Magnolia Walk Area

Total Page:16

File Type:pdf, Size:1020Kb

Magnolia Walk Area Magnolia Walk Area Location Botanical Name Family Type of Plant Bloom Time Zone Magnolia Walk Abeliophyllum distichum Oleaceae Shrub Feb 5-9 Adiantum sp. Pteridaceae Perennial Alchemilla alpina Rosaceae Perennial Summer 3-7 Araucaria araucana Araucariaceae Tree Astilbe sp Saxifragaceae Perennial Jun/Jul Bergenia crassifolia Saxifragaceae Perennial Feb/Mar/Apr 3-8 Carex oshimensis 'Evergold' Cyperaceae Grass Chamaecyparis pisifera 'Minima Compacta' Cupressaceae Tree 4-8 Cornus florida f. rubra Cornaceae Tree Apr/May 5-8 Corydalis flexuosa Papaveraceae Perennial Spring 6-8 Corylopsis pauciflora Hamamelidaceae Shrub Feb/Mar 6-9 Emmenopterys henryi Rubiaceae Tree Summer 7-10 Epimedium 'Orion' Berberidaceae Shrub Epimedium x versicolor 'Sulphureum' Berberidaceae Shrub Feb/Mar 5-9 Gaultheria mucronata Ericaceae Shrub Summer 8-9 Gentiana aesclepiadea Gentianaceae Perennial Summer 6-9 Hamamelis x intermedia 'Diane' Hamamelidaceae Shrub Jan/Feb 5-9 Hedera helix 'Congesta' Araliaceae Shrub 5-10 Helleborus orientalis Ranunculaceae Perennial Feb/Mar 4-9 Heuchera 'Plum Pudding' Saxifragaceae Perennial July 4-8 Hosta 'Golden Tiara' (9) Liliaceae Perennial 3-8 Hosta 'Great Expectations' (2) Liliaceae Perennial 3-8 Hosta 'Paul's Glory' Liliaceae Perennial 3-8 Hosta sieboldiana Liliaceae Perennial Jun Ilex dipyrena Aquifoliaceae Tree 7-9 Illicium anisatum Illiciaceae Shrub Apr/May 7-9 Iris Japonica 'Ledgers Variety' Iridaceae Perennial Spring 7-9 Kalmia latifolia 'Ostbo Red' Ericaceae Shrub May/Jun 5-9 Leucothoe axilaris Ericaceae Shrub E Summer 6-9 Leucothoe fontanesiana Ericaceae Shrub May 5-8 Liquidambar styraciflua Hamamelidaceae Tree 3-9 Magnolia acuminata Magnoliaceae Tree May 4-8 Magnolia dawsoniana Magnoliaceae Tree Mar 7-9 Magnolia denudata Mangnoliaceae Tree Mar 6-9 Magnolia hypoleuca Magnoliafceae Tree May 5-9 Magnolia lilliflora 'Nigra' Magnoliaceae Tree Mar/Apr 5-9 Magnolia salicifolia Magnoliaceae Tree Mar 6-9 Magnolia stellata rosea 'Jane Platt' Magnoliaceae Tree Mar/Apr 6-9 Magnolia x loebneri 'Merrill' Magnoliaceae Tree Mar 5-9 Magnolia x soulangiana (seedling) Magnoliaceae Tree Mar 5-9 Magnolia x soulangiana (seedling) Magnoliaceae Tree Mar 5-9 Magnolia x soulangiana 'Rustica Rubra' Magnoliaceae Tree Mar 5-9 Michelia maudiae WDS Magnoliaceae Tree Feb 7 Michelia yunnanensis 'Michelle' (Avent Magnoliaceae Tree Feb/Mar Oxalis oregana Oxalidaceae Perennial Summer 7-9 Paeonia officinalis Paeoniaceae Perennial May 3-9 Pinus nigra 'Arnold Sentinel' Pinaceae Tree Podocarpus alpinus 'Blue Gem' Podocarpaceae Shrub 7-10 Polypodium glycyrrhiza Polypodiaceae Fern 4-9 Primula japonica 'Rosea' Primulaceae Perennial Spring 3-8 Primula 'Sue Jervis' Primulaceae Perennial Spr. Prunus pumila 'Depressa' Rosaceae Shrub Pulmonaria angustifolia Boraginaceae Perennial L Spring 4-8 Rehderodendron macrocarpum Stryacaceae Tree Apr/May 8-10 Magnolia Walk Area Rhododendron augustinii chasmanthum Ericaeae Shrub Spring 10 Rhododendron augustinii ssp augustinii (3) Ericaceae Shrub Rhododendron calophytum Ericaceae Shrub May 6 Rhododendron 'Christmas Cheer' Ericaceae Shrub L winter, E. Rhododendron 'Cynthia' Ericaceae