Cryptography for Next Generation TLS
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
How to (Pre-)Compute a Ladder
How to (pre-)compute a ladder Improving the performance of X25519 and X448 Thomaz Oliveira1, Julio L´opez2, H¨useyinHı¸sıl3, Armando Faz-Hern´andez2, and Francisco Rodr´ıguez-Henr´ıquez1 1 Computer Science Department, Cinvestav-IPN [email protected], [email protected] 2 Institute of Computing, University of Campinas [email protected], [email protected] 3 Yasar University [email protected] Abstract. In the RFC 7748 memorandum, the Internet Research Task Force specified a Montgomery-ladder scalar multiplication function based on two recently adopted elliptic curves, \curve25519" and \curve448". The purpose of this function is to support the Diffie-Hellman key ex- change algorithm that will be included in the forthcoming version of the Transport Layer Security cryptographic protocol. In this paper, we describe a ladder variant that permits to accelerate the fixed-point mul- tiplication function inherent to the Diffie-Hellman key pair generation phase. Our proposal combines a right-to-left version of the Montgomery ladder along with the pre-computation of constant values directly de- rived from the base-point and its multiples. To our knowledge, this is the first proposal of a Montgomery ladder procedure for prime elliptic curves that admits the extensive use of pre-computation. In exchange of very modest memory resources and a small extra programming effort, the proposed ladder obtains significant speedups for software implemen- tations. Moreover, our proposal fully complies with the RFC 7748 spec- ification. A software implementation of the X25519 and X448 functions using our pre-computable ladder yields an acceleration factor of roughly 1.20, and 1.25 when implemented on the Haswell and the Skylake micro- architectures, respectively. -
The Complete Cost of Cofactor H = 1
The complete cost of cofactor h = 1 Peter Schwabe and Daan Sprenkels Radboud University, Digital Security Group, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands [email protected], [email protected] Abstract. This paper presents optimized software for constant-time variable-base scalar multiplication on prime-order Weierstraß curves us- ing the complete addition and doubling formulas presented by Renes, Costello, and Batina in 2016. Our software targets three different mi- croarchitectures: Intel Sandy Bridge, Intel Haswell, and ARM Cortex- M4. We use a 255-bit elliptic curve over F2255−19 that was proposed by Barreto in 2017. The reason for choosing this curve in our software is that it allows most meaningful comparison of our results with optimized software for Curve25519. The goal of this comparison is to get an under- standing of the cost of using cofactor-one curves with complete formulas when compared to widely used Montgomery (or twisted Edwards) curves that inherently have a non-trivial cofactor. Keywords: Elliptic Curve Cryptography · SIMD · Curve25519 · scalar multiplication · prime-field arithmetic · cofactor security 1 Introduction Since its invention in 1985, independently by Koblitz [34] and Miller [38], elliptic- curve cryptography (ECC) has widely been accepted as the state of the art in asymmetric cryptography. This success story is mainly due to the fact that attacks have not substantially improved: with a choice of elliptic curve that was in the 80s already considered conservative, the best attack for solving the elliptic- curve discrete-logarithm problem is still the generic Pollard-rho algorithm (with minor speedups, for example by exploiting the efficiently computable negation map in elliptic-curve groups [14]). -
Twisted Edwards Curves
Twisted Edwards Curves Daniel J. Bernstein1, Peter Birkner2, Marc Joye3, Tanja Lange2, and Christiane Peters2 1 Department of Mathematics, Statistics, and Computer Science (M/C 249) University of Illinois at Chicago, Chicago, IL 60607–7045, USA [email protected] 2 Department of Mathematics and Computer Science Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, Netherlands [email protected], [email protected], [email protected] 3 Thomson R&D France Technology Group, Corporate Research, Security Laboratory 1 avenue de Belle Fontaine, 35576 Cesson-S´evign´eCedex, France [email protected] Abstract. This paper introduces “twisted Edwards curves,” a general- ization of the recently introduced Edwards curves; shows that twisted Edwards curves include more curves over finite fields, and in particular every elliptic curve in Montgomery form; shows how to cover even more curves via isogenies; presents fast explicit formulas for twisted Edwards curves in projective and inverted coordinates; and shows that twisted Edwards curves save time for many curves that were already expressible as Edwards curves. Keywords: Elliptic curves, Edwards curves, twisted Edwards curves, Montgomery curves, isogenies. 1 Introduction Edwards in [13], generalizing an example from Euler and Gauss, introduced an addition law for the curves x2 + y2 = c2(1 + x2y2) over a non-binary field k. Edwards showed that every elliptic curve over k can be expressed in the form x2 + y2 = c2(1 + x2y2) if k is algebraically closed. However, over a finite field, only a small fraction of elliptic curves can be expressed in this form. Bernstein and Lange in [4] presented fast explicit formulas for addition and doubling in coordinates (X : Y : Z) representing (x, y) = (X/Z, Y/Z) on an Edwards curve, and showed that these explicit formulas save time in elliptic- curve cryptography. -
