Managing Complex Computing Environments: Open Source On

Total Page:16

File Type:pdf, Size:1020Kb

Managing Complex Computing Environments: Open Source On L CASE STUDY e T n In O e As a leading provider C of turnkey computing ur clusters for bioinformatics, O PSSC Labs delivers the computing power and en S storage needed to analyze P O the enormous data sets in today’s next-generation sequencing environments. MANAGING COMPLEX COMPUTING ENVIRONMENTS: CHALLENGE PSSC Labs’ objective OPen SOurCe On InTeL® was to expand the ArCHITeCTure MAkeS capabilities of high- performance cluster computing to a wider range of SuPercompuTInG AcceSSIBLe customers. As part of this goal, its development team set out to enhance the manageability of complex fOr ALL compute environments and to customize individual deployments to meet the requirements of high-end With the rising popularity of open-source-based solutions, high- customers in scientific, financial, and educational performance computing (HPC) has infiltrated research labs, data markets. centers, financial institutions, and engineering suites. Given these increasingly complex environments, IT professionals face an SOLUTION ongoing challenge: finding suitable tools to effectively monitor, The team sought to integrate the latest, most reliable, manage, and configure complex cloud-computing installations and HPC clusters. To tackle this challenge, PSSC Labs combines high- open-source components into solutions to increase performance, open-source components with proven Intel® Xeon® performance and enhance stability. The adoption of processor-based platforms to create competitive solutions for the Intel® software drivers enabled PSSC Labs to handle top tiers of computing requirements. Intelligent Platform Management Interface (IPMI) operations in a consistent, predictable way. Validation of PSSC solutions through the Intel® Cluster ready program strengthens their credibility. RESULTS Commodity supercomputing By leveraging open-source components on Intel® has really transformed the industry. I think the architecture, PSSC Labs has been able to bring exceptional, cost-effective solutions to market faster. world has evolved to the point where you want With CBeST* and PowerWulf* Clusters, PSSC Labs’ variety and you want choices and you want customers are better able to manage and monitor their “ cloud-computing or supercomputing infrastructures. inexpensive supercomputing. Customers of PSSC Labs have a single – Alex Lesser, Vice President of Sales and Marketing, PSSC Labs point of contact for deployment, “ support, and maintenance. C=70 M=94 Y=38 K=38 The Shift to Open Source in Supercomputing The technology acceleration spurred by open-source development has propelled Linux* to the top of the charts in the supercomputing realm. The vast majority of the world’s supercomputers are running some variant of Linux, with estimates By leveraging community- invent1 developed, open-source software components on ranging from 91 to 95 percent. Of the supercomputers on the TOP500 list, compiled by Hans Meuer of the university of Mannheim, Germany, over 70 percent Intel architecture, we are able to bring our high- feature Intel® processors. performance computing solutions to market “ faster and with less cost. This significantly The prevalence of Linux at these high levels creates a strong need for management tools and open-source expertise to harness supercomputing capabilities effectively reduces the purchase price of our solutions. and make it easier to monitor, administer, and customize HPC installations. – Alex Lesser, Vice President of Sales and Marketing, PSSC Labs With more than 10 years of experience in open source, PSSC Labs relies on the flexibility of Linux to tailor its flagship products, CBeST and PowerWulf Cluster, for production environments, including life science facilities, data centers, and design “ and engineering installations. Taming the Complexities of As one of the most prolific contributors to the Linux* kernel, Intel has helped High-Performance Computing establish Linux as a leading commercial PSSC Labs has built its business around the fact that to the uninitiated the price operating system for the most demanding of entry to supercomputing—both financially and technologically—can be steep. environments, such as high-performance To address this challenge, the company packages its CBeST and PowerWulf Cluster computing. These contributions help solutions as a comprehensive offering, complete with setup, support, and training improve the performance, scalability, at an attractive price point. Alex Lesser, vice president of Sales and Marketing at security, and power-efficiency of Linux PSSC Labs commented, “As intimidating as supercomputing can be, the fact that for systems of every size and application. customers receive a turnkey solution with the software, the hardware, and the networking already installed and configured makes life a lot easier for them.” The heart of PSSC Labs’ flagship solution, CBeST (Complete Beowulf Software Toolkit), includes utilities, custom scripts, and monitoring tools for comprehensive cloud and cluster management. CBeST, based on CentOS Linux, also incorporates a number of open-source components, including Ganglia Monitoring Suite, System Imager (for replication and updating), TOrQUE / Open PBS (for batch scheduling), and Open MPI (for messaging passing). Intel® Compiler Suite is available as an add-on ® and the IPMI driver provides monitoring and management at the hardware level. Intel x86 technology has gotten so powerful that you can Opening the Market to High-Performance Computing do supercomputer-level computations One of the most dramatic breakthroughs in both open source and HPC is the and solve complex problems using [Intel- tremendous