Beaver (Castor Canadensis) Impacts on Herbaceous and Woody Vegetation in Southeastern Georgia

Total Page:16

File Type:pdf, Size:1020Kb

Beaver (Castor Canadensis) Impacts on Herbaceous and Woody Vegetation in Southeastern Georgia Georgia Southern University Digital Commons@Georgia Southern Electronic Theses and Dissertations Graduate Studies, Jack N. Averitt College of Fall 2005 Beaver (Castor Canadensis) Impacts on Herbaceous and Woody Vegetation in Southeastern Georgia Jessica R. Brzyski Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/etd Recommended Citation Brzyski, Jessica R., "Beaver (Castor Canadensis) Impacts on Herbaceous and Woody Vegetation in Southeastern Georgia" (2005). Electronic Theses and Dissertations. 707. https://digitalcommons.georgiasouthern.edu/etd/707 This thesis (open access) is brought to you for free and open access by the Graduate Studies, Jack N. Averitt College of at Digital Commons@Georgia Southern. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact [email protected]. BEAVER (CASTOR CANADENSIS) IMPACTS ON HERBACEOUS AND WOODY VEGETATION IN SOUTHEASTERN GEORGIA by JESSICA R. BRZYSKI (Under the direction of Bruce A. Schulte) ABSTRACT North American beavers are considered ecosystem engineers. Their activities can quickly and drastically alter habitat properties and perhaps permit highly aggressive colonizing plants, notably non-native species, to invade and potentially dominate. This study examined if beavers in southeastern Georgia have an effect on the terrestrial plant community. Sampling areas included beaver modified (N=9) and nearby but relatively non-impacted riparian habitat (N=9) in a matched pairs design. Vegetation surveys were performed in spring and summer. Species richness was calculated for herbs, vines, woody seedlings, and woody vegetation. Richness of herbaceous vegetation was higher at distances closer to shore while richness of large woody vegetation increased with distance from shore. Woody vegetation also was more abundant in beaver sites. Composition was not different between the two site types. The presence of exotic species was rare and did not differ by site type. This study provides evidence that beavers may play an important role in determining the vegetative structure of their community. Index words: Castor canadensis, beaver, herbaceous, vegetation, exotics, ecosystem engineers, non-native BEAVER (CASTOR CANADENSIS) IMPACTS ON HERBACEOUS AND WOODY VEGETATION IN SOUTHEASTERN GEORGIA by JESSICA R. BRZYSKI B.S., State University of New York College of Environmental Science and Forestry, 2001 A Thesis Submitted to the Graduate Faculty of Georgia Southern University in Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE STATESBORO, GEORGIA 2005 2 © 2005 Jessica R. Brzyski All Rights Reserved 3 BEAVER (CASTOR CANADENSIS) IMPACTS ON HERBACEOUS AND WOODY VEGETATION IN SOUTHEASTERN GEORGIA by JESSICA R. BRZYSKI Major Professor: Bruce A. Schulte Committee: Lissa M. Leege Lorne M. Wolfe Miche1le L. Zjhra Electronic Version Approved: October, 2005 4 ACKNOWLEDGEMENTS I want to thank my major professor, Dr. Bruce Schulte, for his support, guidance, and advice throughout this project. With his help I was able to create my own research study and receive outside grants to fund this project. Furthermore, I would like to thank my committee members, Dr. Lissa Leege, Dr. Lorne Wolfe, and Dr. Michelle Zjhra, for their advice and support, whether it was discussing methods, invasions, PhD programs, or just plain botanizing. For the funding of this project, I would like to thank Sigma Xi Research Grant, and Georgia Southern Graduate Research Fund. I would like to thank Dr. Donald Drapalik for all of his help identifying specimens from the field, as well as teaching me how to properly preserve them. It is with his help that I was able to complete my thesis research. Thanks to undergraduates, Matt McBride and Matt Hinman, for help in data collection, dodging snakes, and brushing off fire ants. I would like to thank the Department of Natural Resources, specifically Richard Tanner, for his help in finding beaver sites and contacting landowners. Of landowners, I would like to specially thank the Mathews brothers whom define the meaning of the phrase “Southern hospitality”. Lastly, I want to thank my family for all of their love and support. Thank you for teaching me to take pride in all of my hard work, for listening to my worries, and for driving 1800 miles roundtrip to see me whenever I needed my family fix. I could do none of this without my parents and brother by my side. 5 TABLE OF CONTENTS Page ACKNOWLEDGEMENTS……………………………………………………………….5 LIST OF TABLES………………………………………………………………………...7 LIST OF FIGURES………………………………………………………………………..8 CHAPTER 1. INTRODUCTION………………………………………………………………. 