Murderous Trail of the Mosquito Karen Masterson Appraises the Disease Vector’S Role in Scientific and Military History

Total Page:16

File Type:pdf, Size:1020Kb

Murderous Trail of the Mosquito Karen Masterson Appraises the Disease Vector’S Role in Scientific and Military History SARAH L. VOISIN/WASHINGTON POST/GETTY SARAH L. VOISIN/WASHINGTON A multiple-exposure image of a single Anopheles punctipennis mosquito, on display at the Smithsonian Natural History Museum in Washington DC. MEDICAL HISTORY Murderous trail of the mosquito Karen Masterson appraises the disease vector’s role in scientific and military history. he deadliest beast on Earth is the yet weakened Roman infection. Anyone lacking this antigen is featherweight mosquito. Among citizens. Over the resistant to malaria, and that includes 95% the diseases it passes on — such as following 300 years, of people of West African descent. Most Tfilariasis, yellow fever, dengue, Zika and malaria also helped of the people wrenched into slavery in the West Nile fever — malaria accounted for to ground the Holy Americas came from this region; and, in a 435,000 deaths in 2017. Inevitably, the Roman Empire. Chris- horrible irony, their resistance to the dis- insect has inspired many books. So what tian hospitals took in ease — observed by plantation owners — does the baldly titled tome The Mosquito the masses of infected created demand for their work and became add to the canon? The answer: a lot. people, proselytizing a driver of the slave trade. Military historian Timothy Winegard’s a doctrine of care that Winegard overflows with enthusiasm for book takes readers on a riveting adventure, won over pagans and The Mosquito: his subject. At times, however, his hammer- A Human History documenting the mosquito’s outsized role in ultimately paved the of Our Deadliest ing at perspectives that he wants us to take conflict since antiquity. He shows how, from way for Charlemagne’s Predator away comes at the expense of nuance and vast empires to contemporary war zones, the claim on Europe. The TIMOTHY C. specificity. A case in point is his narrative advantage fell to any defending army able to thread of influence WINEGARD on a horrific chapter of the Second World stall attackers in mosquito-filled swamps, runs all the way to the Dutton (2019) War, when human experiments to find an where fevers — mostly malaria, yellow Vietnam War, when antimalarial were carried out by both Nazi fever and dengue — sapped their strength. mosquito-borne diseases made US occupa- Germany and the United States. Through this lens, he explains in superb tion of the North Vietnamese-held jungles Winegard cites my work (The Malaria detail how great powers rose and fell. untenable. Project, 2014), which details how the We learn how, in fifth-century bc Greece, Although Winegard’s approach is at times German malariologist Claus Schilling Persian troops crumbled when a coalition too broad and unscientific, it is fascinating. deliberately infected some 1,000 prison- of Athenians and Spartans forced them into And he covers some research well, such as ers in the Dachau concentration camp. marshlands before the Battle of Plataea. A why mosquitoes bite humans selectively. Winegard claims that 400 of them perished mix of malaria (transmitted by the Anopheles (The science is still uncertain, but evidence as a result. My research showed that 38 died mosquito) and dysentery felled 40% of the suggests that 20% of people receive 80% of in Schilling’s hospital wing, from the effects Persian ranks. Thus “General Anopheles”, bites: T. A. Perkins et al. PLoS Comput. Biol. of two particularly toxic drugs. Typhus and writes Winegard, freed Greeks from Persian 9, e1003327; 2013.) Ultimately, however, dysentery might well have killed others, once rule, and enabled the blossoming of Greek Winegard is strongest on the world- they were released back to the barracks. philosophy, science and art — the ‘Golden changing aspects of malaria — not only the Meanwhile, Winegard downplays the fact Age’ that in part paved the way for Western rise and fall of empires, but also areas such that more than 100 US doctors were simul- civilization. as the nexus of genetics, society and politics. taneously doing the same thing, on a vastly Winegard relates, too, the mosquito’s role He discusses, for instance, a link between greater scale. They experimented on 10,000 in the fall of Rome. For hundreds of years up the Atlantic slave trade and genetic resistance enlisted military personnel and inmates to the fifth century ad, the malarial Pontine to the malaria pathogen Plasmodium vivax. at six state hospitals and three prisons — Marshes around Rome staved off attacks by The Duffy antigen on red blood cells is the including the notorious Stateville Peniten- Carthaginians, Germanic tribes and Huns, receptor for P. vivax, thus helping to launch tiary outside Chicago, Illinois. The death toll 310 | NATURE | VOL 572 | 15 AUGUST 2019 ©2019 Spri nger Nature Li mited. All ri ghts reserved. ©2019 Spri nger Nature Li mited. All ri ghts reserved. BOOKS & ARTS COMMENT is estimated to have been between 10% and 30%. By not including this shocking episode of US medical history, Winegard misses a Books in brief valuable application of his own framework: that one insect had driven so many doctors Strange Harvests into inhumane, medically desperate work. Edward Posnett VIKING (2019) Winegard also lacks nuance in asserting The global journeys of commodities such as salt have largely been that new technologies will soon extinguish told. In this subtle, reflective study, nature writer Edward Posnett the mosquito. Some of the science is indeed follows the wake of seven very different products. Harvested from promising. Research published this month living plants and animals, they range from tagua (vegetable ivory, in Nature, for instance, shows how irradia- the nut of South American palm Phytelephas) to byssus (the ‘sea tion and bacterial infection were used to silk’ exuded by marine molluscs as anchorage). Woven through are nearly eradicate tiger mosquitoes (Aedes moving stories of the remote microeconomies engaged in these albopictus) from two river islands in China trades, such as Iceland’s eiderdown gatherers who, year on year, (X. Zheng et al. Nature 572, 56–61; 2019). give safe haven to thousands of wild eider ducks in nesting season. Mosquito specialist Peter Armbruster has questioned the scalability and sustainabil- ity of this work, however (P. A. Armbruster Journeys in the Wild Nature 572, 39–40; 2019) . Even trickier is Gavin Thurston SEVEN DIALS (2019) the use of CRISPR and gene drives, in which Neither plane crashes, political coups nor a mighty slap from a laboratory-raised mosquitoes pass on an silverback gorilla have put wildlife cameraman Gavin Thurston altered gene to generations of wild mosqui- off his stride. A force behind documentaries such as David toes — work that is still theoretical. Attenborough’s BBC series Blue Planet II, Thurston has chased fauna Finally, there is the issue of Winegard’s view worldwide for 40 years. His no-holds-barred memoir plunges you of the insect. He sees it solely in human terms, into the serendipities and perils of working in the remote wilderness, setting it up as a foe to humanity, with no as he stands stock-still to ‘hide’ from short-sighted African elephants other role in nature. To claim that some 3,000 in Kenya, films demoiselle cranes flying 6 kilometres up above species of mosquito exist for no reason other Nepal, or marvels at the hiss of Mauritania’s dryland crocodiles. than to act as our “apex predator” is bold, but it rests on unsound scientific footing. His larger points in The Mosquito remain Fraud in the Lab valuable, built on the solid work of schol- Nicolas Chevassus-au-Louis, tr. Nicholas Elliott HARVARD UNIV. PRESS ars and scientists. Ever since Homo sapiens (2019) moved away from hunting and gathering, This bracing critical analysis, now in its first English edition, skewers we have paid dearly for tangling with nature. the ‘publish or perish’ lab culture driving scientific fraud. Science As we tear down forests, cultivate fields writer Nicolas Chevassus-au-Louis explores the terrain through and transform our environment, we create cases such as medical researcher William Summerlin, who inked perfect habitats for mosquito propagation. transplanted mouse skin to falsify results in the 1970s. And And — more to Winegard’s point — as we he shows the serious, real-life impacts of “data beautification”, shred the Earth with weaponry and park manipulated images and plagiarism. His solution for science? Think large armies in marshlands, we create ideal communally, end the tyranny of impact factors — and slow down. conditions for mosquitoes to spread disease. Humans, he rightly notes, help mosquito species to diversify, adapt and thrive as we And How Are You, Dr Sacks? reshape the planet. Lawrence Weschler FARRAR, STRAUS & GIROUX (2019) When mosquitoes turn to us for blood, In the 1980s, Oliver Sacks regularly met with journalist Lawrence they transfer all the microbes they’ve evolved Weschler for what became a four-year interview, casting back over to carry. We have had no choice but to fight the neurologist’s tumultuous early career. That trove forms the bulk back. So, in this sense, we are at war with of Weschler’s engrossing biographical memoir. This is Sacks at mosquitoes, from the multi-billion-dollar full blast: on endless ward rounds, observing his post-encephalitic global health campaigns against mosquito- patients (portrayed in his 1973 book Awakenings), exulting over borne diseases — funded largely by wealthy horseshoe crabs and chunks of Iceland spar. Weschler ends by countries through international agreements, speculating that Sacks altered neurological practice itself through and donors such as the Bill & Melinda Gates his attentive compassion for the patients who feature in his stories. Foundation — to the pesticides that many spray in their backyards. Mosquitoes control our behaviour because we have yet to con- Sailing School trol them. Winegard’s earnest voice on this Margaret E.