market potential that has been created. Lesser comments that open- “ source software on Intel® x86 architecture has opened up a whole new area of the based] x86 processors, instead of using market to supercomputing applications. “People can now actually get into an HPC SPARC or other proprietary products. solution for less than $50,000,” he said. “A lot of that is because the open-source packages have become more and more accepted, and, in fact, they are more or less – Alex Lesser, Vice President of Sales expected when purchasing a system.” Lesser noted that historically, if you wanted and Marketing, PSSC Labs to buy a supercomputer, you could expect to spend tens and maybe hundreds of millions of dollars. Today, with Intel architecture and open-source software, market adoption of HPC has increased significantly. Intel’s long-term commitment to the open-source community—including “ development of drivers to unlock advanced hardware capabilities and optimization work on open-source projects to improve scalability and performance—has been a vital factor in democratizing supercomputing across the market. 2 Reducing Both Operating Costs and Capital Costs Summary PSSC Labs takes advantage of energy-efficiency features built into PSSC Labs has channeled their expertise in Linux and open- the Intel® Xeon® processor e7 family and Intel® Xeon® processor e5 source development into a product offering that delivers family. Intel® Intelligent Power Technology monitors how power is genuine turnkey supercomputing capabilities at a fraction of being used in different operating states and maximizes performance the cost of conventional solutions. Through kernel optimization, while conserving power. In turn, Intel’s contributions to open-source comprehensive management tools, and performance projects make these capabilities more accessible to applications and and reliability of Intel architecture, PSSC has produced a help deliver optimal levels of functionality. competitive solution that has been embraced by nASA, the United States Department of Defense, United States National for example, PSSC Labs uses the GNU* Compiler Collection (GCC) Labs, and over 100 prestigious universities. in its solutions. The porting of Intel® Cilk™ Plus into GCC enhances parallel programming constructs so that PSSC Labs delivers improved performance on multicore processors to its customers. PSSC Labs solutions also benefit from the extensive work that Intel “ has done to improve the performance, scalability, and reliability of the Linux kernel (upon which CentOS Linux is based). These World-Record Technical Computing improvements are manifested as enhanced capabilities in PSSC and High-Performance Computing Labs solutions. PSSC Labs delivers a substantial advantage to its customers According to Lesser, PSSC Labs customers are primarily concerned by optimizing its solutions for Intel® platforms. The Intel® with two things: capital costs and operating costs. The cost- Xeon® processor e5 and Intel® Xeon® processor e7 families effective Intel®-based server components help lower initial capital have achieved an impressive array of world records and other costs of the hardware. And ongoing IT operating costs, which top results on technical computing and high-performance are substantially tied to energy usage, can be lowered through computing benchmarks, and these results give PSSC an intelligent engineering. outstanding foundation on which to build. As each generation of Intel® Xeon® processors continues to deliver new “We optimize the BIOS to work with the capabilities of the Intel breakthrough performance, and Intel contributions to the Linux Xeon processors and to manage how the power is being used in kernel unlock these capabilities, PSSC’s customers can be different states,” Lesser said. “The latest Intel Xeon processors let confident that their solutions will benefit even further. us deliver energy efficiency
Recommended publications
  • GPU Developments 2018
    GPU Developments 2018 2018 GPU Developments 2018 © Copyright Jon Peddie Research 2019. All rights reserved. Reproduction in whole or in part is prohibited without written permission from Jon Peddie Research. This report is the property of Jon Peddie Research (JPR) and made available to a restricted number of clients only upon these terms and conditions. Agreement not to copy or disclose. This report and all future reports or other materials provided by JPR pursuant to this subscription (collectively, “Reports”) are protected by: (i) federal copyright, pursuant to the Copyright Act of 1976; and (ii) the nondisclosure provisions set forth immediately following. License, exclusive use, and agreement not to disclose. Reports are the trade secret property exclusively of JPR and are made available to a restricted number of clients, for their exclusive use and only upon the following terms and conditions. JPR grants site-wide license to read and utilize the information in the Reports, exclusively to the initial subscriber to the Reports, its subsidiaries, divisions, and employees (collectively, “Subscriber”). The Reports shall, at all times, be treated by Subscriber as proprietary and confidential documents, for internal use only. Subscriber agrees that it will not reproduce for or share any of the material in the Reports (“Material”) with any entity or individual other than Subscriber (“Shared Third Party”) (collectively, “Share” or “Sharing”), without the advance written permission of JPR. Subscriber shall be liable for any breach of this agreement and shall be subject to cancellation of its subscription to Reports. Without limiting this liability, Subscriber shall be liable for any damages suffered by JPR as a result of any Sharing of any Material, without advance written permission of JPR.