10 2. METHODS a. Study Area…………………………………………….………………….18 b. Data Collection………………………………………………………….. 20 c. Statistical Analyses……………………………………………………… 22 3. RESULTS……………………………………………………………………….. 24 4. DISCUSSION……………………………………………………………………30 REFERENCES………………………………………………………………………….. 40 APPENDICES 1. Directions and Descriptions of Study Sites………………………………………65 2. Species Area Curve………………………………………………….…………...104 3. List of Plant Vouchers Collected at Study Sites……………………………....…113 6 LIST OF TABLES Page Table 1: An example of a split-plot design for richness of herbaceous vegetation……………………………………………………………………45 Table 2: Wetland classification of herbaceous and woody vegetation as per U.S. Fish & Wildlife Service (1988)………………………………………...46 Table 3: Principle Components Analysis of large woody vegetation of beaver- modified and control sites in Bulloch County, Georgia……………………. 47 7 LIST OF FIGURES Page Figure 1: Map of study sites in Bulloch County, Georgia……………………………. 48 Figure 2: Diagram of vegetation survey method………………………………………49 Figure 3: Average herbaceous vegetation richness measured at four distances from shore in beaver-modified (n=9) and control sites (n=9)……………… 50 Figure 4: Average woody richness in 1 m2 plots measured at four distances from shore in beaver-modified (n=9) and control sites (n=9)……………………. 51 Figure 5: Average woody richness in 25 m2 plots measured at four distances from shore in beaver-modified (n=9) and control sites (n=9)……………………. 52 Figure 6: Average vine richness measured at four distances from shore in beaver- modified (n=9) and control sites (n=9)……………………………………...53 Figure 7: Average herbaceous vegetation abundance measured at four distances from shore in beaver-modified (n=9) and control sites (n=9)……………………. 54 Figure 8: Average abundance for herbaceous vegetation when the outlier sites (2 beaver and 1 control) were removed from analysis…………………………55 Figure 9: Average woody abundance in 1 m2 plots measured at four distances from shore in beaver-modified (n=9) and control sites (n=9)……………………. 56 Figure 10: Average large woody vegetation abundance measured in 25 m2 plots at four distances from shore in beaver-modified (n=9) and control sites (n=9)…….57 Figure 11: Diversity of herbaceous vegetation measured at four distances from shore in beaver-modified (n=9) and control sites (n=9)…………………………. 58 Figure 12: Diversity for small woody vegetation measured at four distances from shore in beaver-modified (n=9) and control sites (n=9)……………………. 59 Figure 13: Diversity of large woody vegetation measured at four distances from shore in beaver-modified (n=9) and control sites (n=9)……………………. 60 Figure 14: The relative abundance of all large woody vegetation measured in 25 m2 plots for beaver-modified (n=9) and control (n=9) sites…………………… 61 Figure 15: Principle Components Analysis performed on large woody vegetation with site type the grouping variable………………………………………... 62 8 Figure 16: Canopy cover measurements for matched beaver-modified and control sites (n=9) measured at 10 m from the water’s edge………………………. 63 Figure 17: The number of exotic plant species, herbaceous and woody, per site for beaver-modified and control (n=9)………………………………………….64 9 CHAPTER 1 INTRODUCTION Plant communities change over time through a process termed ecological succession, which includes altering species composition or the structure of a community (Cowles, 1910; Clements, 1916; Clements, 1936). Ecological changes through time can be classified as allogenic or autogenic (Barbour et al., 1999). Allogenic changes are caused by external forces not affected by biotic factors. The changes are the result of the physical environment, for example, when the temperature decreases as elevation increases. Autogenic changes are the direct result of a biotic influence in the community. These changes can be inhibitory to other organisms, such as when tree roots uptake water and nutrients from the soil, potentially reducing the ability