECT MORE ROBOTS DOING SERVICE WORK roboticsbusinessreview.com 2 MOBILE AND HUMANOID ROBOTS INTERACT WITH CUSTOMERS ACROSS THE HOSPITALITY SPACE Improvements in mobility, autonomy and software drive growth in robots that can provide better service for customers and guests in the hospitality space By Ed O’Brien Across the business landscape, robots have entered many different industries, and the service market is no difference. With several applications in the hospitality, restaurant, and healthcare markets, new types of service robots are making life easier for customers and employees. For example, mobile robots can now make deliveries in a hotel, move materials in a hospital, provide security patrols on large campuses, take inventories or interact with retail customers. They offer expanded capabilities that can largely remove humans from having to perform repetitive, tedious, and often unwanted tasks. Companies designing and manufacturing such robots are offering unique approaches to customer service, providing systems to help fill in areas where labor shortages are prevalent, and creating increased revenues by offering new delivery channels, literally and figuratively. However, businesses looking to use these new robots need to be mindful of reviewing the underlying demand to ensure that such investments make sense in the long run. In this report, we will review the different types of robots aimed at providing hospitality services, their various missions, and expectations for growth in the near-to-immediate future.
    [Show full text]
  • Design and Realization of a Humanoid Robot for Fast and Autonomous Bipedal Locomotion
    TECHNISCHE UNIVERSITÄT MÜNCHEN Lehrstuhl für Angewandte Mechanik Design and Realization of a Humanoid Robot for Fast and Autonomous Bipedal Locomotion Entwurf und Realisierung eines Humanoiden Roboters für Schnelles und Autonomes Laufen Dipl.-Ing. Univ. Sebastian Lohmeier Vollständiger Abdruck der von der Fakultät für Maschinenwesen der Technischen Universität München zur Erlangung des akademischen Grades eines Doktor-Ingenieurs (Dr.-Ing.) genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr.-Ing. Udo Lindemann Prüfer der Dissertation: 1. Univ.-Prof. Dr.-Ing. habil. Heinz Ulbrich 2. Univ.-Prof. Dr.-Ing. Horst Baier Die Dissertation wurde am 2. Juni 2010 bei der Technischen Universität München eingereicht und durch die Fakultät für Maschinenwesen am 21. Oktober 2010 angenommen. Colophon The original source for this thesis was edited in GNU Emacs and aucTEX, typeset using pdfLATEX in an automated process using GNU make, and output as PDF. The document was compiled with the LATEX 2" class AMdiss (based on the KOMA-Script class scrreprt). AMdiss is part of the AMclasses bundle that was developed by the author for writing term papers, Diploma theses and dissertations at the Institute of Applied Mechanics, Technische Universität München. Photographs and CAD screenshots were processed and enhanced with THE GIMP. Most vector graphics were drawn with CorelDraw X3, exported as Encapsulated PostScript, and edited with psfrag to obtain high-quality labeling. Some smaller and text-heavy graphics (flowcharts, etc.), as well as diagrams were created using PSTricks. The plot raw data were preprocessed with Matlab. In order to use the PostScript- based LATEX packages with pdfLATEX, a toolchain based on pst-pdf and Ghostscript was used.
    [Show full text]
  • Can a Robot Be Perceived As a Developing Creature?
    538 HUMAN COMMUNICATION RESEARCH / October 2005 Can a Robot Be Perceived as a Developing Creature? Effects of a Robot’s Long-Term Cognitive Developments on Its Social Presence and People’s Social Responses Toward It KWAN MIN LEE NAMKEE PARK HAYEON SONG University of Southern California This study tests the effect of long-term artifi cial development of a robot on users’ feelings of social presence and social responses toward the robot. The study is a 2 (developmental capability: developmental versus fully matured) x 2 (number of participants: individual ver- sus group) between-subjects experiment (N = 40) in which participants interact with Sony’s robot dog, AIBO, for a month. The results showed that the developmental capability factor had signifi cant positive impacts on (a) perceptions of AIBO as a lifelike creature, (b) feel- ings of social presence, and (c) social responses toward AIBO. The number of participants factor, however, affected only the parasocial relationship and the buying intention variables. No interaction between the two factors was found. The results of a series of path analyses showed that feelings of social presence mediated participants’ social responses toward AIBO. We discuss implications of the current study on human–robot interaction, the computers are social actors (CASA) paradigm, and the study of (tele)presence. obots, once imagined only in science-fi ction fi lms, are now being used for various purposes. New applications of robots in thera- Rpeutic, educational, and entertainment environments have caused an important shift in the study of human–robot interaction (HRI). Rather than viewing robots as mere tools or senseless machines, researchers are beginning to see robots as social actors that can autonomously interact with humans in a socially meaningful way.
