An Expert Review of Spatial Repellents for Mosquito Control

Total Page:16

File Type:pdf, Size:1020Kb

An Expert Review of Spatial Repellents for Mosquito Control An Expert Review of Spatial Repellents for Mosquito Control August 2020 arctec ref. no.: 1003/CC0942 Principal Investigator: Prof. James Logan BSc, PhD, FRES, Director Responsible Investigator: Dr. Vanessa Chen-Hussey BSc, MSc, PhD Research Assistance: Lisa O’Halloran BSc, MSc, Courtenay Greaves BSc, MSc, Christine Due BSc, MSc, PhD Document Updating and Editing for Publication –Dr. Michael Macdonald, Sc.D. 1 Contents Executive Summary 3 Objectives 6 Methods 7 Interviews 7 Literature Search 7 Past Spatial Repellent Research 8 Ongoing Spatial Repellent Research and Development 19 Laboratory Test Methods and End Points 21 Outline Protocol for Semi-Field Trials of Spatial Repellents 24 Economic Considerations for Spatial Repellents as a Public Health Tool 28 Commercialisation of Spatial Repellents 30 Target Product Profile 32 Regulatory Issues and Policy Status 37 Knowledge Gap Assessment 39 Feasibility of Adoption of Spatial Repellents within Vector Control Campaigns 42 Recommendations on the Development of Spatial Repellents as Vector Control Tools 45 Conclusion 50 Appendix 1. Question Guide for Interviews 58 Appendix 2. Use Case Analysis 59 References 67 2 Executive Summary Spatial repellents (SR) are a potential tool against vector borne disease, but at present most products are targeted to the consumer market. This report examines the potential role of SRs in public health through published and grey literature, and the opinions of academic and industry experts on spatial repellents. While the primary focus is Anopheles, there are promising data showing spatial repellent impact on Aedes- borne diseases and Leishmania vectors. Literature Review and Ongoing Research There is no current consensus on a clear definition of spatial repellents. Generally, they are defined as chemicals that, when air-borne, prevent biting by blood-seeking insects such as mosquitoes. The chemical should therefore create a space where human hosts are safe from bites and potential disease transmission. Chemicals that have been shown to have spatial repellent effects include volatile pyrethroids such as metofluthrin and transfluthrin; botanical compounds such as terpenoids; or volatiles found from human skin and skin bacteria such as 1-methylpiperazine. Historically, DDT was known to have an “excito-repellent” effect in addition to lethality when applied for indoor residual spraying. Spatial repellent actives have been incorporated into a wide range of devices including coils, heat activated vaporisers to passive emanators based on plastic, paper and hessian materials. Laboratory and semi-field trials have shown good levels of efficacy against important vector species such as Anopheles gambiae and Aedes aegypti. Although spatial repellents aim to disrupt host seeking and feeding behaviour, many laboratory tests have concentrated on a killing effect, perhaps because of the predominance of volatile pyrethroids in the early development of spatial repellents. The World Health Organization (WHO) has produced guidelines for testing spatial repellents which recommend that movement away from a host stimulus should be the main outcome, but very few studies were found to use those methods. Semi-field testing may be more appropriate for testing spatial repellents, as the build-up of the volatile within a three-dimensional space can be better simulated. An outline protocol for testing of spatial repellents in a semi-field system is presented, based on WHO recommendations and subsequent published work. For spatial repellents to become an accepted part of the malaria vector control arsenal, most experts agreed that data from randomised controlled trials showing an impact on disease transmission would be necessary. At present, there are data from semi-field trials showing repellency, and where pyrethroids are concerned, mortality data from laboratory trials. So far, one trial in Indonesia has shown an epidemiological effect; a 52% reduction in malaria from the use of spatial repellents. There are two further randomised controlled trials currently underway, one on malaria in Indonesia and another on Aedes-borne diseases in Peru that will help build on this evidence. Other studies that are currently underway include modelling work, which suggests spatial repellents could have a potentially large public impact and may be particularly useful in helping design the next generation of spatial repellents. 