of nearby vegetation to grow. Autogenic changes also can be facilitative, such as when organisms benefit from nitrogen fixers in the soil. The focus of this study was on autogenic changes, specifically those caused by the North American beaver (Castor canadensis). Beavers were once abundant and widely distributed throughout North America. Population numbers were estimated at 60-400 million, occupying the majority of waterways in North America, from as far north as the arctic tundra to the deserts of northern Mexico (Jenkins & Busher, 1979). As a consequence of unregulated trapping and habitat loss, beaver populations declined drastically and only small populations existed east of the Mississippi River by 1850 (Johnson & Chance, 1974). In Georgia, beaver were virtually eliminated, so a restoration program began in the 1940’s and lasted approximately
Recommended publications
  • Black Cherry (Prunus Serotina Ehrh.)
    DOCS A 13.31:C 424/971 .: z,' BLACK CHERRY Black cherry, also commonly called cherry, grows in significant commercial quantities only in the north- ern Allegheny Mountains. Cherry wood is reddish and takes a lustrous finish; it is a prized furniture wood and brings high prices in veneer log form. lt is straight-grained moderately hard, and stable; it can be machined easily. Black cherry is widely used in the printing industries to mount engravings, elec- trotypes, and zinc etchings. lt is also used for wall paneling, flooring, patterns, professional and scien- tific instruments, handles, and other specialty items. -"3242, /9 \(j\\ '-' 'Li \c1 - - / U.S. Department of Agriculture Forest Service . American Woods-FS 229 Revised February 1971 BLACK CHERRY (Prunus sero tina Ehrh.) Charles J. Gatchell1 DISTRiBUTION Florida west to eastern Texas, north to central Minne. z Black cherry and its varieties grow under a wide sota, and east through northern Michigan, Ontario, range of climatic conditions (fig. 1). It is found prin. and Quebec to Maine and Nova Scotia. It is also found cipally throughout the eastern half of the United States, in scattered locations in Arizona, New Mexico, western from the Plains to the Atlantic, and the Great Lakes to Texas, Guatemala, and Mexico. It grows extensively in the Gulf of Mexico. Its range extends from northern western and central Mexico. Research forest products technologist, Northeastern Forest Black cherry is of commercial significance only in Experiment Station, USDA Forest Service, a narrow area centering in western Pennsylvania. Major 0 ?_ .90.?0 3?0. 95 F-506642 Figure 1.-Natural range of black cherry, Prunus serotina.
    [Show full text]
  • Beaver Damage Prevention and Control Methods
    DIVISION OF AGRICULTURE RESEARCH & EXTENSION Agriculture and Natural Resources University of Arkansas System FSA9085 Beaver Damage Prevention and Control Methods Rebecca McPeake The American beaver (Castor The purpose of this fact sheet is Professor - canadensis), our largest North Ameri­ to provide information about alterna­ Extension Wildlife can rodent, is nature’s equivalent of tive control methods to address these a habitat engineer (Figure 1). Beaver issues. Because wildlife laws are sub­ Specialist create ponds and wetlands used by ject to change, refer to a local wildlife waterfowl, shorebirds, mink (Mustela officer, an Arkansas hunting guidebook vison), muskrats (Ondatra zibethicus), or an Arkansas Game and Fish Com­ river otters (Lutra spp.), fish, amphib­ mission office (800-364-4263, www ians, aquatic plants and other living .agfc.com) for current information. species. Beaver ponds generally slow the water flow from drainage areas Description and and alter silt deposition, which creates new habitat. During drought Life History conditions, beaver ponds create water holes for livestock and wildlife, partic­ The beaver is a large, stocky- ularly wood ducks (Aix sponsa) and appearing rodent, generally 35 to river otters. However, their engineer­ 40 inches long from head to tail. It ing feats cause problems when they: has a broad, flat paddle-shaped tail, short ears and generally brown fur. • Flood homes, roads and croplands. The beaver ’s tail is used as a rudder • Dam canals, drainages and pipes, while swimming and is slapped which inhibits water control. against the water as a danger signal. The beaver ’s four large front teeth • Girdle and fell valuable trees.