Efficient Elliptic Curve Diffie-Hellman Computation at the 256-Bit Security
Efficient Elliptic Curve Diffie-Hellman Computation at the 256-bit Security Level Kaushik Nath and Palash Sarkar Applied Statistics Unit Indian Statistical Institute 203, B. T. Road Kolkata - 700108 India fkaushikn r,[email protected] Abstract In this paper we introduce new Montgomery and Edwards form elliptic curve targeted at the 506 510 256-bit security level. To this end, we work with three primes, namely p1 := 2 − 45, p2 = 2 − 75 521 and p3 := 2 − 1. While p3 has been considered earlier in the literature, p1 and p2 are new. We define a pair of birationally equivalent Montgomery and Edwards form curves over all the three primes. Efficient 64-bit assembly implementations targeted at Skylake and later generation Intel processors have been made for the shared secret computation phase of the Diffie-Hellman key agree- ment protocol for the new Montgomery curves. Curve448 of the Transport Layer Security, Version 1.3 is a Montgomery curve which provides security at the 224-bit security level. Compared to the best publicly available 64-bit implementation of Curve448, the new Montgomery curve over p1 leads to a 3%-4% slowdown and the new Montgomery curve over p2 leads to a 4:5%-5% slowdown; on the other hand, 29 and 30.5 extra bits of security respectively are gained. For designers aiming for the 256-bit security level, the new curves over p1 and p2 provide an acceptable trade-off between security and efficiency. Keywords: Elliptic curve cryptography, Elliptic curve Diffie-Hellman key agreement, Montgomery form, Edwards form, 256-bit security. -
BINARY EDWARDS CURVES in ELLIPTIC CURVE CRYPTOGRAPHY by Graham Enos a Dissertation Submitted to the Faculty of the University Of
BINARY EDWARDS CURVES IN ELLIPTIC CURVE CRYPTOGRAPHY by Graham Enos A dissertation submitted to the faculty of The University of North Carolina at Charlotte in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Applied Mathematics Charlotte 2013 Approved by: Dr. Yuliang Zheng Dr. Gabor Hetyei Dr. Thomas Lucas Dr. Evan Houston Dr. Shannon Schlueter ii ©2013 Graham Enos ALL RIGHTS RESERVED iii ABSTRACT GRAHAM ENOS. Binary edwards curves in elliptic curve cryptography. (Under the direction of DR. YULIANG ZHENG) Edwards curves are a new normal form for elliptic curves that exhibit some cryp- tographically desirable properties and advantages over the typical Weierstrass form. Because the group law on an Edwards curve (normal, twisted, or binary) is complete and unified, implementations can be safer from side channel or exceptional procedure attacks. The different types of Edwards provide a better platform for cryptographic primitives, since they have more security built into them from the mathematic foun- dation up. Of the three types of Edwards curves|original, twisted, and binary|there hasn't been as much work done on binary curves. We provide the necessary motivation and background, and then delve into the theory of binary Edwards curves. Next, we examine practical considerations that separate binary Edwards curves from other recently proposed normal forms. After that, we provide some of the theory for bi- nary curves that has been worked on for other types already: pairing computations. We next explore some applications of elliptic curve and pairing-based cryptography wherein the added security of binary Edwards curves may come in handy. -
Two Kinds of Division Polynomials for Twisted Edwards Curves
Two Kinds of Division Polynomials For Twisted Edwards Curves Richard Moloney and Gary McGuire∗ School of Mathematical Sciences University College Dublin Ireland Email: [email protected], [email protected] December 1, 2018 Abstract This paper presents two kinds of division polynomials for twisted Edwards curves. Their chief property is that they characterise the n-torsion points of a given twisted Edwards curve. We also present results concerning the coefficients of these polynomials, which may aid computation. 1 Introduction The famous last entry in the diary of Gauss concerns the curve with equation x2 + y2 + x2y2 = 1 (1) 2 3 and its rational points over Fp. This curve is related to the elliptic curve y = 4x − 4x. The idea of division polynomials on a curve with a group law on its points, is that we try to write down a formula for [n]P in terms of the coordinates of P , where [n]P denotes P added to itself n times under the group law. In this paper we shall give two distinct arXiv:0907.4347v1 [math.AG] 24 Jul 2009 solutions to this problem, in the general context of twisted Edwards curves, of which (1) is a special case. Edwards [5], generalising (1), introduced an addition law on the curves x2 + y2 = c2(1 + x2y2) for c ∈ k, where k is a field of characteristic not equal to 2. He showed that every elliptic curve over k is birationally equivalent (over some extension of k) to a curve of this form. ∗ Research supported by Claude Shannon Institute, Science Foundation Ireland Grant 06/MI/006, and Grant 07/RFP/MATF846, and the Irish Research Council for Science, Engineering and Technology 1 In [3], Bernstein and Lange generalised this addition law to the curves x2+y2 = 1+dx2y2 for d ∈ k \ {0, 1}. -