    [Show full text]
  • CTL RFP Proposal
    State of Maine Department of Education in coordination with the National Association of State Procurement Officials PROPOSAL COVER PAGE RFP # 201210412 MULTI-STATE LEARNING TECHNOLOGY INITIATIVE Bidder’s Organization Name: CTL Chief Executive - Name/Title: Erik Stromquist / COO Tel: 800.642.3087 x 212 Fax: 503.641.5586 E-mail: [email protected] Headquarters Street Address: 3460 NW Industrial St. Headquarters City/State/Zip: Portland, OR 97210 (provide information requested below if different from above) Lead Point of Contact for Proposal - Name/Title: Michael Mahanay / GM, Sales & Marketing Tel: 800.642.3087 x 205 Fax: 503.641.5586 E-mail: [email protected] Street Address: 3460 NW Industrial St. City/State/Zip: Portland, OR 97219 Proposed Cost: $294/yr. The proposed cost listed above is for reference purposes only, not evaluation purposes. In the event that the cost noted above does not match the Bidder’s detailed cost proposal documents, then the information on the cost proposal documents will take precedence. This proposal and the pricing structure contained herein will remain firm for a period of 180 days from the date and time of the bid opening. No personnel on the multi-state Sourcing Team or any other involved state agency participated, either directly or indirectly, in any activities relating to the preparation of the Bidder’s proposal. No attempt has been made or will be made by the Bidder to induce any other person or firm to submit or not to submit a proposal. The undersigned is authorized to enter into contractual obligations on behalf of the above-named organization.
    [Show full text]
  • Mass-Producing Your Certified Cluster Solutions
    Mass-Producing Your Certified Cluster Solutions White Paper The Intel® Cluster Ready program is designed to help you make the most of your engineering Intel® Cluster Ready resources. The program enables you to sell several different types of clusters from each solution High-Performance you design, by varying the hardware while maintaining the same software stack. You can gain a Computing broader range of cluster products to sell without engineering each one “from scratch.” As long as the software stack remains the same and works on each one of the hardware configurations, you can be confident that your clusters will interoperate with registered Intel Cluster Ready applications. Your customers can purchase your clusters with that same confidence, knowing they’ll be able to get their applications up and running quickly on your systems. Intel® Cluster Ready: Mass-Producing Your Certified Cluster Solutions Table of Contents Overview of Production-Related Activities � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 3 Creating and certifying recipes � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 3 Maintaining recipes � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 3 Mass-producing recipes � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
    [Show full text]
  • NVM Express and the PCI Express* SSD Revolution SSDS003
    NVM Express and the PCI Express* SSD Revolution Danny Cobb, CTO Flash Memory Business Unit, EMC Amber Huffman, Sr. Principal Engineer, Intel SSDS003 Agenda • NVM Express (NVMe) Overview • New NVMe Features in Enterprise & Client • Driver Ecosystem for NVMe • NVMe Interoperability and Plugfest Plans • EMC’s Perspective: NVMe Use Cases and Proof Points The PDF for this Session presentation is available from our Technical Session Catalog at the end of the day at: intel.com/go/idfsessions URL is on top of Session Agenda Pages in Pocket Guide 2 Agenda • NVM Express (NVMe) Overview • New NVMe Features in Enterprise & Client • Driver Ecosystem for NVMe • NVMe Interoperability and Plugfest Plans • EMC’s Perspective: NVMe Use Cases and Proof Points 3 NVM Express (NVMe) Overview • NVM Express is a scalable host controller interface designed for Enterprise and client systems that use PCI Express* SSDs • NVMe was developed by industry consortium of 80+ members and is directed by a 13-company Promoter Group • NVMe 1.0 was published March 1, 2011 • Product introductions later this year, first in Enterprise 4 Technical Basics • The focus of the effort is efficiency, scalability and performance – All parameters for 4KB command in single 64B DMA fetch – Supports deep queues (64K commands per Q, up to 64K queues) – Supports MSI-X and interrupt steering – Streamlined command set optimized for NVM (6 I/O commands) – Enterprise: Support for end-to-end data protection (i.e., DIF/DIX) – NVM technology agnostic 5 NVMe = NVM Express NVMe Command Execution 7 1