    [Show full text]
  • Vascular Flora of the Possum Walk Trail at the Infinity Science Center, Hancock County, Mississippi
    The University of Southern Mississippi The Aquila Digital Community Honors Theses Honors College Spring 5-2016 Vascular Flora of the Possum Walk Trail at the Infinity Science Center, Hancock County, Mississippi Hanna M. Miller University of Southern Mississippi Follow this and additional works at: https://aquila.usm.edu/honors_theses Part of the Biodiversity Commons, and the Botany Commons Recommended Citation Miller, Hanna M., "Vascular Flora of the Possum Walk Trail at the Infinity Science Center, Hancock County, Mississippi" (2016). Honors Theses. 389. https://aquila.usm.edu/honors_theses/389 This Honors College Thesis is brought to you for free and open access by the Honors College at The Aquila Digital Community. It has been accepted for inclusion in Honors Theses by an authorized administrator of The Aquila Digital Community. For more information, please contact [email protected]. The University of Southern Mississippi Vascular Flora of the Possum Walk Trail at the Infinity Science Center, Hancock County, Mississippi by Hanna Miller A Thesis Submitted to the Honors College of The University of Southern Mississippi in Partial Fulfillment of the Requirement for the Degree of Bachelor of Science in the Department of Biological Sciences May 2016 ii Approved by _________________________________ Mac H. Alford, Ph.D., Thesis Adviser Professor of Biological Sciences _________________________________ Shiao Y. Wang, Ph.D., Chair Department of Biological Sciences _________________________________ Ellen Weinauer, Ph.D., Dean Honors College iii Abstract The North American Coastal Plain contains some of the highest plant diversity in the temperate world. However, most of the region has remained unstudied, resulting in a lack of knowledge about the unique plant communities present there.
    [Show full text]
  • Comparing Negative Impacts of Prunus Serotina, Quercus Rubra and Robinia Pseudoacacia on Native Forest Ecosystems
    Article Comparing Negative Impacts of Prunus serotina, Quercus rubra and Robinia pseudoacacia on Native Forest Ecosystems Rodolfo Gentili 1,* , Chiara Ferrè 1, Elisa Cardarelli 2, Chiara Montagnani 1, Giuseppe Bogliani 2 , Sandra Citterio 1 and Roberto Comolli 1 1 Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy; [email protected] (C.F.); [email protected] (C.M.); [email protected] (S.C.); [email protected] (R.C.) 2 Department of Earth and Environmental Science, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy; [email protected] (E.C.); [email protected] (G.B.) * Correspondence: [email protected]; Tel.: +39-02-6448-2700 Received: 12 August 2019; Accepted: 23 September 2019; Published: 26 September 2019 Abstract: The introduction of invasive alien plant species (IAPS) can modify plant-soil feedback, resulting in an alteration of the abiotic and biotic characteristics of ecosystems. Prunus serotina, Quercus rubra and Robinia pseudoacacia are IAPS of European temperate forests, where they can become dominant and suppress the native biodiversity. Assuming that the establishment of these invasive species may alter native forest ecosystems, this study comparatively assessed their impact on ecosystems. This study further investigated plant communities in 12 forest stands, dominated by the three IAPS and native trees, Quercus robur and Carpinus betulus (three plots per forest type), in Northern Italy, and collected soil samples. The relationships between the invasion of the three IAPS and modifications of humus forms, soil chemical properties, soil biological quality, bacterial activity and plant community structure and diversity (α-, β-, and γ-diversity) were assessed using one-way ANOVA and redundancy analyses (RDA).
