Optimized Architectures for Elliptic Curve Cryptography over Curve448 Mojtaba Bisheh Niasar1, Reza Azarderakhsh1,2, and Mehran Mozaffari Kermani3 1 Department of Computer and Electrical Engineering and Computer Science, Florida Atlantic University, FL, USA {mbishehniasa2019,razarderakhsh}@fau.edu 2 PQSecure Technologies, LLC, Boca Raton, FL , USA 3 Department of Computer Science and Engineering, University of South Florida, FL, USA
[email protected] Abstract. In this paper, we present different implementations of point multiplication over Curve448. Curve448 has recently been recommended by NIST to provide 224-bit security over elliptic curve cryptography. Although implementing high-security cryptosystems should be consid- ered due to recent improvements in cryptanalysis, hardware implemen- tation of Curve488 has been investigated in a few studies. Hence, in this study, we propose three variable-base-point FPGA-based Curve448 im- plementations, i.e., lightweight, area-time efficient, and high-performance architectures, which aim to be used for different applications. Synthe- sized on a Xilinx Zynq 7020 FPGA, our proposed high-performance design increases 12% throughput with executing 1,219 point multipli- cation per second and increases 40% efficiency in terms of required clock cycles×utilized area compared to the best previous work. Furthermore, the proposed lightweight architecture works in 250 MHz and saves 96% of resources with the same performance. Additionally, our area-time ef- ficient design considers a trade-off between time and required resources, which shows a 48% efficiency improvement with 52% fewer resources. Fi- nally, effective side-channel countermeasures are added to our proposed designs, which also outperform previous works. Keywords: Curve448, elliptic curve cryptography, FPGA, hardware se- curity, implementation, point multiplication, side-channel 1 Introduction Elliptic curve cryptography (ECC) has gained prominent attention among asym- metric cryptographic algorithms due to its short key size.