Recommended publications
  • Data-Driven Identification of Potential Zika Virus Vectors Michelle V Evans1,2*, Tad a Dallas1,3, Barbara a Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8
    RESEARCH ARTICLE Data-driven identification of potential Zika virus vectors Michelle V Evans1,2*, Tad A Dallas1,3, Barbara A Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8 1Odum School of Ecology, University of Georgia, Athens, United States; 2Center for the Ecology of Infectious Diseases, University of Georgia, Athens, United States; 3Department of Environmental Science and Policy, University of California-Davis, Davis, United States; 4Cary Institute of Ecosystem Studies, Millbrook, United States; 5Department of Infectious Disease, University of Georgia, Athens, United States; 6Center for Tropical Emerging Global Diseases, University of Georgia, Athens, United States; 7Center for Vaccines and Immunology, University of Georgia, Athens, United States; 8River Basin Center, University of Georgia, Athens, United States Abstract Zika is an emerging virus whose rapid spread is of great public health concern. Knowledge about transmission remains incomplete, especially concerning potential transmission in geographic areas in which it has not yet been introduced. To identify unknown vectors of Zika, we developed a data-driven model linking vector species and the Zika virus via vector-virus trait combinations that confer a propensity toward associations in an ecological network connecting flaviviruses and their mosquito vectors. Our model predicts that thirty-five species may be able to transmit the virus, seven of which are found in the continental United States, including Culex quinquefasciatus and Cx. pipiens. We suggest that empirical studies prioritize these species to confirm predictions of vector competence, enabling the correct identification of populations at risk for transmission within the United States. *For correspondence: mvevans@ DOI: 10.7554/eLife.22053.001 uga.edu Competing interests: The authors declare that no competing interests exist.
    [Show full text]
  • Prevalencia De Enfermedades De Etiología Infecciosa Y Parasitaria En Caballos De La Comunidad Valenciana
    Universidad Cardenal Herrera-CEU Departamento Medicina y Cirugía Animal PREVALENCIA DE ENFERMEDADES DE ETIOLOGÍA INFECCIOSA Y PARASITARIA EN CABALLOS DE LA COMUNIDAD VALENCIANA TESIS DOCTORAL Presentada por: D. Miguel Fábregas Dittmann Dirigida por: Dr. D. Santiago Vega García Dra. Dña. Rosana Domingo Ortiz VALENCIA 2017 AGRADECIMIENTOS Me gustaría agradecer a toda la gente que me ha ayudado en el largo proceso de elaboración de este trabajo. Mi agradecimiento, de todas formas, no sólo va dirigido a las personas responsables de que este estudio se haya realizado, sino que me gustaría extenderlo a todas las personas que, de algún modo, han sido y son importantes en mi vida. Para comenzar, gracias a Rosana Domingo y Santiago Vega, mis directores, porque sin su conocimiento, paciencia y ayuda no hubiera sido posible llevar a cabo este trabajo. Gracias también a Jaume Jordá por su gran ayuda, sus consejos y sugerencias en la elaboración de esta tesis. Gracias a mis amigos y compañeros veterinarios, Mercedes Montejo, Francisco Pérez, Rebeca Martínez, Guillermo Arnal, Vicente Orts, Gonzalo Cerdá, Ana Baonza, por su colaboración y gran ayuda en la recogida de muchas de las muestras analizadas en este estudio. A los propietarios de los caballos y, en muchos casos, amigos también, por permitirme tomar muestras de sus ejemplares, y a ellos mismos, los caballos, ya que son, sin duda, los grandes protagonistas de este trabajo. A los equipos humanos y profesionales de los distintos laboratorios, Laboratorio Central de Veterinaria de Algete, Laboratorio de la Unidad de Análisis de Sanidad Animal de Valencia y Laboratorio de Microbiología de la Universidad Cardenal Herrera-CEU de Moncada, por su ayuda en el análisis de tantas muestras recopiladas para este estudio.