    [Show full text]
  • Tree of the Year: Liquidambar Eric Hsu and Susyn Andrews
    Tree of the Year: Liquidambar Eric Hsu and Susyn Andrews With contributions from Anne Boscawen (UK), John Bulmer (UK), Koen Camelbeke (Belgium), John Gammon (UK), Hugh Glen (South Africa), Philippe de Spoelberch (Belgium), Dick van Hoey Smith (The Netherlands), Robert Vernon (UK) and Ulrich Würth (Germany). Affinities, generic distribution and fossil record Liquidambar L. has close taxonomic affinities with Altingia Noronha since these two genera share gum ducts associated with vascular bundles, terminal buds enclosed within numerous bud scales, spirally arranged stipulate leaves, poly- porate (with several pore-like apertures) pollen grains, condensed bisexual inflorescences, perfect or imperfect flowers, and winged seeds. Not surpris- ingly, Liquidambar, Altingia and Semiliquidambar H.T. Chang have now been placed in the Altingiaceae, as originally treated (Blume 1828, Wilson 1905, Chang 1964, Melikan 1973, Li et al. 1988, Zhou & Jiang 1990, Wang 1992, Qui et al. 1998, APG 1998, Judd et al. 1999, Shi et al. 2001 and V. Savolainen pers. comm.). These three genera were placed in the subfamily Altingioideae in Hamamelidaceae (Reinsch 1890, Chang 1979, Cronquist 1981, Bogle 1986, Endress 1989) or the Liquidambaroideae (Harms 1930). Shi et al. (2001) noted that Altingia species are evergreen with entire, unlobed leaves; Liquidambar is deciduous with 3-5 or 7-lobed leaves; while Semiliquidambar is evergreen or deciduous, with trilobed, simple or one-lobed leaves. Cytological studies have indicated that the chromosome number of Liquidambar is 2n = 30, 32 (Anderson & Sax 1935, Pizzolongo 1958, Santamour 1972, Goldblatt & Endress 1977). Ferguson (1989) stated that this chromosome number distinguished Liquidambar from the rest of the Hamamelidaceae with their chromosome numbers of 2n = 16, 24, 36, 48, 64 and 72.
    [Show full text]
  • Acer Rubrum ‘Red Sunset’ ‘Red Sunset’ Red Maple1 Edward F
    Fact Sheet ST-47 November 1993 Acer rubrum ‘Red Sunset’ ‘Red Sunset’ Red Maple1 Edward F. Gilman and Dennis G. Watson2 INTRODUCTION ‘Red Sunset’ and ‘October Glory’ have proven to be the best cultivars of Red Maple for the south (Fig. 1). ‘Red Sunset’ has strong wood and is a vigorous, fast-grower, reaching a height of 50 feet with a spread of 25 to 35 feet. Trees are often seen shorter in the southern part of its range unless located on a wet site. This tree is preferred over Red Maple, Silver Maple or Boxelder when a fast-growing maple is needed, and will take on a pyramidal or oval silhouette. The newly emerging red flowers and fruits signal that spring has come. They appear in December and January in Florida, later in the northern part of its range. Leaves retain an attractive high gloss throughout the growing season. The seeds of ‘Red Sunset’ Red Maple are quite popular with squirrels and birds. GENERAL INFORMATION Scientific name: Acer rubrum ‘Red Sunset’ Pronunciation: AY-ser ROO-brum Common name(s): ‘Red Sunset’ Red Maple Family: Aceraceae Figure 1. Middle-aged ‘Red Sunset’ Red Maple. USDA hardiness zones: 4B through 8 (Fig. 2) Origin: native to North America DESCRIPTION Uses: Bonsai; wide tree lawns (>6 feet wide); medium-sized tree lawns (4-6 feet wide); Height: 45 to 50 feet recommended for buffer strips around parking lots or Spread: 25 to 40 feet for median strip plantings in the highway; near a deck Crown uniformity: symmetrical canopy with a or patio; reclamation plant; screen; shade tree; regular (or smooth) outline, and individuals have more specimen; residential street tree or less identical crown forms Availability: generally available in many areas within Crown shape: oval; upright its hardiness range Crown density: moderate 1.