3 Economic Considerations and Commercialisation A wide range of products are commercially available for use as spatial repellents/insecticides, primarily for the consumer market, rather than as a public health intervention with varied degrees of efficacy. There not established route to market for spatial repellent products for use as a vector borne disease intervention. The commercialisation model for spatial repellents would be very different to LLINS or IRS, because there is a vibrant repellent consumer market worldwide. A high volume “developed” market should, in theory, bring production costs down, and, therefore, support provision of cheaper spatial repellent products in developing markets. But this needs further examination and consideration. Regulatory and Policy Issues Spatial repellents are usually included with insecticides (where lethality is a primary objective) in most regulatory guidelines, which presents a problem where the product is not designed to kill mosquitos but prevent biting. However, there are regulatory hurdles for getting any product to market, and these did not overly concern most manufacturers. What was desired was a greater acceptance of data produced according to WHO guidelines at the national level, as these better characterise a repellent, rather than insecticidal effect. There was a desire to update the WHO guidelines, to include more up to date methods and input from industry on the outcomes that would be most useful if the data were to be presented to both the WHO PQ system and national regulatory bodies. Target Product Profiles To develop a target product profile for spatial repellents for public health use, a pragmatic approach was used, where an “achievable” product, with currently available spatial repellents, was considered alongside the ideal product. The interviewees gave a variety of opinions on what would be the ideal spatial repellent product. We have provided further consideration, beyond the interviewee comments. Themes pulled out from interviews included a product which was low-cost, with at least 90% protection from biting, light-weight and portable, a requirement to provide protection outdoors as well as indoors (not necessarily one product that can do both), with an effective duration of 3 to 6 months. Note, as described in more detail below, since this review began there has been an evolution in WHO strategy to now focus on a higher-level Preferred Product Characteristic for the overall product class whereas Target Product Profile is more focused on the specific product development. 4 Knowledge Gap Assessment Several knowledge gaps were identified in our understanding of spatial repellents and their impact when used in vector control. Amongst the most important, was the lack of epidemiological evidence of impact. There are some data, and more data are being gathered, but a solid evidence-base is of paramount importance before spatial repellents can be advocated for use in vector control programmes. An area of debate surrounds the definition of a spatial repellent and different types of effects on the vector, which then impacts directly on what would be the most appropriate methods of evaluation. The effect of volatile pyrethroids on the problem of insecticide resistance needs to be addressed before these products can be widely advocated. In addition, their effect on non-target insects was also of concern, particularly when intended for outdoor use. Another knowledge gap exists around the practicalities of designing a spatial product, meaning replacement rate, area of effect and best placement. All of these would potentially change from setting to setting, and spatial repellents would need to remain a flexible intervention to achieve the greatest impact. Current safety data relies heavily on testing of coils, which means that the effects of smoke inhalation are included with the exposure to the active. Toxicity of emanator devices needs to be established, to help improve the acceptance of spatial repellents by some parts of the vector control community. Feasibility and Recommendations There was clear consensus that spatial repellents have a place in vector control, and several potential routes in which spatial repellents could be utilised