Comments Received on Draft FIPS 186-5: Digital Signature Standards (DSS) (January 29, 2020 Deadline) Updated 3/19/2021
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Post-Quantum Cryptography
Post-quantum cryptography Daniel J. Bernstein & Tanja Lange University of Illinois at Chicago; Ruhr University Bochum & Technische Universiteit Eindhoven 12 September 2020 I Motivation #1: Communication channels are spying on our data. I Motivation #2: Communication channels are modifying our data. I Literal meaning of cryptography: \secret writing". I Achieves various security goals by secretly transforming messages. I Confidentiality: Eve cannot infer information about the content I Integrity: Eve cannot modify the message without this being noticed I Authenticity: Bob is convinced that the message originated from Alice Cryptography with symmetric keys AES-128. AES-192. AES-256. AES-GCM. ChaCha20. HMAC-SHA-256. Poly1305. SHA-2. SHA-3. Salsa20. Cryptography with public keys BN-254. Curve25519. DH. DSA. ECDH. ECDSA. EdDSA. NIST P-256. NIST P-384. NIST P-521. RSA encrypt. RSA sign. secp256k1. Cryptography / Sender Receiver \Alice" \Bob" Tsai Ing-Wen picture credit: By =q府, Attribution, Wikimedia. Donald Trump picture credit: By Shealah Craighead - White House, Public Domain, Wikimedia. Daniel J. Bernstein & Tanja Lange Post-quantum cryptography2 Cryptography with symmetric keys AES-128. AES-192. AES-256. AES-GCM. ChaCha20. HMAC-SHA-256. Poly1305. SHA-2. SHA-3. Salsa20. I Literal meaning of cryptography: \secret writing". Cryptography with public keys Achieves various security goals by secretly transforming messages. BN-254I . Curve25519. DH. DSA. ECDH. ECDSA. EdDSA. NIST P-256. NIST P-384. Confidentiality: Eve cannot infer information about the content NISTI P-521. RSA encrypt. RSA sign. secp256k1. I Integrity: Eve cannot modify the message without this being noticed I Authenticity: Bob is convinced that the message originated from Alice Cryptography / Sender Untrustworthy network Receiver \Alice" \Eve" \Bob" I Motivation #1: Communication channels are spying on our data. -
Secure Authentication Protocol for Internet of Things Achraf Fayad
Secure authentication protocol for Internet of Things Achraf Fayad To cite this version: Achraf Fayad. Secure authentication protocol for Internet of Things. Networking and Internet Archi- tecture [cs.NI]. Institut Polytechnique de Paris, 2020. English. NNT : 2020IPPAT051. tel-03135607 HAL Id: tel-03135607 https://tel.archives-ouvertes.fr/tel-03135607 Submitted on 9 Feb 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Protocole d’authentification securis´ e´ pour les objets connectes´ These` de doctorat de l’Institut Polytechnique de Paris prepar´ ee´ a` Tel´ ecom´ Paris Ecole´ doctorale n◦626 Ecole´ doctorale de l’Institut Polytechnique de Paris (EDIPP) Specialit´ e´ de doctorat : Reseaux,´ informations et communications NNT : 2020IPPAT051 These` present´ ee´ et soutenue a` Palaiseau, le 14 decembre´ 2020, par ACHRAF FAYAD Composition du Jury : Ken CHEN Professeur, Universite´ Paris 13 Nord President´ Pascal LORENZ Professeur, Universite´ de Haute-Alsace (UHA) Rapporteur Ahmed MEHAOUA Professeur, Universite´ Paris Descartes Rapporteur Lyes KHOUKHI Professeur, Ecole´ Nationale Superieure´ d’Ingenieurs´ de Examinateur Caen-ENSICAEN Ahmad FADLALLAH Associate Professor, University of Sciences and Arts in Lebanon Examinateur (USAL) Rida KHATOUN Maˆıtre de conferences,´ Tel´ ecom´ Paris Directeur de these` Ahmed SERHROUCHNI Professeur, Tel´ ecom´ Paris Co-directeur de these` Badis HAMMI Associate Professor, Ecole´ pour l’informatique et les techniques Invite´ avancees´ (EPITA) 626 Acknowledgments First, I would like to thank my thesis supervisor Dr. -
Nacl's Crypto Box in Hardware