    [Show full text]
  • Liquidambar Styraciflua L.) from Caroline County, Virginia
    43 Banisteria, Number 9, 1997 © 1997 by the Virginia Natural History Society An Abnormal Variant of Sweetgum (Liquidambar styraciflua L.) from Caroline County, Virginia Bruce L. King Department of Biology Randolph Macon College Ashland, Virginia 23005 Leaves of individuals of Liquidambar styraciflua L. Similar measurements were made from surrounding (sweetgum) - are predominantly 5-lobed, occasionally 7- plants in three height classes:, early sapling, 61-134 cm; lobed or 3-lobed (Radford et al., 1968; Cocke, 1974; large seedlings, 10-23 cm; and small seedlings (mostly first Grimm, 1983; Duncan & Duncan, 1988). The tips of the year), 3-8.5 cm. All of the small seedlings were within 5 lobes are acute and leaf margins are serrate, rarely entire. meters of the atypical specimen and most of the large In 1991, I found a seedling (2-3 yr old) that I seedlings and saplings were within 10 meters. The greatest tentatively identified as a specimen of Liquidambar styrac- distance between any two plants was 70 meters. All of the iflua. The specimen occurs in a 20 acre section of plants measured were in dense to moderate shade. In the deciduous forest located between U.S. Route 1 and seedling classes, three leaves were measured from each of Waverly Drive, 3.2 km south of Ladysmith, Caroline ten plants (n = 30 leaves). In the sapling class, counts of County, Virginia. The seedling was found at the middle leaf lobes and observations of lobe tips and leaf margins of a 10% slope. Dominant trees on the upper slope were made from ten leaves from each of 20 plants (n include Quercus alba L., Q.
    [Show full text]
  • Black Cherry Rosaceae Rose Family David A
    Prunus serotina Ehrh. Black Cherry Rosaceae Rose family David A. Marquis Black cherry (Prunus serotinu), the largest of the is 120 to 155 days. Winter snowfalls average 89 to native cherries and the only one of commercial value, 203 cm (35 to 80 in), and 45 to 90 days have snow is found throughout the Eastern United States. It is cover of 2.5 cm (1 in) or more. Mean annual potential also known as wild black cherry, rum cherry, and evapotranspiration approximates 430 to 710 mm (17 mountain black cherry. Large, high-quality trees to 28 in), and mean annual water surplus is 100 to suited for furniture wood or veneer are found in large 610 mm (4 to 24 in). January temperatures average numbers in a more restricted commercial range on a maximum of 1” to 6” C (34” to 43” F) and a mini- the Allegheny Plateau of Pennsylvania, New York, mum of -11” to -6” C (12’ to 22” F). July tempera- and West Virginia (36,441. Smaller quantities of tures average a maximum of 27” to 29” C (SO’ to 85” high-quality trees grow in scattered locations along F) and a minimum of 11” to 16” C (52” to 60” F) (42). the southern Appalachian Mountains and the upland areas of the Gulf Coastal Plain. Elsewhere, black cherry is often a small, poorly formed tree of rela- Soils and Topography tively low commercial value, but important to wildlife for its fruit. Throughout its range in eastern North America, black cherry grows well on a wide variety of soils if Habitat summer growing conditions are cool and moist.