    [Show full text]
  • Pdf (In German)
    A Peer-Reviewed Journal Tracking and Analyzing Disease Trends pages 561–770 EDITOR-IN-CHIEF D. Peter Drotman EDITORIAL STAFF EDITORIAL BOARD Founding Editor Dennis Alexander, Addlestone Surrey, United Kingdom Joseph E. McDade, Rome, Georgia, USA Ban Allos, Nashville, Tennessee, USA Michael Apicella, Iowa City, Iowa, USA Managing Senior Editor Barry J. Beaty, Ft. Collins, Colorado, USA Polyxeni Potter, Atlanta, Georgia, USA Martin J. Blaser, New York, New York, USA Associate Editors David Brandling-Bennet, Washington, D.C., USA Charles Ben Beard, Ft. Collins, Colorado, USA Donald S. Burke, Baltimore, Maryland, USA David Bell, Atlanta, Georgia, USA Charles H. Calisher, Ft. Collins, Colorado, USA Patrice Courvalin, Paris, France Arturo Casadevall, New York, New York, USA Stephanie James, Bethesda, Maryland, USA Thomas Cleary, Houston, Texas, USA Anne DeGroot, Providence, Rhode Island, USA Brian W.J. Mahy, Atlanta, Georgia, USA Vincent Deubel, Providence, Rhode Island, USA Takeshi Kurata, Tokyo, Japan Ed Eitzen, Washington, D.C., USA Martin I. Meltzer, Atlanta, Georgia, USA Duane J. Gubler, Ft. Collins, Colorado, USA David Morens, Washington, D.C., USA Scott Halstead, Arlington, Virginia, USA J. Glenn Morris, Baltimore, Maryland, USA David L. Heymann, Geneva, Switzerland Tanja Popovic, Atlanta, Georgia, USA Sakae Inouye, Tokyo, Japan Patricia M. Quinlisk, Des Moines, Iowa, USA Charles King, Cleveland, Ohio, USA Keith Klugman, Atlanta, Georgia, USA Gabriel Rabinovich, Buenos Aires, Argentina S.K. Lam, Kuala Lumpur, Malaysia Didier Raoult, Marseilles, France Bruce R. Levin, Atlanta, Georgia, USA Pierre Rollin, Atlanta, Georgia, USA Myron Levine, Baltimore, Maryland, USA Mario Raviglione, Geneva, Switzerland Stuart Levy, Boston, Massachusetts, USA David Walker, Galveston, Texas, USA John S.
    [Show full text]
  • The Mosquitoes of Minnesota, with Special Reference to Their Biologies
    Technical Bulletin 126 November 1937 The Mosquitoes of Minnesota, With Special Reference to Their Biologies William B. Owen University of Minnesota Agricultural Experiment Station Accepted for publication July 1937. The Mosquitoes of Minnesota, With Special Reference to Their Biologies William B. Owen University of Minnesota Agricultural Experiment Station Accepted for publication July 1937. CONTENTS Page 1. Introduction 3 Economic importance 4 Disease transmission 6 Methods of study 7 -II. Ecological relationships 8 Topography and climate of Minnesota 8 Vegetational regions 10 Larval habitats and associations 11 _III. Biology and taxonomy 16 External characters used 16 Systematic treatise 19 Species of mosquitoes found in Minnesota 20 Keys for identification of Minnesota mosquitoes 21 Description of species 30 IV. Summary 73 V. Literature cited 74 The Mosquitoes of Minnesota, with Special Reference to Their Biologies WILLIAM B. OwEN1 I. INTRODUCTION The mosquito fauna of Minnesota, although not restricted to this region, has never been the object of a detailed study in the North Central States. Any rational control measure designed to alleviate the scourge of these pests must be based on a thorough knowledge of the life his- tories, habits, and bionomics of the species involved. The object of this study has been to determine the relative importance of the species oc- curring in the state and to investigate their biologies under the prevailing environmental conditions. An effort has also been made to point out available sources of information and to present keys for the determina- tion of species found, or likely to be found, in this region as aids to others who may continue the study.