NaCl’s crypto_box in hardware Michael Hutter1;, Jürgen Schilling2, Peter Schwabe3, and Wolfgang Wieser2 ? 1 Rambus Cryptography Research Division 425 Market Street, 11th Floor, San Francisco, CA 94105, USA [email protected] 2 Graz University of Technology, IAIK Inffeldgasse 16a, A-8010, Graz, Austria [email protected],[email protected] 3 Radboud University Digital Security Group, PO Box 9010, 6500GL Nijmegen, The Netherlands [email protected] Abstract. This paper presents a low-resource hardware implementation of the widely used crypto_box function of the Networking and Cryptog- raphy library (NaCl). It supports the X25519 Diffie-Hellman key ex- change using Curve25519, the Salsa20 stream cipher, and the Poly1305 message authenticator. Our targeted application is a secure communica- tion between devices in the Internet of Things (IoT) and Internet servers. Such devices are highly resource-constrained and require carefully op- timized hardware implementations. We propose the first solution that enables 128-bit-secure public-key authenticated encryption on passively- powered IoT devices like WISP nodes. From a cryptographic point of view we thus make a first step to turn these devices into fully-fledged participants of Internet communication. Our crypto processor needs a silicon area of 14.6 kGEs and less than 40 µW of power at 1 MHz for a 130 nm low-leakage CMOS process technology. Keywords: Internet of Things, ASIC, Salsa20, Poly1305, Curve25519. 1 Introduction We need to empower computers with their own means of gathering in- formation, so they can see, hear and smell the world for themselves, in all its random glory. RFID and sensor technology enable computers to observe, identify and understand the world—without the limitations of human-entered data. -
Alternative Elliptic Curve Representations
Alternative Elliptic Curve Representations draft-struik-lwig-curve-representations-00 René Struik Struik Security Consultancy E-mail: [email protected] IETF 101draft-struik – London,-lwig-curve- representationsUK, March-002018 1 Outline 1. The ECC Algorithm Zoo – NIST curve P-256, ECDSA – Curve25519 – Ed25519 2. Implementation Detail 3. How to Reuse Code 4. How to Reuse Existing Standards 5. Conclusions draft-struik-lwig-curve-representations-00 2 ECC Algorithm Zoo (1) NIST curves: Curve model: Weierstrass curve Curve equation: y2 = x3 + ax + b (mod p) Base point: G=(Gx, Gy) Scalar multiplication: addition formulae using, e.g., mixed Jacobian coordinates Point representation: both coordinates of point P=(X, Y) (affine coordinates) 0x04 || X || Y in most-significant-bit/octet first order Examples: NIST P-256 (ANSI X9.62, NIST SP 800-56a, SECG, etc.); Brainpool256r1 (RFC 5639) ECDSA: Signature: R || s in most-significant-bit/octet first order Signing equation: e = s k + d r (mod n), where e=Hash(m) Example: ECDSA, w/ P-256 and SHA-256 (FIPS 186-4, ANSI X9.62, etc.) Note: message m pre-hashed draft-struik-lwig-curve-representations-00 3 ECC Algorithm Zoo (2) CFRG curves: Curve model: Montgomery curve Curve equation: By2 = x3 + Ax2 + x (mod p) Base point: G=(Gx, Gy) Scalar multiplication: Montgomery ladder, using projective coordinates [X: :Z] Point representation: x-coordinate of point P=(X, Y) (x-coordinate-only) X in least-significant-octet, most-significant-bit first order Examples: Curve25519, Curve448 (RFC 7748) DH Key agreement: -
Comparing the Usability of Cryptographic Apis
Comparing the Usability of Cryptographic APIs Yasemin Acar, Michael Backes, Sascha Fahl, Simson Garfinkel∗, Doowon Kimy, Michelle L. Mazureky, and Christian Stransky CISPA, Saarland University; ∗National Institute of Standards and Technology; yUniversity of Maryland, College Park Abstract—Potentially dangerous cryptography errors are well- Many researchers have used static and dynamic analysis documented in many applications. Conventional wisdom suggests techniques to identify and investigate cryptographic errors in that many of these errors are caused by cryptographic Appli- source code or binaries [2]–[6]. This approach is extremely cation Programming Interfaces (APIs) that are too complicated, have insecure defaults, or are poorly documented. To address this valuable for illustrating the pervasiveness of cryptographic problem, researchers have created several cryptographic libraries errors, and for identifying the kinds of errors seen most that they claim are more usable; however, none of these libraries frequently in practice, but it cannot reveal root causes. Conven- have been empirically evaluated for their ability to promote tional wisdom in the security community suggests these errors more secure development. This paper is the first to examine proliferate in large part because cryptography is so difficult for both how and why the design and resulting usability of different cryptographic libraries affects the security of code written with non-experts to get right. In particular, libraries and Application them, with the goal of understanding how to build effective Programming Interfaces (APIs) are widely seen as being future libraries. We conducted a controlled experiment in which complex, with many confusing options and poorly chosen 256 Python developers recruited from GitHub attempt common defaults (e.g. -