Shrub May Rhododendron dauricum (3) Ericaceae Shrub Rhododendron degronianum Ericaceae Shrub Mar/Ap Rhododendron 'Doncaster' Ericaceae Shrub Ap/May Rhododendron exbury hybrid Ericaceae Shrub Ap/May Rhododendron 'Fastuosum Flore Pleno' Ericaceae Shrub Rhododendron 'Ginny Gee' Ericaceae Shrub Spring Rhododendron 'Loder's White' Ericaceae Shrub May Rhododendron lutescens 'Bagshot Sands' (2) Ericaceae Shrub Rhododendron 'Michael Walter' Ericaceae Shrub Rhododendron occidentale Ericaceae Shrub Apr/May 7-9 Rhododendron ponticum Ericaceae Shrub May Rhododendron pseudochrysanthum 'Exbury Ericaceae Shrub Rhododendron racemosum (5) Ericaceae Shrub Rhododendron rigidum (5) Ericaceae Shrub Rhododendron schlippenbachii Ericaceae Shrub Apr 5-8 Rhododendron semibarbatum Ericaceae Shrub Rhododendron sutchuenense (2) Ericaceae Shrub Mar/Apr 6-9 Rhododendron vernicosum Ericaceae Shrub Ap/May 4-9 Rhododendron 'Waterer' Fabia group Ericaceae Shrub April Rhododendron 'White Rosebud' Ericaceae Shrub Rhododendron yakusimanum 'Mist Maiden' Ericaceae Shrub 7 Rosa 'LaMarne' Rosaceae Shrub Summer Spiraea x bulmalda 'Dolchica' Rosaceae Shrub Summer Stewartia pseudocamellia Theaceae Tree Jun 5-8 Taxus cuspidata Taxaceae Tree 5-7 Thuja orientalis 'Variegata' Cupressaceae Tree 6-9 Tiarella 'Skeleton Key' Saxifragaceae Perennial 3-7 Trillium kurabayashii Liliaceae Perennial Mar/May 8 Viburnum plicatum f. tomentosum Caprifoliaceae Shrub Apr/May 4-8.
Recommended publications
  • Beaver Damage Prevention and Control Methods
    DIVISION OF AGRICULTURE RESEARCH & EXTENSION Agriculture and Natural Resources University of Arkansas System FSA9085 Beaver Damage Prevention and Control Methods Rebecca McPeake The American beaver (Castor The purpose of this fact sheet is Professor - canadensis), our largest North Ameri­ to provide information about alterna­ Extension Wildlife can rodent, is nature’s equivalent of tive control methods to address these a habitat engineer (Figure 1). Beaver issues. Because wildlife laws are sub­ Specialist create ponds and wetlands used by ject to change, refer to a local wildlife waterfowl, shorebirds, mink (Mustela officer, an Arkansas hunting guidebook vison), muskrats (Ondatra zibethicus), or an Arkansas Game and Fish Com­ river otters (Lutra spp.), fish, amphib­ mission office (800-364-4263, www ians, aquatic plants and other living .agfc.com) for current information. species. Beaver ponds generally slow the water flow from drainage areas Description and and alter silt deposition, which creates new habitat. During drought Life History conditions, beaver ponds create water holes for livestock and wildlife, partic­ The beaver is a large, stocky- ularly wood ducks (Aix sponsa) and appearing rodent, generally 35 to river otters. However, their engineer­ 40 inches long from head to tail. It ing feats cause problems when they: has a broad, flat paddle-shaped tail, short ears and generally brown fur. • Flood homes, roads and croplands. The beaver ’s tail is used as a rudder • Dam canals, drainages and pipes, while swimming and is slapped which inhibits water control. against the water as a danger signal. The beaver ’s four large front teeth • Girdle and fell valuable trees.