Curves, Codes, and Cryptography Copyright C 2011 by Christiane Peters
Curves, Codes, and Cryptography Copyright c 2011 by Christiane Peters. Printed by Printservice Technische Universiteit Eindhoven. Cover: Starfish found in Bouldin Creek, Austin, Texas. Fossils originate from the late Cretaceous, about 85 million years ago. Picture taken by Laura Hitt O’Connor at the Texas Natural Science Center, Austin, Texas. Design in cooperation with Verspaget & Bruinink. CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN Peters, Christiane Curves, Codes, and Cryptography / by Christiane Peters. – Eindhoven: Technische Universiteit Eindhoven, 2011. Proefschrift. – ISBN 978-90-386-2476-1 NUR 919 Subject heading: Cryptology 2000 Mathematics Subject Classification: 94A60, 11Y16, 11T71 Curves, Codes, and Cryptography PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Technische Universiteit Eindhoven, op gezag van de rector magnificus, prof.dr.ir. C.J. van Duijn, voor een commissie aangewezen door het College voor Promoties in het openbaar te verdedigen op dinsdag 10 mei 2011 om 16.00 uur door Christiane Pascale Peters geboren te Paderborn, Duitsland Dit proefschrift is goedgekeurd door de promotoren: prof.dr. T. Lange en prof.dr. D.J. Bernstein Fur¨ meine Eltern Angelika und Jurgen¨ Peters Thanks I would like to thank many people for their support and company during my Ph.D. studies. First of all, I am most grateful to my supervisors Tanja Lange and Daniel J. Bernstein. I thank Tanja for giving me the opportunity to come to Eindhoven to do research and to get to know the (crypto) world. I thank Tanja and Dan for letting me participate in great projects such as working on Edwards curves in cryptographic and number-theoretic settings, and for helping me find my way into the world of code-based cryptography. -
Measuring and Securing Cryptographic Deployments
University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2019 Measuring And Securing Cryptographic Deployments Luke Taylor Valenta University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Computer Sciences Commons Recommended Citation Valenta, Luke Taylor, "Measuring And Securing Cryptographic Deployments" (2019). Publicly Accessible Penn Dissertations. 3507. https://repository.upenn.edu/edissertations/3507 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/3507 For more information, please contact [email protected]. Measuring And Securing Cryptographic Deployments Abstract This dissertation examines security vulnerabilities that arise due to communication failures and incentive mismatches along the path from cryptographic algorithm design to eventual deployment. I present six case studies demonstrating vulnerabilities in real-world cryptographic deployments. I also provide a framework with which to analyze the root cause of cryptographic vulnerabilities by characterizing them as failures in four key stages of the deployment process: algorithm design and cryptanalysis, standardization, implementation, and endpoint deployment. Each stage of this process is error-prone and influenced by various external factors, the incentives of which are not always aligned with security. I validate the framework by applying it to the six presented case studies, tracing each vulnerability back to communication -
BINARY EDWARDS CURVES in ELLIPTIC CURVE CRYPTOGRAPHY by Graham Enos a Dissertation Submitted to the Faculty of the University Of
BINARY EDWARDS CURVES IN ELLIPTIC CURVE CRYPTOGRAPHY by Graham Enos A dissertation submitted to the faculty of The University of North Carolina at Charlotte in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Applied Mathematics Charlotte 2013 Approved by: Dr. Yuliang Zheng Dr. Gabor Hetyei Dr. Thomas Lucas Dr. Evan Houston Dr. Shannon Schlueter ii ©2013 Graham Enos ALL RIGHTS RESERVED iii ABSTRACT GRAHAM ENOS. Binary Edwards Curves in Elliptic Curve Cryptography. (Under the direction of DR. YULIANG ZHENG) Edwards curves are a new normal form for elliptic curves that exhibit some cryp- tographically desirable properties and advantages over the typical Weierstrass form. Because the group law on an Edwards curve (normal, twisted, or binary) is complete and unified, implementations can be safer from side channel or exceptional procedure attacks. The different types of Edwards provide a better platform for cryptographic primitives, since they have more security built into them from the mathematic foun- dation up. Of the three types of Edwards curves|original, twisted, and binary|there hasn't been as much work done on binary curves. We provide the necessary motivation and background, and then delve into the theory of binary Edwards curves. Next, we examine practical considerations that separate binary Edwards curves from other recently proposed normal forms. After that, we provide some of the theory for bi- nary curves that has been worked on for other types already: pairing computations. We next explore some applications of elliptic curve and pairing-based cryptography wherein the added security of binary Edwards curves may come in handy. -