    [Show full text]
  • An Overview of Malaria Transmission from the Perspective of Amazon Anopheles Vectors
    Mem Inst Oswaldo Cruz, Rio de Janeiro, Vol. 110(1): 23-47, February 2015 23 An overview of malaria transmission from the perspective of Amazon Anopheles vectors Paulo FP Pimenta1,2/+, Alessandra S Orfano1, Ana C Bahia3, Ana PM Duarte1, Claudia M Ríos-Velásquez4, Fabrício F Melo1, Felipe AC Pessoa4, Giselle A Oliveira1, Keillen MM Campos2, Luis Martínez Villegas1, Nilton Barnabé Rodrigues1, Rafael Nacif-Pimenta1, Rejane C Simões5, Wuelton M Monteiro2, Rogerio Amino6, Yara M Traub-Cseko3, José BP Lima2,3, Maria GV Barbosa2, Marcus VG Lacerda2,4, Wanderli P Tadei5, Nágila FC Secundino1 1Centro de Pesquisas René Rachou-Fiocruz, Belo Horizonte, MG, Brasil 2Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, AM, Brasil 3Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brasil 4Instituto Leônidas e Maria Deane-Fiocruz, Manaus, AM, Brasil 5Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brasil 6Unité de Biologie et Génétique du Paludisme, Institut Pasteur, Paris, France In the Americas, areas with a high risk of malaria transmission are mainly located in the Amazon Forest, which extends across nine countries. One keystone step to understanding the Plasmodium life cycle in Anopheles species from the Amazon Region is to obtain experimentally infected mosquito vectors. Several attempts to colonise Ano- pheles species have been conducted, but with only short-lived success or no success at all. In this review, we review the literature on malaria transmission from the perspective of its Amazon vectors. Currently, it is possible to develop experimental Plasmodium vivax infection of the colonised and field-captured vectors in laboratories located close to Amazonian endemic areas.
    [Show full text]
  • An Annotated List of Ohio Mosquitoes
    AN ANNOTATED LIST OF OHIO MOSQUITOES CARL E. VENARD AND FRANK W. MEAD1 Department of Zoology and Entomology, The Ohio State University, Columbus 10 In 1906 Burgess published a list of 17 species of mosquitoes for the state of Ohio. This report was based on some collections he made during the summer of 1905 and on specimens supplied by Profs. H. Osborn and J. S. Hine. Dr. L. O. Howard furnished a record of Wyeomyia smithii and W. E. Evans, who did con- siderable collecting in the preparation of an undergraduate thesis for the B.Sc. at The Ohio State University, furnished some data. The Reference Collection of Insects of this department today contains a number of specimens which were studied by Burgess. The undergraduate thesis by Evans (1906) contains the list complied by Burgess and information which is useful in interpreting the list. The 17 names given by Burgess includes two, Megarhinus portoricensis Roeder and Toxorhynchites rutilus Coq., which refer to the species now known as Toxorhynchites rutilus septentrionalis (Dyar and Knab). Another name, Anopheles maculipennis Meigen, was used for specimens collected at Sandusky, all of which in the museum at the present time are A. walkeri Theobald. Hoyt and Worden (1935), in studying a small epidemic of malaria at Aurora, Ohio, reported Anopheles punctipennis and Anopheles quadrimaculatus. Articles by Jenkins and Carpenter (1946) and Sharkey (1946) contain some Ohio records on tree-hole-breeding species and anophelines, respectively, which the senior author furnished. Starting in 1946, with the establishment of the Toledo Area Sanitary District mosquito control program, Crandell has included in his annual report the names of mosquitoes found and identified by that organization.
    [Show full text]
  • Reinert Anopheline Eggs
    European Mosquito Bulletin 28 (2010), 103-142 Journal of the European Mosquito Control Association ISSN 1460-6127; w.w.w.e-m-b.org First published online 20 July 2010 List of anopheline species with published illustrations and/or descriptions of eggs (Diptera: Culicidae: Anophelinae) John F. Reinert Center for Medical, Agricultural and Veterinary Entomology (CMAVE), United States Department of Agriculture, Agricultural Research Service, 1600/1700 SW 23rd Drive, Gainesville, Florida 32608-1067, and collaborator Walter Reed Biosystematics Unit, National Museum of Natural History, Smithsonian Institution, Washington, D.C. (e-mail: [email protected]) Abstract Species of the mosquito subfamily Anophelinae with published illustrations and/or morphol- ogical descriptions of the egg stage are listed with their literature citations. Species of the subfamily have the egg stage better known than those in most tribes of family Culicidae. Key words: Diptera, Culicidae, Anophelinae, Anopheles, Bironella, Brugella, Chagasia, Cellia, Kerteszia, Lophopodomyia, Nyssorhynchus, Stethomyia, mosquito, eggs Introduction A listing of species with published illustrations and/or descriptions of eggs in the mosquito subfamily Anophelinae is provided below and includes literature citations. Many of the publications include descriptive information in addition to the illustrations of the egg, however, some descriptions are very brief. Descriptive information on eggs sometimes is included in keys. The identification of anopheline species, subspecies, varieties, races, synonyms, etc. utilized in the cited literature is reported in the following list. Qu & Zhu (2008) provided recent information on several species that had been synonymized or resurrected from synonymy. The latest listing of currently valid species and generic-level taxa reported in the Mosquito Taxonomic Inventory (http://mosquito-taxonomic-inventory.info, accessed 30 June 2010) was utilized.