    [Show full text]
  • New Plantings in the Arboretum the YEAR in REVIEW
    Four new have been Four new Yoshino cherry trees have Yoshinobeen planted along planted Azalea Way. cherry trees along Azalea New Plantings in the Arboretum THE YEAR IN REVIEW T EX T B Y R AY L A R SON P HO T OS B Y N IA ll D UNNE n the five years that I have been curator, 2018 was the most active in terms of new plantings in the Arboretum. A majority of these centered around the new Arboretum Loop Trail and adjacent areas, many of which were enhanced, rehabilitated and Iaugmented. We also made improvements to a few other collection and garden areas with individual and smaller plantings. Following is a summary of some of the more noticeable new plantings you might encounter during your next visit. Winter 2019 v 3 Arboretum Entrance Perhaps the most obvious major planting occurred in March, just north of the Graham Visitors Center, with the creation of a new, large bed at the southeast corner of the intersection of Arboretum Drive and Foster Island Road. This intersection changed a lot as part of the Loop Trail construction—with the addition of new curbs and crosswalks—and we wanted to create a fitting entrance to the Arboretum at its north end. The new planting was also intended to alleviate some of the soil compaction and social trails that had developed on the east side of Arboretum Drive during trail construction. What’s more, we wanted to encourage pedes- trians to use the new gravel trail on the west side of the Drive to connect from the lower parking lots to the Visitors Center—rather than walk in the road.
    [Show full text]
  • Vascular Flora of the Possum Walk Trail at the Infinity Science Center, Hancock County, Mississippi
    The University of Southern Mississippi The Aquila Digital Community Honors Theses Honors College Spring 5-2016 Vascular Flora of the Possum Walk Trail at the Infinity Science Center, Hancock County, Mississippi Hanna M. Miller University of Southern Mississippi Follow this and additional works at: https://aquila.usm.edu/honors_theses Part of the Biodiversity Commons, and the Botany Commons Recommended Citation Miller, Hanna M., "Vascular Flora of the Possum Walk Trail at the Infinity Science Center, Hancock County, Mississippi" (2016). Honors Theses. 389. https://aquila.usm.edu/honors_theses/389 This Honors College Thesis is brought to you for free and open access by the Honors College at The Aquila Digital Community. It has been accepted for inclusion in Honors Theses by an authorized administrator of The Aquila Digital Community. For more information, please contact [email protected]. The University of Southern Mississippi Vascular Flora of the Possum Walk Trail at the Infinity Science Center, Hancock County, Mississippi by Hanna Miller A Thesis Submitted to the Honors College of The University of Southern Mississippi in Partial Fulfillment of the Requirement for the Degree of Bachelor of Science in the Department of Biological Sciences May 2016 ii Approved by _________________________________ Mac H. Alford, Ph.D., Thesis Adviser Professor of Biological Sciences _________________________________ Shiao Y. Wang, Ph.D., Chair Department of Biological Sciences _________________________________ Ellen Weinauer, Ph.D., Dean Honors College iii Abstract The North American Coastal Plain contains some of the highest plant diversity in the temperate world. However, most of the region has remained unstudied, resulting in a lack of knowledge about the unique plant communities present there.
    [Show full text]
  • Planting Schemes Advice Note 2021
    Natural Environment Team East Dorset Environment Partnership Dorset Biodiversity Appraisal Protocol Advice Note Planting scheme recommendations Introduction This advice note was written with the East Dorset Environment Partnership and is intended primarily to assist ecological consultants and developers when submitting Biodiversity Plans (BPs) and Landscape & Ecological Management Plans (LEMPs) to DC NET for review under the Dorset Biodiversity Appraisal Protocol (DBAP) by describing how to maximise the biodiversity potential of good planting schemes designed to deliver multiple benefits and contribute to achieving biodiversity net gain. Making the most of existing habitats strengthened through strong eco-tones; sound planting composition; connectivity to ecological networks within and beyond site boundaries and appropriate on-going management are all fundamental elements of an outstanding planting scheme. Submitted planting schemes for developments should seek to offer biodiversity benefit and comply with Dorset Council’s Pollinators Action Plan and Green Infrastructure Strategies. Schemes should demonstrate how they will contribute to addressing the Climate & Ecological Emergency Strategy (Draft 2020). Currently, many schemes appear to be generic designs that do not take account of local conditions and are based on widely available and low-cost shrubs; many of which are invasive, potentially invasive or nuisance plants known as ‘garden thugs’. This is of particular concern where new sites for development are on the rural fringe and pose a significant risk of spreading damaging alien plant species into the wider countryside and sensitive semi-natural habitats. Recent published work by the Royal Horticultural Society (RHS) and others has focussed on lists of plants that attract pollinators rather than broader biodiversity considerations.