are highlighted. Firstly, without any further product development, current devices may be used in fast but short-term responses to vector-borne health crises, including humanitarian relief situations or outbreak response. Spatial repellent devices with improved duration may well be suitable to protect people inside or around houses, perhaps as a replacement or even improvement on indoor residual spraying. Spatial repellents can require little in the way of behaviour change from users, so potentially may be more acceptable and easier to implement, particularly in areas aiming for malaria elimination where other interventions such as bed nets or chemoprophylaxis may become unpopular. After the review was completed an appendix on “Use Case Analysis” developed by IVCC has been added. Other challenges that would need to be overcome to make spatial repellents effective vector control tools
Recommended publications
  • Historical Perspectives on Apple Production: Fruit Tree Pest Management, Regulation and New Insecticidal Chemistries
    Historical Perspectives on Apple Production: Fruit Tree Pest Management, Regulation and New Insecticidal Chemistries. Peter Jentsch Extension Associate Department of Entomology Cornell University's Hudson Valley Lab 3357 Rt. 9W; PO box 727 Highland, NY 12528 email: [email protected] Phone 845-691-7151 Mobile: 845-417-7465 http://www.nysaes.cornell.edu/ent/faculty/jentsch/ 2 Historical Perspectives on Fruit Production: Fruit Tree Pest Management, Regulation and New Chemistries. by Peter Jentsch I. Historical Use of Pesticides in Apple Production Overview of Apple Production and Pest Management Prior to 1940 Synthetic Pesticide Development and Use II. Influences Changing the Pest Management Profile in Apple Production Chemical Residues in Early Insect Management Historical Chemical Regulation Recent Regulation Developments Changing Pest Management Food Quality Protection Act of 1996 The Science Behind The Methodology Pesticide Revisions – Requirements For New Registrations III. Resistance of Insect Pests to Insecticides Resistance Pest Management Strategies IV. Reduced Risk Chemistries: New Modes of Action and the Insecticide Treadmill Fermentation Microbial Products Bt’s, Abamectins, Spinosads Juvenile Hormone Analogs Formamidines, Juvenile Hormone Analogs And Mimics Insect Growth Regulators Azadirachtin, Thiadiazine Neonicotinyls Major Reduced Risk Materials: Carboxamides, Carboxylic Acid Esters, Granulosis Viruses, Diphenyloxazolines, Insecticidal Soaps, Benzoyl Urea Growth Regulators, Tetronic Acids, Oxadiazenes , Particle Films, Phenoxypyrazoles, Pyridazinones, Spinosads, Tetrazines , Organotins, Quinolines. 3 I Historical Use of Pesticides in Apple Production Overview of Apple Production and Pest Management Prior to 1940 The apple has a rather ominous origin. Its inception is framed in the biblical text regarding the genesis of mankind. The backdrop appears to be the turbulent setting of what many scholars believe to be present day Iraq.
    [Show full text]
  • Expansive and Diverse Phenotypic Landscape of Field Aedes Aegypti Larvae with Differential Susceptibility
    bioRxiv preprint doi: https://doi.org/10.1101/2021.06.07.447310; this version posted June 7, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Title Page 2 Full Title: Expansive and diverse phenotypic landscape of field Aedes aegypti larvae with 3 differential susceptibility to temephos: beyond metabolic detoxification 4 Short Title: Gene expression in temephos resistant field populations of Aedes aegypti 5 Authors: Jasmine Morgan1, J. Enrique Salcedo-Sora2*, Omar Triana-Chavez3, Clare Strode1* 6 Author affiliations: 1Department of Biology, Edge Hill University, UK 7 2Institute of Systems, Molecular and Integrative Biology, University of Liverpool, UK 8 3Instituto de Biología, Facultad de Ciencias Exactas y Naturales (FCEN), University of 9 Antioquia, Medellín, Colombia 10 Corresponding authors: * [email protected] (CS) and J.Salcedo- 11 [email protected] (JES-S) 1 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.06.07.447310; this version posted June 7, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 12 Abstract 13 Arboviruses including dengue, Zika and chikungunya are amongst the most significant public 14 health concerns worldwide and their control relies heavily on the use of insecticides to 15 control the vector mosquito Aedes aegypti.