    [Show full text]
  • Arthropod Monitoring
    Arthropod Monitoring Survey of Sites which may support populations of Anopheles walkeri Theobald William L. Butts1 The recent series of collections of Anopheles walkeri on the Upper Site indicate that there is an established population of this species either in or closely adjacent to that area. The current knowledge of distribution of this species presents a pattern of discrete but somewhat scattered sites of development. Two sites within a 5-mile radius of the Upper Site, the wooded slope above Goodyear Swamp and wetland margins on the Thayer Farm were sampled by light trap collections. The location of traps at Goodyear Swamp was chosen as a final phase of a survey of the area for mosquito populations and was based upon proximity to one known and other likely tree hole habitats. This placement would not be considered as a likely site for collection of An. walkeri. Trap locations at the Thayer Farm were selected with regard to proximity of larval developmental sites which might be used by this species. A light and CO2 trap was set at a point adjacent to the boat access site on the large pond on the following dates: July 16, 30; August 5, 13. On August 20 the trap was moved to the edge of the woods adjacent to a low, swampy site east of this pond along the orange trail. A trap was maintained at this site on August 20, 26; September 5,12,17,23. On September 23, a trap was set at the margin of a small pond at the end of a drainage ditch towards the west boundary of the property.
    [Show full text]
  • The Biology and Control of Mosquitoes in California
    The Biology and Control of Mosquitoes in California Vector Control Technician Certification Training Manual Category B 1/10 Instructions This study guide is meant to replace the manual The Biology and Control of Mosquitoes in California. • You can navigate through the guide at your own pace and in any order. • Click on the purple home button to return to the main menu. • Click on the gray return button to go to the chapter menu of the current slide. • Click on the button if you want to access the glossary. Important terms are highlighted in red and appear in the glossary. The link to the glossary can be found at the beginning of each chapter. 2/10 Main Menu Chapter 1: Biology of Mosquitoes Chapter 2: Ecology of Mosquitoes Chapter 3: Public Health Importance of Mosquitoes Chapter 4: Classification and Identification of Mosquitoes Chapter 5: Principles of Mosquito Control Chapter 6: Chemical Control of Mosquitoes Chapter 7: Physical Control of Mosquitoes Chapter 8: Biological Control of Mosquitoes Chapter 9: Mosquito Control in California Chapter 10: Surveillance for Mosquitoes and Mosquito-borne Diseases Chapter 11: Public Relations in Mosquito Control Appendix 1: Glossary 2 :Conversions of Units and Formulas used with Insecticides 3 :Additional Information 3/10 Introduction • Arthropods are a huge group of invertebrate animals (animals without backbones) that include insects, arachnids (ticks, mites, and spiders), crustaceans (crabs, lobsters, and shrimp) and others. • There are millions of species of arthropods, all sharing characteristics of a hard exoskeleton and jointed legs. • Many arthropods are pests of one kind or another, especially on agricultural crops and farm animals.