    [Show full text]
  • (A) Journals with the Largest Number of Papers Reporting Estimates Of
    Supplementary Materials Figure S1. (a) Journals with the largest number of papers reporting estimates of genetic diversity derived from cpDNA markers; (b) Variation in the diversity (Shannon-Wiener index) of the journals publishing studies on cpDNA markers over time. Figure S2. (a) The number of publications containing estimates of genetic diversity obtained using cpDNA markers, in relation to the nationality of the corresponding author; (b) The number of publications on genetic diversity based on cpDNA markers, according to the geographic region focused on by the study. Figure S3. Classification of the angiosperm species investigated in the papers that analyzed genetic diversity using cpDNA markers: (a) Life mode; (b) Habitat specialization; (c) Geographic distribution; (d) Reproductive cycle; (e) Type of flower, and (f) Type of pollinator. Table S1. Plant species identified in the publications containing estimates of genetic diversity obtained from the use of cpDNA sequences as molecular markers. Group Family Species Algae Gigartinaceae Mazzaella laminarioides Angiospermae Typhaceae Typha laxmannii Angiospermae Typhaceae Typha orientalis Angiospermae Typhaceae Typha angustifolia Angiospermae Typhaceae Typha latifolia Angiospermae Araliaceae Eleutherococcus sessiliflowerus Angiospermae Polygonaceae Atraphaxis bracteata Angiospermae Plumbaginaceae Armeria pungens Angiospermae Aristolochiaceae Aristolochia kaempferi Angiospermae Polygonaceae Atraphaxis compacta Angiospermae Apocynaceae Lagochilus macrodontus Angiospermae Polygonaceae Atraphaxis
    [Show full text]
  • H. Kiyosumiensis F
    Hosta Species Update●The Hosta Library © W. George Schmid 2006 H. kiyosumiensis F. Maekawa 1935 Jornal of Japanese Botany 11:689; ic. f. 15 1935 キヨスミギボウシ = Kyosumi Giboshi H. kiyosumiensis var. petrophila F. Maekawa 1938 Divisiones et Plantae Novae Generis Hostae (2). J. Japanese Botany, 14:1:45–49. イワマ ギボウシ = Iwama Giboshi History and Nomenclature: In Japan this species is called Kyiosumi Giboshi, the “Kiyosumi (Mountain) Hosta.” The species epithet stems from the Latinized name of Kiyosumiyama (清澄山), a small mountain (380 m/about 1250 feet AMSL with a great view of Tokyo Bay) located on Boso Peninsula (Bōsō-hantō; 房総半島), which is located in south Chiba Prefecture (Chiba-ken; 千葉県) forming the eastern edge of Tokyo Bay. Maekawa established H. kiyosumiensis in 1935 and published further on the species in 1938, when he also described a new variety of the species as H. (kiyosumiensis var.) petrophila. This varietal epithet is derived from the Latin “liking (or) growing on rocks.” The Japanese name Iwama Giboshi (イワマ ギボウシ) has the same meaning. The latter is differentiated by minor morphological details caused by its different, rocky habitat in Yamashiro province (山城国; Yamashiro-no kuni), H. kiyosumiensis Maekawa 1935 (in situ) Otogawa (男川) River; Okazaki-shi (岡崎市; formerly Nukata-cho) Aichi Prefecture (愛知県; Aichi-ken) 1 an old province of Japan (today the southern part of Kyoto Prefecture). Maekawa (1938) gave a much abbreviated Latin description and the variety is here considered synonymous with the species. In fact, Maekawa (1969) no longer supported the varietal rank. N. Fujita (1976) confirmed H. kiyosumiensis as a species and added two morphs previously described by Maekawa (1940), i.e., H.