    [Show full text]
  • Manual for Certificate Course on Plant Protection & Pesticide Management
    Manual for Certificate Course on Plant Protection & Pesticide Management (for Pesticide Dealers) For Internal circulation only & has no legal validity Compiled by NIPHM Faculty Department of Agriculture , Cooperation& Farmers Welfare Ministry of Agriculture and Farmers Welfare Government of India National Institute of Plant Health Management Hyderabad-500030 TABLE OF CONTENTS Theory Practical CHAPTER Page No. class hours hours I. General Overview and Classification of Pesticides. 1. Introduction to classification based on use, 1 1 2 toxicity, chemistry 2. Insecticides 5 1 0 3. fungicides 9 1 0 4. Herbicides & Plant growth regulators 11 1 0 5. Other Pesticides (Acaricides, Nematicides & 16 1 0 rodenticides) II. Pesticide Act, Rules and Regulations 1. Introduction to Insecticide Act, 1968 and 19 1 0 Insecticide rules, 1971 2. Registration and Licensing of pesticides 23 1 0 3. Insecticide Inspector 26 2 0 4. Insecticide Analyst 30 1 4 5. Importance of packaging and labelling 35 1 0 6. Role and Responsibilities of Pesticide Dealer 37 1 0 under IA,1968 III. Pesticide Application A. Pesticide Formulation 1. Types of pesticide Formulations 39 3 8 2. Approved uses and Compatibility of pesticides 47 1 0 B. Usage Recommendation 1. Major pest and diseases of crops: identification 50 3 3 2. Principles and Strategies of Integrated Pest 80 2 1 Management & The Concept of Economic Threshold Level 3. Biological control and its Importance in Pest 93 1 2 Management C. Pesticide Application 1. Principles of Pesticide Application 117 1 0 2. Types of Sprayers and Dusters 121 1 4 3. Spray Nozzles and Their Classification 130 1 0 4.
    [Show full text]
  • Transfluthrin (Insecticides, Acaricides and Products to Control Other Arthropods)
    Regulation (EU) n°528/2012 concerning the making available on the market and use of biocidal products Evaluation of active substances Assessment Report Transfluthrin (insecticides, acaricides and products to control other arthropods) 13 March 2014 RMS: the Netherlands Transfluthrin (PT18) Assessment report Finalised in the Standing Committee on Biocidal Products at its meeting on 13 March 2014 CONTENTS 1. STATEMENT OF SUBJECT MATTER AND PURPOSE .................................. 4 1.1. Principle of evaluation .................................................................................... 4 1.2. Purpose of the assessment report ................................................................... 4 1.3. Procedure followed .......................................................................................... 4 2. OVERALL SUMMARY AND CONCLUSIONS ................................................... 6 2.1. Presentation of the Active Substance ............................................................. 6 2.1.1. Identity, Physico-Chemical Properties & Methods of Analysis ....... 6 2.1.2. Intended Uses and Efficacy ................................................................ 8 2.1.3. Classification and Labelling .............................................................. 8 2.2. Summary of the Risk Assessment ................................................................ 11 2.2.1. Human Health Risk Assessment ...................................................... 11 2.2.1.1. Hazard identification ........................................................................
    [Show full text]
  • Prolonged Use of Mosquito Coil, Mats, and Liquidators: a Review of Its Health Implications
    Review Article Prolonged use of mosquito coil, mats, and liquidators: A review of its health implications Nitin Ashok John, Jyoti John1 Department of Physiology, Indira Gandhi Medical College and Research Institute, Puducherry, 1Department of Biochemistry, ESIC Medical College, Faridabad, Haryana, India Abstract Mosquito coils are burnt indoors and outdoors in India to control mosquitoes. Human beings get exposed to a chemically complex mosquito coil smoke containing small particles (<1 µm), metal fumes, and vapors that may reach the alveolar region of the lung. Coils consist of an insecticide/repellant, organic fillers, binders, and additives such as synergists, dyes, and fungicide. Thus, the smoke contains pollutants of health concern. The concentrations of pollutants resulting from burning mosquito coils may exceed health-based air quality standards and have ill effect on health. Hence, in this review, we have discussed the health implications due to burning of mosquito coil, mats, and heating of mosquito refill liquidators. Key words: Liquidators, mats, mosquito coil, prolonged use Received: 5th October, 2015; Revised: 13th November, 2015; Accepted: 15th December, 2015 INTRODUCTION are not specified. Most of them are aromatic and aliphatic hydrocarbons, which are combustible products of wood, Human beings are often protected from nuisance and dust filters, and dyes. The fumes emitted by burning of disease‑bearing mosquitoes by insecticides. The four the coils are responsible for ill effects on human health. major types of residential insecticide products that are widely used globally are aerosols, mosquito coils, liquid The coils and mats are often used overnight in sleeping vaporizers, and vaporizing mats.[1] quarters where elevated exposure may occur.