    [Show full text]
  • RECOMMENDED SMALL TREES for CITY USE (Less Than 30 Feet)
    RECOMMENDED SMALL TREES FOR CITY USE (Less than 30 feet) Scientific Name Common Name Comments Amelanchier arborea Serviceberry, shadbush, Juneberry Very early white flowers. Good for pollinators and wildlife. Amorpha fruticosa False indigobush Can form clusters. Legume. Good for pollinators. Asimina triloba Paw-paw Excellent edible fruit. Good for wildlife. Can be hard to establish. Chionanthus virginicus Fringe Tree Cornus mas Cornelian Cherry (Dogwood) Cornus spp. Shrub dogwoods – Gray, Pale, Can form clusters. Very good for wildlife Red-0sier, Alternate, Silky & pollinators. Corylus americana Hazelnut Very good for wildlife. Crataegus pruinosa Frost hawthorn Thorny, attractive white flowers. Good for wildlife. Hamamelis virginiana Witchhazel Good for pollinators Lindera benzoin Spicebush Very good for butterflies. Sweet-smelling aromatic leaves Malus spp. Crabapples – Iowa and Prairie Can get 25’ tall. Beautiful spring flowers. Good for wildlife. Oxydendrum arborum Sourwood Prunus americana Wild or American plum Can form clusters. Very good for wildlife. Can get 20’ tall. Prunus virginiana Chokecherry Can get 30’ tall. Good for wildlife and pollinators. Rhus aromatic Aromatic sumac Attractive to bees and butterflies. Sambucus canadensis Elderberry Edible black berries – good for wildlife and pollinators. Viburnum spp. Arrowwood, nannyberry, Early white flower clusters, very good for blackhaw wildlife. NOTES: • All the above small trees/shrubs prefer moist soil. Some, like the false Indigobush, silky and red-osier dogwoods, spicebush, and elderberry, can tolerate wet soils. None do well on dry sandy or rocky soils. • All prefer at least 3 hours of sun per day, and flower better when they can get 6 hours or more per day. Spicebush can tolerate full shade, but flowers better with 3-6 hours of sun.
    [Show full text]
  • Phylogeographical Structure of Liquidambar Formosana Hance Revealed by Chloroplast Phylogeography and Species Distribution Models
    Article Phylogeographical Structure of Liquidambar formosana Hance Revealed by Chloroplast Phylogeography and Species Distribution Models 1,2, 1, 1 2 1 1, Rongxi Sun y , Furong Lin y, Ping Huang , Xuemin Ye , Jiuxin Lai and Yongqi Zheng * 1 State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; [email protected] (R.S.); [email protected] (F.L.); [email protected] (P.H.); [email protected] (J.L.) 2 Jiangxi Provincial Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China; [email protected] * Correspondence: [email protected]; Tel.: +86-10-6288-8565 These authors contributed equally to this work. y Received: 2 September 2019; Accepted: 29 September 2019; Published: 1 October 2019 Abstract: To understand the origin and evolutionary history, and the geographical and historical causes for the formation of the current distribution pattern of Lquidambar formosana Hance, we investigated the phylogeography by using chloroplasts DNA (cpDNA) non-coding sequences and species distribution models (SDM). Four cpDNA intergenic spacer regions were amplified and sequenced for 251 individuals from 25 populations covering most of its geographical range in China. A total of 20 haplotypes were recovered. The species had a high level of chloroplast genetic variation (Ht = 0.909 0.0192) and a significant phylogeographical structure (genetic differentiation takes into ± account distances among haplotypes (Nst) = 0.730 > population differentiation that does not consider distances among haplotypes (Gst) = 0.645; p < 0.05), whereas the genetic variation within populations (Hs = 0.323 0.0553) was low.