    [Show full text]
  • Entertainment Robots Market Research Report - Global Forecast Till 2027
    Report Information More information from: https://www.marketresearchfuture.com/reports/2925 Entertainment Robots Market Research Report - Global Forecast till 2027 Report / Search Code: MRFR/SEM/2149-CR Publish Date: February, 2020 Request Sample Price 1-user PDF : $ 4450.0 Enterprise PDF : $ 6250.0 Description: Entertainment Robots Market Overview The Entertainment Robots Market is expected to project at USD 3715.29 million and account at a CAGR of 23.06% during the forecast period of 2018 to 2023. The entertainment robots are specially manufactured for recreational purposes and are primarily important in the commercial and entertainment industry. These entertainment robots entertain people and especially kids by dancing, singing, and telling stories. Some of the famous robots in the entertainment industry so served for entertainment purposes are AIBO, Poo-Chi, iDOG, Bo-Wow, Gupi, Teksta, and i-Cybie are some of the important tools so served. The entertainment robots which come under the personal robotics market developed for utilitarian purposes, and also for recreational, commercial, and for entertainment purposes. Covid 19 Analysis The entertainment robots market experiences a declination in its production during the pandemic of COVID. COVID had a great impact on the manufacturing unit. A decrease in shortages of labor was marked. The outbreak also decreased the demand for production from end-users industries.The government imposed strict rules and regulations. He put forward the work from home initiatives for the employees. Wearing up masks and gloves was made compulsory and also strict actions were taken against those who tried violating the rules. Market Dynamics Drivers Rise in the growth of artificial intelligence technology, improving the growth of the geriatric population, and increasing the demand for animatronics pushes up the entertainment robots market.
    [Show full text]
  • Lio - a Personal Robot Assistant for Human-Robot Interaction and Care Applications
    Lio - A Personal Robot Assistant for Human-Robot Interaction and Care Applications Justinas Miseikis,ˇ Pietro Caroni, Patricia Duchamp, Alina Gasser, Rastislav Marko, Nelija Miseikienˇ e,˙ Frederik Zwilling, Charles de Castelbajac, Lucas Eicher, Michael Fruh,¨ Hansruedi Fruh¨ Abstract— Lio is a mobile robot platform with a multi- careers [4]. A possible staff shortage of 500’000 healthcare functional arm explicitly designed for human-robot interaction employees is estimated in Europe by the year of 2030 [5]. and personal care assistant tasks. The robot has already Care robotics is not an entirely new field. There has been deployed in several health care facilities, where it is functioning autonomously, assisting staff and patients on an been significant development in this direction. One of the everyday basis. Lio is intrinsically safe by having full coverage most known robots is Pepper by SoftBank Robotics, which in soft artificial-leather material as well as having collision was created for interaction and entertainment tasks. It is detection, limited speed and forces. Furthermore, the robot has capable of voice interactions with humans, face and mood a compliant motion controller. A combination of visual, audio, recognition. In the healthcare sector Pepper is used for laser, ultrasound and mechanical sensors are used for safe navigation and environment understanding. The ROS-enabled interaction with dementia patients [6]. setup allows researchers to access raw sensor data as well as Another example is the robot RIBA by RIKEN. It is have direct control of the robot. The friendly appearance of designed to carry around patients. The robot is capable of Lio has resulted in the robot being well accepted by health localising a voice source and lifting patients weighing up to care staff and patients.
    [Show full text]
  • Service Robots 7 Mouser Staff
    1 1 TABLE OF CONTENTS Welcome from the Editor 3 Deborah S. Ray Foreword 6 Grant Imahara Introduction to Service Robots 7 Mouser Staff Sanbot Max: Anatomy of a Service Robot 11 Steven Keeping CIMON Says: Design Lessons from a Robot Assistant in Space 17 Traci Browne 21 Revisiting the Uncanny Valley Jon Gabay Robotic Hands Strive for Human Capabilities 25 Bill Schweber Robotic Gesturing Meets Sign Language 30 Bill Schweber Mouser and Mouser Electronics are registered trademarks of Mouser Electronics, Inc. Other products, logos, and company names mentioned herein may be trademarks of their respective owners. Reference designs, conceptual illustrations, and other graphics included herein are for informational purposes only. Copyright © 2018 Mouser Electronics, Inc. – A TTI and Berkshire Hathaway company. 2 WELCOME FROM THE EDITOR If you’re just now joining us for favorite robots from our favorite This eBook accompanies EIT Video Mouser’s 2018 Empowering shows and movies: Star Wars, Star #3, which features the Henn na Innovation Together™ (EIT) program, Trek, Lost in Space, and Dr. Who. Hotel, the world’s first hotel staffed welcome! This year’s EIT program— by robots. Geared toward efficiency Generation Robot—explores robotics In this EIT segment, we explore and customer comfort, these robots as a technology capable of impacting service robots, which combine not only provide an extraordinary and changing our lives in the 21st principles of automation with that experience of efficiency and comfort, century much like the automobile of robotics to assist humans with but also a fascinating and heart- impacted the 20th century and tasks that are dirty, dangerous, heavy, warming experience for guests.