    [Show full text]
  • The New Internal Transcribed Spacer 2 Diagnostic Tool Clarifies The
    Hodge et al. Malar J (2021) 20:141 https://doi.org/10.1186/s12936-021-03676-4 Malaria Journal RESEARCH Open Access The new Internal Transcribed Spacer 2 diagnostic tool clarifes the taxonomic position and geographic distribution of the North American malaria vector Anopheles punctipennis James M. Hodge1, Andrey A. Yurchenko1,2,3, Dmitriy A. Karagodin2, Reem A. Masri1, Ryan C. Smith4, Mikhail I. Gordeev5 and Maria V. Sharakhova1,2* Abstract Background: The malaria mosquito Anopheles punctipennis, a widely distributed species in North America, is capable of transmitting human malaria and is actively involved in the transmission of the ungulate malaria parasite Plasmo- dium odocoilei. However, molecular diagnostic tools based on Internal Transcribed Spacer 2 (ITS2) of ribosomal DNA are lacking for this species. Anopheles punctipennis is a former member of the Anopheles maculipennis complex but its systematic position remains unclear. Methods: In this study, ITS2 sequences were obtained from 276 An. punctipennis specimens collected in the eastern and midwestern United States and a simple and robust Restriction Fragment Length Polymorphism approach for species identifcation was developed. The maximum-likelihood phylogenetic tree was constructed based on ITS2 sequences available through this study and from GenBank for 20 species of Anopheles. Results: The analysis demonstrated a consistent ITS2 sequence length and showed no indications of intragenomic variation among the samples based on ITS2, suggesting that An. punctipennis represents a single species in the studied geographic locations. In this study, An. punctipennis was found in urban, rural, and forest settings, suggesting its potential broad role in pathogen transmission. Phylogeny based on ITS2 sequence comparison demonstrated the close relationship of this species with other members of the Maculipennis group.
    [Show full text]
  • The Insects Are Never Anophelines. the Mosquito Can Not Infect A
    FIELD IDENTIFICATION OF MALARIA-CARRYING MOSQUITOES. As the transmission of malaria from one individual to another is effected through the exclusive agency of Anopheles mosquitoes, it is desirable that data for the field identification of the commoner of these insects be available to health officers and others concerned. The following schematic outline has been prepared with the idea of affording untrained observers a ready means of identification. For use in the field a small hand lens, magnifying from two to four dlianrieters, is of service, although not essential. Mosquitoes are distinguished from other similar appearing insects by the fringe of scales along the posterior border of their single pair of wings, the wing veins being also fringed with scales. If the insect in hand lacks the posterior fringe of scales it does not belong FIG. 2.-Wing of Diptera mistaken FIG. 1.- Wing of Culex pungens-Berkeley, 1902, for mosquito-F. V. Theobald, Laboratory work with nosquitoes, p. 35, Fig. 27. Vol. 1, 1901, p. 92, Fig. 23. to the mosquito family, however much it may resemble that insect in appearance. There are three families of insects, the sand flies, the crane flies, and the midge flies, which may be confused with mosquitoes, but ordinarily the health officer will encounter little difficulty in making the, differentiation even without examining the wing structure. The sand flies of the United States are much smaller in size than mosquitoes, while the crane flies are not only larger, but the body is long and slender and the length of the legs such as to be out of proportion even to that of the body.
    [Show full text]
  • FIRST ACCOUNT of a TI-IERMOTROPISM in ANOPHELES PUNCTIPENNIS, with BIONOMIC OBSERVATIONS. by WERNER MARCI-IAND. to Occur As
    130 Psyche [December strongly punctate. Head emarginate in front and consequently very thin anteroposteriorly. Antennae brown-black, hairy. Legs brown, trochanters, tips of tibiae and tarsi pale or whitish. Wings hyaline, fringed with long hairs, forewings with a brown band ex- tending across the stigmal region and another at the apical margin." FIRSTACCOUNT OFATI-IERMOTROPISM INANOPHELES PUNCTIPENNIS, WITH BIONOMIC OBSERVATIONS. By WERNER MARCI-IAND. Department of Animal Pathology, Rockefeller Institute for Medical Research, Princeton, N. J. In the fall of 1915, while taking part in a survey of the breeding- places of Anopheline mosquitoes in the neighborhood of Princeton, in coSperation with the local Mosquito Extermination Commission, the writer made certain observations on the mosquitoes encount- ered. This account is restricted to a few facts which appear to be new or serve to clear up some doubtful point in the life history of the mosquitoes. I. Bionomics of the Larvce. In the Princeton region, only two species of Anopheles have been recorded, these being A. quadrimaculatus and A. punctipennis. The latter species is by far the more common, but, since King's experiments (1916), it cannot be regarded as entirely harmless. It is doubtful, however, whether this species, which has been found to occur as far north as Boston, Mass. (Th. Smith), is also in the northern states a regular carrier of malaria. The larvae of A. punctipennis were kept captive in large numbers and lived best in a flat dish which was left uncovered in order to give free access to the air. In a dish about eight inches in diam- The writer wishes, on this occasion, to express his thanks for the kind helpfulness through which his work was facilitated by Professor E.
    [Show full text]