    [Show full text]
  • Siebold and Zuccarini's Type Specimens and Original Materials
    J. Jpn. Bot. 89: 209–229 (2014) Siebold and Zuccarini’s Type Specimens and Original Materials from Japan, Part 4. Angiosperms. Dicotyledoneae 3 a, b c Shinobu AKIYAMA *, Gerard THIJSSE , Hans-Joachim ESSER d and Hideaki OHBA aDepartment of Botany, National Museum of Nature and Science, 4-1-1, Amakubo, Tsukuba, 305-0005 JAPAN; bNationaal Herbarium Nederland, Naturalis Biodiversity Center, P. O. Box 9514, THE NETHERLANDS; cBotanische Staatssammlung München, Menzinger Straße 67, D-80638 München, GERMANY; dDepartment of Botany, the University Museum, the University of Tokyo, 7-3-1, Hongo, Tokyo, 113-0033 JAPAN *Corresponding author: [email protected] (Accepted on March 1, 2014) Part 4 of the list of type specimens and original materials of the taxa described by Siebold and Zuccarini from Japan concerns the taxa belonging to Piperaceae to Hamamelidaceae, according to the 12th Engler system by Melchior. (Continued from J. Jpn. Bot. 89: 76–102, 2014) Key words: Japanese flora, lectotypification, Siebold collections, Zuccarini. This paper is the part 4 of the list of type Original material: In Japonia legt. Bürger, specimens and original materials of the taxa Herb. Zuccarinii (M0153560) [Category 2]. In described by Siebold and Zuccarini from Japonia legt. Bürger comct. d. Siebold, Herb. Japan (Akiyama et al. 2012, 2013, 2014), and Zuccarinii (M0153559) [Category 2b]. Japonia. treats the taxa belonging to Piperaceae to [Siebold s.n.] (MAK S1676) [Category 2]. Hamamelidaceae according to the 12th Engler system by Melchior. The method, especially the Chloranthaceae evaluation principles of category of the original Chloranthus Sw. materials, is the same as explained in part 1.
    [Show full text]
  • Tree of the Year: Liquidambar Eric Hsu and Susyn Andrews
    Tree of the Year: Liquidambar Eric Hsu and Susyn Andrews With contributions from Anne Boscawen (UK), John Bulmer (UK), Koen Camelbeke (Belgium), John Gammon (UK), Hugh Glen (South Africa), Philippe de Spoelberch (Belgium), Dick van Hoey Smith (The Netherlands), Robert Vernon (UK) and Ulrich Würth (Germany). Affinities, generic distribution and fossil record Liquidambar L. has close taxonomic affinities with Altingia Noronha since these two genera share gum ducts associated with vascular bundles, terminal buds enclosed within numerous bud scales, spirally arranged stipulate leaves, poly- porate (with several pore-like apertures) pollen grains, condensed bisexual inflorescences, perfect or imperfect flowers, and winged seeds. Not surpris- ingly, Liquidambar, Altingia and Semiliquidambar H.T. Chang have now been placed in the Altingiaceae, as originally treated (Blume 1828, Wilson 1905, Chang 1964, Melikan 1973, Li et al. 1988, Zhou & Jiang 1990, Wang 1992, Qui et al. 1998, APG 1998, Judd et al. 1999, Shi et al. 2001 and V. Savolainen pers. comm.). These three genera were placed in the subfamily Altingioideae in Hamamelidaceae (Reinsch 1890, Chang 1979, Cronquist 1981, Bogle 1986, Endress 1989) or the Liquidambaroideae (Harms 1930). Shi et al. (2001) noted that Altingia species are evergreen with entire, unlobed leaves; Liquidambar is deciduous with 3-5 or 7-lobed leaves; while Semiliquidambar is evergreen or deciduous, with trilobed, simple or one-lobed leaves. Cytological studies have indicated that the chromosome number of Liquidambar is 2n = 30, 32 (Anderson & Sax 1935, Pizzolongo 1958, Santamour 1972, Goldblatt & Endress 1977). Ferguson (1989) stated that this chromosome number distinguished Liquidambar from the rest of the Hamamelidaceae with their chromosome numbers of 2n = 16, 24, 36, 48, 64 and 72.