    [Show full text]
  • QIHAN's Sanbot Robot Brings Litigation Services to Beijing First Intermediate People's Court
    Qihan Technology Co., Ltd. QIHAN’s Sanbot Robot Brings Litigation Services to Beijing First Intermediate People's Court Customized Sanbot King Kong robot, Xiaofa, assists visitors and improves the litigation process BEIJING, China – Earlier this month, officials at Beijing First Intermediate People's Court began using Sanbot King Kong, an AI-powered robot designed by QIHAN, to perform basic litigation services at the courthouse. The service robot, Xiaofa, joins more than 30 intelligent solutions recently introduced as part of the Court’s All-orientation Service & Whole-process Conciliation. At 1.5 meters, Xiaofa is equipped with multiple 3D vSLAM (vision simultaneous localization and mapping) cameras and six built-in microphones, allowing it to interact with courthouse visitors and perform basic litigation services. Powered by IBM Watson and Nuance, Xiaofa uses innovative speech recognition technology to transfer visitor inquiries to designated service portals. “The Xiaofa humanoid robot is capable of memorizing and explaining over 7,000 Chinese laws and regulations, allowing it to assist visitors who would like to learn more about the litigation process, its rules and details of prior cases,” said Zhao Lan, litigation management official at Beijing First Intermediate People's Court. Xiaofa’s intelligent litigation services will offer convenience to lawyers and citizens by reducing wait times and cost of resources, raising efficiency within a rapidly growing market. “Integrating robots in a cost-effective, efficient way to provide bring important information to the public sector,” said Ryan Wu, vice president of QIHAN. “From the home to the factory and now to the court house, robotics-as-a-service is an instrumental in industry solution that is transforming how we interactive with the world around us.” The Beijing First Intermediate People's Court is just one of the several government departments in the Chinese public sector to adopt artificial intelligence and robotic services.
    [Show full text]
  • Mixed Reality Technologies for Novel Forms of Human-Robot Interaction
    Dissertation Mixed Reality Technologies for Novel Forms of Human-Robot Interaction Dissertation with the aim of achieving a doctoral degree at the Faculty of Mathematics, Informatics and Natural Sciences Dipl.-Inf. Dennis Krupke Human-Computer Interaction and Technical Aspects of Multimodal Systems Department of Informatics Universität Hamburg November 2019 Review Erstgutachter: Prof. Dr. Frank Steinicke Zweitgutachter: Prof. Dr. Jianwei Zhang Drittgutachter: Prof. Dr. Eva Bittner Vorsitzende der Prüfungskomission: Prof. Dr. Simone Frintrop Datum der Disputation: 17.08.2020 “ My dear Miss Glory, Robots are not people. They are mechanically more perfect than we are, they have an astounding intellectual capacity, but they have no soul.” Karel Capek Abstract Nowadays, robot technology surrounds us and future developments will further increase the frequency of our everyday contacts with robots in our daily life. To enable this, the current forms of human-robot interaction need to evolve. The concept of digital twins seems promising for establishing novel forms of cooperation and communication with robots and for modeling system states. Machine learning is now ready to be applied to a multitude of domains. It has the potential to enhance artificial systems with capabilities, which so far are found in natural intelligent creatures, only. Mixed reality experienced a substantial technological evolution in recent years and future developments of mixed reality devices seem to be promising, as well. Wireless networks will improve significantly in the next years and thus, latency and bandwidth limitations will be no crucial issue anymore. Based on the ongoing technological progress, novel interaction and communication forms with robots become available and their application to real-world scenarios becomes feasible.