Security Analysis of the Signal Protocol Student: Bc
ASSIGNMENT OF MASTER’S THESIS Title: Security Analysis of the Signal Protocol Student: Bc. Jan Rubín Supervisor: Ing. Josef Kokeš Study Programme: Informatics Study Branch: Computer Security Department: Department of Computer Systems Validity: Until the end of summer semester 2018/19 Instructions 1) Research the current instant messaging protocols, describe their properties, with a particular focus on security. 2) Describe the Signal protocol in detail, its usage, structure, and functionality. 3) Select parts of the protocol with a potential for security vulnerabilities. 4) Analyze these parts, particularly the adherence of their code to their documentation. 5) Discuss your findings. Formulate recommendations for the users. References Will be provided by the supervisor. prof. Ing. Róbert Lórencz, CSc. doc. RNDr. Ing. Marcel Jiřina, Ph.D. Head of Department Dean Prague January 27, 2018 Czech Technical University in Prague Faculty of Information Technology Department of Computer Systems Master’s thesis Security Analysis of the Signal Protocol Bc. Jan Rub´ın Supervisor: Ing. Josef Kokeˇs 1st May 2018 Acknowledgements First and foremost, I would like to express my sincere gratitude to my thesis supervisor, Ing. Josef Kokeˇs,for his guidance, engagement, extensive know- ledge, and willingness to meet at our countless consultations. I would also like to thank my brother, Tom´aˇsRub´ın,for proofreading my thesis. I cannot express enough gratitude towards my parents, Lenka and Jaroslav Rub´ınovi, who supported me both morally and financially through my whole studies. Last but not least, this thesis would not be possible without Anna who re- lentlessly supported me when I needed it most. Declaration I hereby declare that the presented thesis is my own work and that I have cited all sources of information in accordance with the Guideline for adhering to ethical principles when elaborating an academic final thesis. -
Multi-Party Encrypted Messaging Protocol Design Document, Release 0.3-2-Ge104946
Multi-Party Encrypted Messaging Protocol design document Release 0.3-2-ge104946 Mega Limited, Auckland, New Zealand Guy Kloss <[email protected]> arXiv:1606.04593v1 [cs.CR] 14 Jun 2016 11 January 2016 CONTENTS 1 Strongvelope Multi-Party Encrypted Messaging Protocol 2 1.1 Intent.......................................... ....... 2 1.2 SecurityProperties.............................. ............ 2 1.3 ScopeandLimitations ............................. ........... 3 1.4 Assumptions ..................................... ........ 3 1.5 Messages........................................ ....... 3 1.6 Terminology ..................................... ........ 4 2 Cryptographic Primitives 5 2.1 KeyPairforAuthentication . ............. 5 2.2 KeyAgreement.................................... ........ 5 2.3 (Sender)KeyEncryption. ............ 5 2.4 MessageAuthentication . ............ 6 2.5 MessageEncryption ............................... .......... 6 3 Message Encryption 7 3.1 SenderKeyExchange ............................... ......... 7 3.2 ContentEncryption............................... ........... 8 4 Protocol Encoding 9 4.1 TLVTypes ........................................ ...... 9 4.2 MessageSignatures ............................... .......... 10 4.3 MessageTypes.................................... ........ 10 4.4 KeyedMessages ................................... ........ 10 4.5 FollowupMessages ................................ ......... 10 4.6 AlterParticipantMessages. .............. 11 4.7 LegacySenderKeyEncryption . ............ 11 4.8 SenderKeystoInclude... -
Practical Fault Attack Against the Ed25519 and Eddsa Signature Schemes