    [Show full text]
  • System Design for Telecommunication Gateways
    P1: OTE/OTE/SPH P2: OTE FM BLBK307-Bachmutsky August 30, 2010 15:13 Printer Name: Yet to Come SYSTEM DESIGN FOR TELECOMMUNICATION GATEWAYS Alexander Bachmutsky Nokia Siemens Networks, USA A John Wiley and Sons, Ltd., Publication P1: OTE/OTE/SPH P2: OTE FM BLBK307-Bachmutsky August 30, 2010 15:13 Printer Name: Yet to Come P1: OTE/OTE/SPH P2: OTE FM BLBK307-Bachmutsky August 30, 2010 15:13 Printer Name: Yet to Come SYSTEM DESIGN FOR TELECOMMUNICATION GATEWAYS P1: OTE/OTE/SPH P2: OTE FM BLBK307-Bachmutsky August 30, 2010 15:13 Printer Name: Yet to Come P1: OTE/OTE/SPH P2: OTE FM BLBK307-Bachmutsky August 30, 2010 15:13 Printer Name: Yet to Come SYSTEM DESIGN FOR TELECOMMUNICATION GATEWAYS Alexander Bachmutsky Nokia Siemens Networks, USA A John Wiley and Sons, Ltd., Publication P1: OTE/OTE/SPH P2: OTE FM BLBK307-Bachmutsky August 30, 2010 15:13 Printer Name: Yet to Come This edition first published 2011 C 2011 John Wiley & Sons, Ltd Registered office John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com. The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.
    [Show full text]
  • Accelerate Your AI Journey with Intel
    Intel® AI Workshop 2021 Accelerate Your AI Journey with Intel Laurent Duhem – HPC/AI Solutions Architect ([email protected]) Shailen Sobhee - AI Software Technical Consultant ([email protected]) Notices and Disclaimers ▪ Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configuration. ▪ No product or component can be absolutely secure. ▪ Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. For more complete information about performance and benchmark results, visit http://www.intel.com/benchmarks . ▪ Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit http://www.intel.com/benchmarks . ▪ Intel® Advanced Vector Extensions (Intel® AVX) provides higher throughput to certain processor operations. Due to varying processor power characteristics, utilizing AVX instructions may cause a) some parts to operate at less than the rated frequency and b) some parts with Intel® Turbo Boost Technology 2.0 to not achieve any or maximum turbo frequencies. Performance varies depending on hardware, software, and system configuration and you can learn more at http://www.intel.com/go/turbo.
    [Show full text]
  • Extracting and Mapping Industry 4.0 Technologies Using Wikipedia
    Computers in Industry 100 (2018) 244–257 Contents lists available at ScienceDirect Computers in Industry journal homepage: www.elsevier.com/locate/compind Extracting and mapping industry 4.0 technologies using wikipedia T ⁎ Filippo Chiarelloa, , Leonello Trivellib, Andrea Bonaccorsia, Gualtiero Fantonic a Department of Energy, Systems, Territory and Construction Engineering, University of Pisa, Largo Lucio Lazzarino, 2, 56126 Pisa, Italy b Department of Economics and Management, University of Pisa, Via Cosimo Ridolfi, 10, 56124 Pisa, Italy c Department of Mechanical, Nuclear and Production Engineering, University of Pisa, Largo Lucio Lazzarino, 2, 56126 Pisa, Italy ARTICLE INFO ABSTRACT Keywords: The explosion of the interest in the industry 4.0 generated a hype on both academia and business: the former is Industry 4.0 attracted for the opportunities given by the emergence of such a new field, the latter is pulled by incentives and Digital industry national investment plans. The Industry 4.0 technological field is not new but it is highly heterogeneous (actually Industrial IoT it is the aggregation point of more than 30 different fields of the technology). For this reason, many stakeholders Big data feel uncomfortable since they do not master the whole set of technologies, they manifested a lack of knowledge Digital currency and problems of communication with other domains. Programming languages Computing Actually such problem is twofold, on one side a common vocabulary that helps domain experts to have a Embedded systems mutual understanding is missing Riel et al. [1], on the other side, an overall standardization effort would be IoT beneficial to integrate existing terminologies in a reference architecture for the Industry 4.0 paradigm Smit et al.