    [Show full text]
  • Complaint for Declaratory and Injunctive Relief 1 1 2 3 4 5 6 7 8 9
    1 Justin Augustine (CA Bar No. 235561) Jaclyn Lopez (CA Bar No. 258589) 2 Center for Biological Diversity 351 California Street, Suite 600 3 San Francisco, CA 94104 Tel: (415) 436-9682 4 Fax: (415) 436-9683 [email protected] 5 [email protected] 6 Collette L. Adkins Giese (MN Bar No. 035059X)* Center for Biological Diversity 8640 Coral Sea Street Northeast 7 Minneapolis, MN 55449-5600 Tel: (651) 955-3821 8 Fax: (415) 436-9683 [email protected] 9 Michael W. Graf (CA Bar No. 136172) 10 Law Offices 227 Behrens Street 11 El Cerrito, CA 94530 Tel: (510) 525-7222 12 Fax: (510) 525-1208 [email protected] 13 Attorneys for Plaintiffs Center for Biological Diversity and 14 Pesticide Action Network North America *Seeking admission pro hac vice 15 16 IN THE UNITED STATES DISTRICT COURT 17 FOR THE NORTHERN DISTRICT OF CALIFORNIA 18 SAN FRANCISCO DIVISION 19 20 CENTER FOR BIOLOGICAL ) 21 DIVERSITY, a non-profit organization; and ) Case No.__________________ PESTICIDE ACTION NETWORK ) 22 NORTH AMERICA, a non-profit ) organization; ) 23 ) Plaintiffs, ) COMPLAINT FOR DECLARATORY 24 ) AND INJUNCTIVE RELIEF v. ) 25 ) ENVIRONMENTAL PROTECTION ) 26 AGENCY; and LISA JACKSON, ) Administrator, U.S. EPA; ) 27 ) Defendants. ) 28 _____________________________________ ) Complaint for Declaratory and Injunctive Relief 1 1 INTRODUCTION 2 1. This action challenges the failure of Defendants Environmental Protection Agency and 3 Lisa Jackson, Environmental Protection Agency Administrator, (collectively “EPA”) to consult with the 4 United States Fish and Wildlife Service (“FWS”) and National Marine Fisheries Service (“NMFS”) 5 (collectively “Service”) pursuant to Section 7(a)(2) of the Endangered Species Act (“ESA”), 16 U.S.C.
    [Show full text]
  • Studies on the Mosquito Fauna in an Urban And
    STUDIES ON THE MOSQUITO FAUNA IN AN URBAN AND SUBURBAN AREA IN PENANG AND THE LABORATORY EFFICACY OF MOSQUITO COILS CONTAINING DIFFERENT ACTIVE INGREDIENTS AGAINST SELECTED VECTOR MOSQUITOES ROZILAWATI BINTI HARUN UNIVERSITI SAINS MALAYSIA 2007 STUDIES ON THE MOSQUITO FAUNA IN AN URBAN AND SUBURBAN AREA IN PENANG AND THE LABORATORY EFFICACY OF MOSQUITO COILS CONTAINING DIFFERENT ACTIVE INGREDIENTS AGAINST SELECTED VECTOR MOSQUITOES By ROZILAWATI BINTI HARUN Thesis submitted in fulfilment of the requirements for the Degree of Master of Science July 2007 ACKNOWLEDGEMENT I would like to express my profound gratitude to my supervisor Prof Madya Dr. Zairi Jaal for his guidance, assistance and advices throughout this project period. Without his help, this work would not have been successful. Special thanks to Mr Adanan the VCRU Research Officer, for giving me so much support during my study in USM, and my sincere thanks to the staff of Vector Control Research Unit, USM for their help in the realization of this project. To my lab mates and best friends: please find here the expression of my friendship. Finally I would like to extend my thanks to my colleagues and also my beloved family and fiancé for being understanding and patient, this is the special present for you all. THANK YOU ALL. ii TABLE OF CONTENTS ACKNOWLEDGEMENTS ii TABLE OF CONTENTS iii LIST OF TABLES vii LIST OF FIGURES viii LIST OF PLATES ix LIST OF ABBREVIATION x LIST OF APPENDICES xi LIST OF PUBLICATIONS & SEMINARS xii ABSTRAK xiii ABSTRACT xiv CHAPTER ONE: GENERAL INTRODUCTION
    [Show full text]
  • Tenth Meeting of the WHO Vector Control Advisory Group
    MEETING REPORT 13–15 May 2019 Tenth meeting of the WHO Vector Control Advisory Group MEETING REPORT 13–15 May 2019 Tenth meeting of the WHO Vector Control Advisory Group WHO/CDS/VCAG/2019.02 © World Health Organization 2019 Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial- ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. Tenth meeting of the WHO Vector Control Advisory Group. Geneva: World Health Organization; 2018 (WHO/CDS/VCAG/2019.02). Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data.