Maire Model of an Elliptic Curve)
INVERTED BINARY EDWARDS COORDINATES (MAIRE MODEL OF AN ELLIPTIC CURVE) by STEVEN M. MAIRE Submitted in partial fulfillment of the requirements for the degree of Master of Science Dissertation Advisor: Dr. David Singer Department of Mathematics CASE WESTERN RESERVE UNIVERSITY May, 2014 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of STEVEN M. MAIRE candidate for the Master of Science degree*. Dr. David Singer Dr. Elisabeth Werner Dr. Johnathan Duncan (date) March 25, 2014 *We also certify that written approval has been obtained for any proprietary material contained therein. Dedication To my mother, Lynda O. Maire, whose lessons to me as a child came as encrypted signals, where the only cipher, is time. i Contents Dedication i List of Tables iv List of Figures v Acknowledgements vi Abstract vii 1 Introduction 1 1.1 Elliptic Curves in Cryptography . .1 2 Weierstrass Form: Paving the Way 3 2.1 Weierstrass Addition Law . .4 2.1.1 Geometric Interpretation . .4 2.1.2 Algebraic Interpretation . .6 3 Edwards Curves: Unifying Finite Field Operations 9 3.1 The Addition Law . 10 3.1.1 Geometric Interpretation . 11 3.1.2 Algebraic Interpretation . 12 4 Binary Edwards Curves: Doubling down on Deuces 14 4.1 Building the New Shape for the Edwards' Form . 14 4.2 The First Complete Addition Law Over a Binary Field . 16 ii CONTENTS CONTENTS 5 Maire Model 18 5.1 Inverted Binary Edwards . 19 5.2 The Addition Law . 21 5.3 Operations Unification . 23 6 Elliptic Curves in Cryptography: A Revolution 25 6.1 Advantages of the Edwards' Forms . -
Faster Cofactorization with ECM Using Mixed Representations Cyril Bouvier, Laurent Imbert
Faster Cofactorization with ECM Using Mixed Representations Cyril Bouvier, Laurent Imbert To cite this version: Cyril Bouvier, Laurent Imbert. Faster Cofactorization with ECM Using Mixed Representations. IACR International Conference on Public-Key Cryptography (PKC), Jun 2020, Virtual, United King- dom. pp.483-504, 10.1007/978-3-030-45388-6_17. lirmm-02613652 HAL Id: lirmm-02613652 https://hal-lirmm.ccsd.cnrs.fr/lirmm-02613652 Submitted on 20 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Faster cofactorization with ECM using mixed representations Cyril Bouvier and Laurent Imbert LIRMM, CNRS, Univ. Montpellier, France Abstract. This paper introduces a novel implementation of the ellip- tic curve factoring method specifically designed for medium-size integers such as those arising by billions in the cofactorization step of the Num- ber Field Sieve. In this context, our algorithm requires fewer modular multiplications than any other publicly available implementation. The main ingredients are: the use of batches of primes, fast point tripling, optimal double-base decompositions and Lucas chains, and a good mix of Edwards and Montgomery representations. Keywords: Elliptic curve method, cofactorization, double-base representation, twisted Edwards curve, Montgomery curve, CADO-NFS 1 Introduction The Elliptic Curve Method (ECM) invented by H. -
Fast and Compact Elliptic-Curve Cryptography
Fast and compact elliptic-curve cryptography Mike Hamburg∗ Abstract Elliptic curve cryptosystems have improved greatly in speed over the past few years. Here we outline a new elliptic curve signature and key agreement implementation which achieves record speeds while remaining relatively compact. For example, on Intel Sandy Bridge, a curve with about 2250 points produces a signature in just under 52k clock cycles, verifies in under 170k clock cycles, and computes a Diffie- Hellman shared secret in under 153k clock cycles. Our implementation has a small footprint: the library is under 60kB. Our implementation is also fast on ARM processors, verifying a signature in under 625k Tegra-2 cycles. We introduce faster field arithmetic, a new point compression al- gorithm, an improved fixed-base scalar multiplication algorithm and a new way to verify signatures without inversions or coordinate recovery. Some of these improvements should be applicable to other systems. 1 Introduction Of the many applications for digital signatures, most use some variant of the venerable RSA scheme. RSA signatures have several advan- tages, such as age, simplicity and extreme speed of verification. For ∗Cryptography Research, a division of Rambus. 1 example, NIST's recommendations [2] hold RSA-2048 and the elliptic 1 curve signature scheme ECDSA-p224 to be similarly secure , and the former verifies signatures more than 13× faster than the latter [7]. Elliptic curve signatures have many advantages, however. Current attacks against elliptic curves scale exponentially with key size. There- fore ECC key and signatures can be considerably smaller than their RSA counterparts, and key generation and signing are much faster.