    [Show full text]
  • Social Robotics Agenda.Pdf
    Thank you! The following agenda for social robotics was developed in a project led by KTH and funded by Vinnova. It is a result of cooperation between the following 35 partners: Industry: ABB, Artificial Solutions, Ericsson, Furhat robotics, Intelligent Machines, Liquid Media, TeliaSonera Academia: Göteborgs universitet, Högskolan i Skövde, Karolinska Institutet, KTH, Linköpings universitet, Lunds tekniska högskola, Lunds Universitet, Röda korsets högskola, Stockholms Universtitet, Uppsala Universitet, Örebro universitet Public sector: Institutet för Framtidsstudier, Myndigheten för Delaktighet, Myndigheten för Tillgängliga Medier, Statens medicinsk- etiska råd, Robotdalen, SLL Innovation, Språkrådet End-user organistions: Brostaden, Epicenter, EF Education First, Fryshuset Gymnasium, Hamnskolan, Investor, Kunskapsskolan, Silver Life, Svenskt demenscentrum, Tekniska Museet We would like to thank all partners for their great commitment at the workshops where they shared good ideas and insightful experiences, as well as valuable and important observations of what the future might hold. Agenda key persons: Joakim Gustafson (KTH), Peje Emilsson (Silver Life), Jan Gulliksen (KTH), Mikael Hedelind (ABB), Danica Kragic (KTH), Per Ljunggren (Intelligent Machines), Amy Loutfi (Örebro university), Erik Lundqvist (Robotdalen), Stefan Stern (Investor), Karl-Erik Westman (Myndigheten för Delaktighet), Britt Östlund (KTH) Writing group: editor Joakim Gustafson, co-editor Jens Edlund, Jonas Beskow, Mikael Hedelind, Danica Kragic, Per Ljunggren, Amy
    [Show full text]
  • Robótica De Serviciso: Tendencias
    KUKA – from Industrial to Service Robotics . Dr. Johannes Kurth Head of Research & Predevelopment Dr. Tim Guhl Project Manager Cooperative Research Projects KUKA Roboter GmbH, Augsburg, Germany . Sr. Miquel López Director Técnico KUKA Robots Ibérica, S. A. Overview . Introduction . KUKA Roboter GmbH . Industrial Robots and their applications . Innovation leadership . KUKA on the way from Industrial to Service Robotics . Strategy . KUKA Products for Research & Education . KUKA Lightweight Robot + FRI . youBot . Medical Robots . KUKA Products for Entertainment . Robocoaster . Summary and conclusions KUKA – from Industrial to Service Robotics KUKA Roboter GmbH | Miquel López | 27.06.2014 | Page 3 www.kuka-robotics.com KUKA Robotics Robots Controllers Software Applications Service Platforms KUKA – from Industrial to Service Robotics KUKA Roboter GmbH | Miquel López | 27.06.2014 | Page 4 www.kuka-robotics.com KUKA Robotics – Product range KUKA – from Industrial to Service Robotics KUKA Roboter GmbH | Miquel López | 27.06.2014 | Page 5 www.kuka-robotics.com KUKA Robotics – Automotive Leading supplier to the Automotive industry . Long-standing customer relationships . Ability to customize standard products . Joint solution developments . Innovation leadership . Market leadership . Technological innovation and cost reduction drive customer demand KUKA – from Industrial to Service Robotics KUKA Roboter GmbH | Miquel López | 27.06.2014 | Page 6 www.kuka-robotics.com KUKA Robotics – Automotive Assembly Coating & bonding Cutting Deburring Handling
    [Show full text]
  • Robotics, Mechatronics and Animatronics in the Creative and Entertainment Industries and Arts
    AISB’05: Social Intelligence and Interaction in Animals, Robots and Agents Proceedings of the Symposium on Robotics, Mechatronics and Animatronics in the Creative and Entertainment Industries and Arts 12 - 15 April 2005 University of Hertfordshire, Hatfield, UK SSAISB 2005 Convention U H AISB’05 Convention Social Intelligence and Interaction in Animals, Robots and Agents 12-15 April 2005 University of Hertfordshire, Hatfield, UK Proceedings of the Symposium on Robotics, Mechatronics and Animatronics in the Creative and Entertainment Industries and Arts (aka the Creative Robotics Symposium) Published by The Society for the Study of Artificial Intelligence and the Simulation of Behaviour www.aisb.org.uk Printed by The University of Hertfordshire, Hatfield, AL10 9AB UK www.herts.ac.uk Cover Design by Sue Attwood ISBN 1 902956 43 3 AISB’05 Hosted by The Adaptive Systems Research Group adapsys.feis.herts.ac.uk The AISB'05 Convention is partially supported by: The proceedings of the ten symposia in the AISB’05 Convention are available from SSAISB: Second International Symposium on the Emergence and Evolution of Linguistic Communication (EELC'05) 1 902956 40 9 Agents that Want and Like: Motivational and Emotional Roots of Cognition and Action 1 902956 41 7 Third International Symposium on Imitation in Animals and Artifacts 1 902956 42 5 Robotics, Mechatronics and Animatronics in the Creative and Entertainment Industries and Arts 1 902956 43 3 Robot Companions: Hard Problems and Open Challenges in Robot-Human Interaction 1 902956 44 1 Conversational
    [Show full text]