Practical fault attack against the Ed25519 and EdDSA signature schemes Yolan Romailler, Sylvain Pelissier Kudelski Security Cheseaux-sur-Lausanne, Switzerland fyolan.romailler,[email protected] main advantages is that its scalar multiplication can be Abstract—The Edwards-curve Digital Signature Algorithm implemented without secret dependent branch and lookup, (EdDSA) was proposed to perform fast public-key digital avoiding the risk of side-channel leakage. More recently, a signatures as a replacement for the Elliptic Curve Digital Signature Algorithm (ECDSA). Its key advantages for em- new digital signature algorithm, namely Ed25519 [6], was bedded devices are higher performance and straightforward, proposed based on the curve edwards25519, i.e., the Edward secure implementations. Indeed, neither branch nor lookup twist of Curve25519. This algorithm was then generalized operations depending on the secret values are performed to other curves and called EdDSA [7]. Due to its various during a signature. These properties thwart many side-channel advantages [7], EdDSA was quickly implemented in many attacks. Nevertheless, we demonstrate here that a single-fault attack against EdDSA can recover enough private key material products and libraries, such as OpenSSH [8]. It was also to forge valid signatures for any message. We demonstrate a recently formally defined in RFC 8032 [9]. practical application of this attack against an implementation The authors of EdDSA did not make any claims about its on Arduino Nano. To the authors’ best knowledge this is the security against fault attacks. However, its resistance to fault first practical fault attack against EdDSA or Ed25519. attacks is discussed in [10]–[12] and taken into account by Keywords-EdDSA; Ed25519; fault attack; digital signature Perrin in [13]. -
Pynacl Release 1.4.0.Dev1
PyNaCl Release 1.4.0.dev1 unknown Jun 02, 2019 CONTENTS 1 Features 3 2 Contents 5 2.1 Public Key Encryption..........................................5 2.2 Secret Key Encryption..........................................9 2.3 Digital Signatures............................................ 12 2.4 Hashing.................................................. 18 2.5 Password hashing............................................ 20 3 Support Features 25 3.1 Encoders................................................. 25 3.2 Exceptions................................................ 26 3.3 Utilities.................................................. 26 3.4 nacl.hash................................................. 27 3.5 nacl.pwhash............................................... 28 3.6 nacl.hashlib................................................ 33 3.7 Installation................................................ 34 3.8 Doing A Release............................................. 34 3.9 Reference vectors............................................ 35 3.10 Changelog................................................ 48 3.11 Indices and tables............................................ 50 Bibliography 51 Python Module Index 53 Index 55 i ii PyNaCl, Release 1.4.0.dev1 PyNaCl is a Python binding to libsodium, which is a fork of the Networking and Cryptography library. These libraries have a stated goal of improving usability, security and speed. It supports Python 2.7 and 3.4+ as well as PyPy 2.6+. CONTENTS 1 PyNaCl, Release 1.4.0.dev1 2 CONTENTS CHAPTER ONE -
(Not) to Design and Implement Post-Quantum Cryptography
SoK: How (not) to Design and Implement Post-Quantum Cryptography James Howe1 , Thomas Prest1 , and Daniel Apon2 1 PQShield, Oxford, UK. {james.howe,thomas.prest}@pqshield.com 2 National Institute of Standards and Technology, USA. [email protected] Abstract Post-quantum cryptography has known a Cambrian explo- sion in the last decade. What started as a very theoretical and mathe- matical area has now evolved into a sprawling research ˝eld, complete with side-channel resistant embedded implementations, large scale de- ployment tests and standardization e˙orts. This study systematizes the current state of knowledge on post-quantum cryptography. Compared to existing studies, we adopt a transversal point of view and center our study around three areas: (i) paradigms, (ii) implementation, (iii) deployment. Our point of view allows to cast almost all classical and post-quantum schemes into just a few paradigms. We highlight trends, common methodologies, and pitfalls to look for and recurrent challenges. 