    [Show full text]
  • And East Siberian Rhododendron (Rh. Adamsii) Using Supercritical CO2-Extraction and HPLC-ESI-MS/MS Spectrometry
    molecules Article Comparative Analysis of Far East Sikhotinsky Rhododendron (Rh. sichotense) and East Siberian Rhododendron (Rh. adamsii) Using Supercritical CO2-Extraction and HPLC-ESI-MS/MS Spectrometry Mayya Razgonova 1,2,* , Alexander Zakharenko 1,2 , Sezai Ercisli 3 , Vasily Grudev 4 and Kirill Golokhvast 1,2,5 1 N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190000 Saint-Petersburg, Russia; [email protected] (A.Z.); [email protected] (K.G.) 2 SEC Nanotechnology, Far Eastern Federal University, 690950 Vladivostok, Russia 3 Agricultural Faculty, Department of Horticulture, Ataturk University, 25240 Erzurum, Turkey; [email protected] 4 Far Eastern Investment and Export Agency, 123112 Moscow, Russia; [email protected] 5 Pacific Geographical Institute, Far Eastern Branch of the Russian Academy of Sciences, 690041 Vladivostok, Russia * Correspondence: [email protected] Academic Editors: Seung Hwan Yang and Satyajit Sarker Received: 29 June 2020; Accepted: 12 August 2020; Published: 19 August 2020 Abstract: Rhododendron sichotense Pojark. and Rhododendron adamsii Rheder have been actively used in ethnomedicine in Mongolia, China and Buryatia (Russia) for centuries, as an antioxidant, immunomodulating, anti-inflammatory, vitality-restoring agent. These plants contain various phenolic compounds and fatty acids with valuable biological activity. Among green and selective extraction methods, supercritical carbon dioxide (SC-CO2) extraction has been shown to be the method of choice for the recovery of these naturally occurring compounds. Operative parameters and working conditions have been optimized by experimenting with different pressures (300–400 bar), temperatures (50–60 ◦C) and CO2 flow rates (50 mL/min) with 1% ethanol as co-solvent. The extraction time varied from 60 to 70 min.
    [Show full text]
  • Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- ERICACEAE
    Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- ERICACEAE ERICACEAE (Heath Family) A family of about 107 genera and 3400 species, primarily shrubs, small trees, and subshrubs, nearly cosmopolitan. The Ericaceae is very important in our area, with a great diversity of genera and species, many of them rather narrowly endemic. Our area is one of the north temperate centers of diversity for the Ericaceae. Along with Quercus and Pinus, various members of this family are dominant in much of our landscape. References: Kron et al. (2002); Wood (1961); Judd & Kron (1993); Kron & Chase (1993); Luteyn et al. (1996)=L; Dorr & Barrie (1993); Cullings & Hileman (1997). Main Key, for use with flowering or fruiting material 1 Plant an herb, subshrub, or sprawling shrub, not clonal by underground rhizomes (except Gaultheria procumbens and Epigaea repens), rarely more than 3 dm tall; plants mycotrophic or hemi-mycotrophic (except Epigaea, Gaultheria, and Arctostaphylos). 2 Plants without chlorophyll (fully mycotrophic); stems fleshy; leaves represented by bract-like scales, white or variously colored, but not green; pollen grains single; [subfamily Monotropoideae; section Monotropeae]. 3 Petals united; fruit nodding, a berry; flower and fruit several per stem . Monotropsis 3 Petals separate; fruit erect, a capsule; flower and fruit 1-several per stem. 4 Flowers few to many, racemose; stem pubescent, at least in the inflorescence; plant yellow, orange, or red when fresh, aging or drying dark brown ...............................................Hypopitys 4 Flower solitary; stem glabrous; plant white (rarely pink) when fresh, aging or drying black . Monotropa 2 Plants with chlorophyll (hemi-mycotrophic or autotrophic); stems woody; leaves present and well-developed, green; pollen grains in tetrads (single in Orthilia).