    [Show full text]
  • ORIGINAL ARTICLES AAEM Ann Agric Environ Med 2011, 18, 85–88
    ORIGINAL ARTICLES AAEM Ann Agric Environ Med 2011, 18, 85–88 CONTENT OF TRANSFLUTHRIN IN INDOOR AIR DURING THE USE OF ELECTRO-VAPORIZERS Teresa Nazimek1, Magdalena Wasak1, Wojciech Zgrajka1, Waldemar Andrzej Turski1, 2 1Department of Toxicology, Institute of Rural Health, Lublin, Poland 2Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Lublin, Poland Nazimek T, Wasak M, Zgrajka W, Turski WA: Content of transfl uthrin in indoor air dur- ing the use of electro-vaporizers. Ann Agric Environ Med 2011, 18, 85–88. Abstract: The quality of indoor air evokes increasing interest; however, no standards have been developed which determine the content of pesticides in the air of living space. At present, insecticides are increasingly more frequently applied to control household pests, fl ies, mosquitoes, termites and other harmful insects. In this study, the content of transfl uthrin was measured indoors after the application of two consumer products containing this active substance, using commercially available electro-vaporizers. It was found that during the application of insecticides in the form of gel and liquid the mean concentration of transfl uthrin in the air was 1.295–2.422 μg/m3 and 3.817–5.227 μg/m3, respectively. The concentration of an active agent in the air did not depend on the day of application. The concentration of transfl uthrin was higher when used in the form of a liquid than a gel preparation. 18–24 hours after the discontinuation of the use of the preparation no active agent was found in the air. As long as the standards are developed regulating the content of insecticides in the air of living spaces and utility rooms, the most important method of preventing their potential hazardous effect is informing the users of these preparations about the occurrence of active substances in indoor air, and eventual risk of exposure to the effect of pesticides during their application at home.
    [Show full text]
  • Use Date Issued: September 2006 ______
    United States Environmental Protection Agency Office of Prevention, Pesticides and Toxic Substances (7505P) _______________________________________________________ Pesticide Fact Sheet Name of Chemical: Metofluthrin Reason for Issuance: New Chemical Nonfood Use Date Issued: September 2006 _______________________________________________________ Description of Chemical IUPAC name: 2,3,5,6-tetrafluoro-4-(methoxymethyl)benzyl (EZ)- (1RS,3RS;1RS,3SR)-2,2-dimethyl-3-prop-1- enylcyclopropanecarboxylate CAS name: [2,3,5,6-tetrafluoro-4-(methoxymethyl)phenyl]methyl 2,2-dimethyl-3-(1-propenyl)cyclopropanecarboxylate Common Name: Metofluthrin Empirical Formula: C18H20F4O3 EPA Chemical Code: 109709 Chemical Abstracts Service (CAS) Number: 240494-70-6 Chemical Class: Pyrethroid ester Registration Status: New Chemical, nonfood use Pesticide Type: Insecticide repellent not applied to human skin U.S.Technical Registrant : Sumitomo Chemical Company, LTD. 1330 Dillon Hghts. Ave. Baltimore, MD 21228 Use Pattern and Formulations Currently there are two end use products being proposed for metofluthrin. DeckMate ™ Mosquito Repellent Strip is an impregnated paper strip (~3,528 cm2) containing 1.82 percent metofluthrin as the active ingredient. The product also contains Bitrex ™ to discourage oral exposure to children or animals. The product is for use on patios, campsites, decks, cabanas, and other outdoor areas. One strip is applied per 10 ft × 10 ft outdoor area. Indoors the application rate is two strips per 50 m3. There are approximately 200 mg of metofluthrin initially in the strip. The strips can provide up to one week of protection Metofluthrin evaporates readily and therefore requires no external heat. Norm 1- is a personal outdoor insect repellent product consisting of a holder containing a replaceable cartridge insert coated with up to 50 mg of metofluthrin.