1 Introduction Since Shor's discovery of polynomial-time quantum algorithms for the factoring and discrete logarithm problems, researchers have looked at ways to manage the potential advent of large-scale quantum computers, a prospect which has become much more tangible of late. The proposed solutions are cryptographic schemes based on problems assumed to be resistant to quantum computers, such as those related to lattices or hash functions. Post-quantum cryptography (PQC) is an umbrella term that encompasses the design, implementation, and integration of these schemes. This document is a Systematization of Knowledge (SoK) on this diverse and progressive topic. We have made two editorial choices. -
How to (Pre-)Compute a Ladder
How to (pre-)compute a ladder Improving the performance of X25519 and X448 Thomaz Oliveira1, Julio L´opez2, H¨useyinHı¸sıl3, Armando Faz-Hern´andez2, and Francisco Rodr´ıguez-Henr´ıquez1 1 Computer Science Department, Cinvestav-IPN [email protected], [email protected] 2 Institute of Computing, University of Campinas [email protected], [email protected] 3 Yasar University [email protected] Abstract. In the RFC 7748 memorandum, the Internet Research Task Force specified a Montgomery-ladder scalar multiplication function based on two recently adopted elliptic curves, \curve25519" and \curve448". The purpose of this function is to support the Diffie-Hellman key ex- change algorithm that will be included in the forthcoming version of the Transport Layer Security cryptographic protocol. In this paper, we describe a ladder variant that permits to accelerate the fixed-point mul- tiplication function inherent to the Diffie-Hellman key pair generation phase. Our proposal combines a right-to-left version of the Montgomery ladder along with the pre-computation of constant values directly de- rived from the base-point and its multiples. To our knowledge, this is the first proposal of a Montgomery ladder procedure for prime elliptic curves that admits the extensive use of pre-computation. In exchange of very modest memory resources and a small extra programming effort, the proposed ladder obtains significant speedups for software implemen- tations. Moreover, our proposal fully complies with the RFC 7748 spec- ification. A software implementation of the X25519 and X448 functions using our pre-computable ladder yields an acceleration factor of roughly 1.20, and 1.25 when implemented on the Haswell and the Skylake micro- architectures, respectively. -
The Complete Cost of Cofactor H = 1
The complete cost of cofactor h = 1 Peter Schwabe and Daan Sprenkels Radboud University, Digital Security Group, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands [email protected], [email protected] Abstract. This paper presents optimized software for constant-time variable-base scalar multiplication on prime-order Weierstraß curves us- ing the complete addition and doubling formulas presented by Renes, Costello, and Batina in 2016. Our software targets three different mi- croarchitectures: Intel Sandy Bridge, Intel Haswell, and ARM Cortex- M4. We use a 255-bit elliptic curve over F2255−19 that was proposed by Barreto in 2017. The reason for choosing this curve in our software is that it allows most meaningful comparison of our results with optimized software for Curve25519. The goal of this comparison is to get an under- standing of the cost of using cofactor-one curves with complete formulas when compared to widely used Montgomery (or twisted Edwards) curves that inherently have a non-trivial cofactor. Keywords: Elliptic Curve Cryptography · SIMD · Curve25519 · scalar multiplication · prime-field arithmetic · cofactor security 1 Introduction Since its invention in 1985, independently by Koblitz [34] and Miller [38], elliptic- curve cryptography (ECC) has widely been accepted as the state of the art in asymmetric cryptography. This success story is mainly due to the fact that attacks have not substantially improved: with a choice of elliptic curve that was in the 80s already considered conservative, the best attack for solving the elliptic- curve discrete-logarithm problem is still the generic Pollard-rho algorithm (with minor speedups, for example by exploiting the efficiently computable negation map in elliptic-curve groups [14]).