    [Show full text]
  • Chokecherry Prunus Virginiana L
    chokecherry Prunus virginiana L. Synonyms: Prunus virginiana ssp. demissa (Nutt.) Roy L. Taylor & MacBryde, P. demissa (Nutt.) Walp. Other common names: black chokecherry, bitter-berry, cabinet cherry, California chokecherry, caupulin, chuckleyplum, common chokecherry, eastern chokecherry, jamcherry, red chokecherry, rum chokecherry, sloe tree, Virginia chokecherry, western chokecherry, whiskey chokecherry, wild blackcherry, wild cherry Family: Rosaceae Invasiveness Rank: 74 The invasiveness rank is calculated based on a species’ ecological impacts, biological attributes, distribution, and response to control measures. The ranks are scaled from 0 to 100, with 0 representing a plant that poses no threat to native ecosystems and 100 representing a plant that poses a major threat to native ecosystems. Description Similar species: Several non-native Prunus species can Chokecherry is a deciduous, thicket-forming, erect shrub be confused with chokecherry in Alaska. Unlike or small tree that grows 1 to 6 m tall from an extensive chokecherry, which has glabrous inner surfaces of the network of lateral roots. Roots can extend more than 10 basal sections of the flowers, European bird cherry m horizontally and 2 m vertically. Young twigs are often (Prunus padus) has hairy inner surfaces of the basal hairy. Stems are numerous, slender, and branched. Bark sections of the flowers. Chokecherry can also be is smooth to fine-scaly and red-brown to grey-brown. differentiated from European bird cherry by its foliage, Leaves are alternate, elliptic to ovate, and 3 to 10 cm which turns red in late summer and fall; the leaves of long with pointed tips and toothed margins. Upper European bird cherry remain green throughout the surfaces are green and glabrous, and lower surfaces are summer.
    [Show full text]
  • Red Maple 15 Gal $72.00 Acer Rubrum
    15 Gallon Trees (scroll down for 25 Gal trees) Acer rubrum - 'Autumn Fantasy' Red Maple 15 Gal $72.00 Acer rubrum – 'Red Sunset' Red Maple 15 Gal $72.00 Acer rubrum – 'Sun Valley' Red Maple 15 Gal $72.00 Acer x freemanii - 'Armstrong' Maple 15 Gal $72.00 Acer x freemanii - 'Autumn Blaze' 15 Gal $72.00 Acer x freemanii - 'Sienna' Sienna Glen Maple 15 Gal $72.00 Betula nigra - 'Dura Heat' Riverbirch 15 Gal $72.00 Carpinus betulus - 'Fastigiata' Euro Hornbeam 15 Gal (low branch) $72.00 Cercis canadensis - Eastern Redbud STD 15gl $72.00 Cercis canadensis - Eastern Redbud 15gl $72.00 Chionanthus virginicus - Chinese Fringe tree 15gl $72.00 Cornus florida - White flowering dogwood 15gl $72.00 X cupressocyparis leylandii - 'Leyland' 15 Gal $72.00 Gleditsia triacanthos - 'Shademaster' Honey Locust 15gl $72.00 Hydrangea tardiva 15gl $72.00 Ilex x Nellie R Stevens Holly 15 Gal $72.00 Lagerstroemia -Muskogee 15 Gal $72.00 Lagerstroemia - Natchez 15 Gal $72.00 Malus 'Prariefire' 15gl $72.00 Malus 'Profusion' 15gl $72.00 Malus 'Starlite' 15gl $72.00 Magnolia Virginiana - Sweetbay magnolia 15gl $72.00 Ostrya virginiana - Hophornbeam 15 Gal $72.00 Platanus occidentalis - American Sycamore 15 Gal $72.00 Platanus x acerfolia - 'Bloodgood' London Planetree 15 Gal $72.00 Platanus x acerfolia - 'Exclaimation' London Planetree 15 Gal $72.00 Prunus cerasifera - 'Krauter Vesuvius'' Plum 15gl $72.00 Prunus cerasifera - 'Newport' Plum 15gl $72.00 Prunus virginiana - 'Canada Red' Cherry 15 Gal $72.00 Prunus x incamp - 'Okame' Cherry 15 Gal $72.00 Prunus x snofozam
    [Show full text]