    [Show full text]
  • Recent Advances on Detection of Insecticides Using Optical Sensors
    sensors Review Recent Advances on Detection of Insecticides Using Optical Sensors Nurul Illya Muhamad Fauzi 1, Yap Wing Fen 1,2,*, Nur Alia Sheh Omar 1,2 and Hazwani Suhaila Hashim 2 1 Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; [email protected] (N.I.M.F.); [email protected] (N.A.S.O.) 2 Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; [email protected] * Correspondence: [email protected] Abstract: Insecticides are enormously important to industry requirements and market demands in agriculture. Despite their usefulness, these insecticides can pose a dangerous risk to the safety of food, environment and all living things through various mechanisms of action. Concern about the environmental impact of repeated use of insecticides has prompted many researchers to develop rapid, economical, uncomplicated and user-friendly analytical method for the detection of insecticides. In this regards, optical sensors are considered as favorable methods for insecticides analysis because of their special features including rapid detection time, low cost, easy to use and high selectivity and sensitivity. In this review, current progresses of incorporation between recognition elements and optical sensors for insecticide detection are discussed and evaluated well, by categorizing it based on insecticide chemical classes, including the range of detection and limit of detection. Additionally, this review aims to provide powerful insights to researchers for the future development of optical sensors in the detection of insecticides. Citation: Fauzi, N.I.M.; Fen, Y.W.; Omar, N.A.S.; Hashim, H.S. Recent Keywords: insecticides; optical sensor; recognition element Advances on Detection of Insecticides Using Optical Sensors.
    [Show full text]
  • LC-MS Applications for Food Safety Analysis
    Application Note: 51878 Non-targeted Screening and Accurate Mass Confirmation of 510 Pesticides on the High Resolution Exactive Benchtop LC/MS Orbitrap Mass Spectrometer Allen Zhang, James S. Chang, Christine Gu, Mark Sanders, Thermo Fisher Scientific, San Jose, CA, USA Overview Key Words As agricultural trade grows and food safety concerns • Exactive mount, stricter pesticide regulations are being enforced around the world. Increased pesticide testing and • High Mass reductions in maximum permissible residue levels have Accuracy driven demand for fast, sensitive and cost-effective • High Resolution analytical methods for high-throughput screening of multi-class pesticides in food. Detection of 510 pesticides • Orbitrap at low ppb levels was achieved within 12 minutes using Technology the Thermo Scientific Exactive benchtop LC/MS system • Pesticide Analysis powered by Orbitrap technology. The high resolving power of the Thermo Scientific Orbitrap platform enables accurate mass confirmation of all compounds, including isobaric pesticides. Accurate, robust, easy to use and cost- Pesticides in food were traditionally monitored and efficient, the Exactive™ LC/MS is ideally suited for routine, quantified using gas chromatography (GC) coupled with comprehensive screening of targeted and non-targeted either selective detectors (e.g. electron capture) or mass pesticides at or below the 0.01 mg/kg (10 ppb) default spectrometry (MS). GC/MS continues to be widely used in limit set by EU and Japanese legislation. pesticide analysis because it is highly selective, provides confirmation of multiple classes of pesticides in a single Introduction analytical run, and is relatively inexpensive and easy to operate. However, GC/MS cannot detect polar, thermally In 2007, the United States Environmental Protection unstable or low volatility compounds without derivatization.
    [Show full text]