    [Show full text]
  • Reducing Deer Damage in Landscapes Part 2
    Reducing Deer Damage in the Landscape D Coetzee Public Domain bestfriendthemom Dusty Hancock CC BY-NC-ND 2.0 Chatham Master Gardener Volunteer Matt Jones Horticulture Agent NC Cooperative Extension - Chatham County Center Plant Selection Deer Candy • Aucuba • Hosta • Arborvitae • Indian Hawthorn • Azalea • Ivy • Blueberry • Chionanthus, • Clematis Malus, Prunus, • Daylily Pyrus • Euonymus • Redbuds • Fatsia • Roses Muhenbergia capillaris Pink Muhly Grass (Poaceae) Andrea Laine Jim Robbins CC BY NC 4.0 CC BY-NC-ND 4.0 Muhlenbergia capillaris Pink Muhly Grass (Poaceae) Full Sun Moist to very dry 1-3’ x 1-3’ Fall Susan Strine Fall-Winter CC BY 2.0 Schizachyrium scoparium Little Blue Stem (Poaceae) Jim Robbins Joshua Mayer Jim Robbins Montreais CC BY-SA 2.0 DE CC BY-NC-ND 4.0 CC BY-NC-ND 4.0 CC BY-SA 3.0 Schizachyrium scoparium Little Blue Stem (Poaceae) Full Sun Moist to dry Good drainage 1-4’ x 18”-2’ Summer-Fall Susan Strine Summer-Fall Jim RobbinsCC BY 2.0 CC BY-NC-ND 4.0 Chasmanthium latifolium River Oats (Poaceae) Klasse im Garten Anne McCormack CC BY 2.0 CC BY-NC 2.0 Chasmanthium latifolium River Oats (Poaceae) Part shade to dappled sun Moist Occasionally wet 2-5’ x 1-2’ Summer-Fall Anne McCormack Summer-Fall CC BY-NC 2.0 Myrica cerifera (Myricaceae) Common Wax Myrtle Forest and Kim Starr CC BY 2.0 Forest and Kim Starr CC BY 2.0 Myrica cerifera (Myricaceae) Common Wax Myrtle Jim Robbins CC BY-NC-ND 4.0 Jim Robbins Jim Robbins CC BY-NC-ND 4.0 CC BY-NC-ND 4.0 Great for urban soils, full sun to part shade.
    [Show full text]
  • Host Range of a Select Isolate of the Eri Coid Mycorrhizal Fungus
    PROPAGATION & TISSUE CULTURE HORTSCIENCE 38(6):1163–1166. 2003. Berta and Bonfante-Fasolo, 1983; Bradley et al., 1981; Leake and Read, 1989). Other studies have attempted to evaluate the host Host Range of a Select Isolate of range of ericoid fungi, but have inoculated with unidentified ericoid fungal isolates, described, the Eri coid Mycorrhizal Fungus for example as, “dark, slow-growing cultures” (Pearson and Read, 1973b; Reed, 1987). Hymenoscyphus ericae To date there have been no studies that investigate the host range of a select isolate Nicole R. Gorman1 and Mark C. Starrett2 of the ericoid endophyte H. ericae. Therefore, Department of Plant and Soil Science, University of Vermont, Burlington, the objective of this study was to evaluate the VT 05405-0082 host range using select species within the Eri- caceae by inoculating with a specific iso late Additional index words. Ericaceae, Calluna, Enkianthus, Gaultheria, Kalmia, Leucothoe, of H. ericae. Oxydendrum, Pieris, Rhodo den dron, Vaccinium Materials and Methods Abstract. Studies were conducted to ex am ine the host range of a select isolate of the ericoid mycorrhizal fungus Hymenoscyphus ericae (Read) Korf and Kernan [American Type Seed of 15 ericaceous species was ob tained Culture Collection (ATCC) #32985]. Host status was tested for 15 ericaceous species, in- from commercial seed suppliers [Sheffield·s cluding: Calluna vulgaris (L.) Hull, Enkianthus campanulatus (Miq.) Nichols, Gaultheria Seed Co. (Lock, N.Y.) and F.W. Schumacher procumbens L., Kalmia latifolia L., Leucothoe fontanesiana Sleum., Oxydendrum arbo- Co. (Sandwich, Mass.)]. Seed was cleaned and reum (L.) DC., Pieris flo ri bun da (Pursh) Benth.
    [Show full text]