    [Show full text]
  • Fast Setup and Integration of ABAQUS on HPC Linux Cluster and the Study of Its Scalability
    Fast Setup and Integration of ABAQUS on HPC Linux Cluster and the Study of Its Scalability Betty Huang, Jeff Williams, Richard Xu Baker Hughes Incorporated Abstract: High-performance computing (HPC), the massive powerhouse of IT, is now the fastest-growing sector in the industry, especially for the oil and gas industry, which has outpaced other US industries in integrating HPC into its critical business functions. HPC can offer greater capacity and flexibility to allow more advanced data analysis, which usually cannot be handled by individual workstations. In April 2008, Baker Oil Tools installed a Linux Cluster to boost its finite element analysis and computational fluid dynamics application performance. Platform Open Cluster Stack (OCS) has been implemented as cluster and system management software and load-sharing facility for high-performance computing (LSF-HPC) as job scheduler. OCS is a pre-integrated, modular and hybrid software stack that contains open-source software and proprietary products. It is a simple and easy way to rapidly assemble and manage small- to large-scale Linux-based HPC clusters. 1. Introduction of HPC A cluster is a group of linked computers working together closely so they form a single computer. Depending on the function, clusters can be divided into several types: high-availability (HA) cluster, load- balancing cluster, grid computing, and Beowulf cluster (computing). In this paper, we will focus on the Beowulf-type high-performance computing (HPC) cluster. Driven by more advanced simulation project needs and the capability of modern computers, the simulation world relies more and more on HPC. HPC cluster has become the dominating resource in this area.
    [Show full text]
  • Appro Xtreme-X Computers with Mellanox QDR Infiniband
    Intel Cluster Ready Appro Xtreme-X Computers with Mellanox QDR Infiniband AA PP PP RR OO II NN TT EE RR NN AA TT II OO NN AA LL II NN CC Steve Lyness Vice President, HPC Solutions Engineering [email protected] Company Overview :: Corporate Snapshot • Computer Systems manufacturer founded in 1991 • From OEM to branded products and solutions in 2001 – Headquarters in Milpitas, CA – Regional Office in Houston, TX – Global Presence via International Resellers and Partners – Manufacturing and Hardware R&D in Asia – 100+ employees worldwide • Leading developer of high performance servers, clusters and supercomputers. – Balanced Architecture – Delivering a Competitive Edge – Shipped over thousands of clusters and servers since 2001 – Solid Growth from 69.3M in 2006 to 86.5M in 2007 • Target Markets: - Electronic Design Automation - Financial Services - Government / Defense - Manufacturing - Oil & Gas *Source: IDC WW Quarterly PC Tracker SLIDE | 2 SLIDE A P P R O H P C P R E S E N T A T I O N Company Overview :: Why Appro High Performance Computing Expertise – Designing Best in Class Supercomputers Leadership in Price/Performance Energy Efficient Solution Best System Scalability and Manageability High Availability Features SLIDE | 3 SLIDE A P P R O H P C P R E S E N T A T I O N Company Overview :: Our Customers SLIDE | 4 SLIDE A P P R O H P C P R E S E N T A T I O N Company Overview :: Solid Growth +61% Compound Annual Revenue Growth $86.5M $69.3M $33.2M 2005 2006 2007 SLIDE | 5 SLIDE A P P R O H P C P R E S E N T A T I O N HPC Experience ::
    [Show full text]
  • GPU Developments 2017T
    GPU Developments 2017 2018 GPU Developments 2017t © Copyright Jon Peddie Research 2018. All rights reserved. Reproduction in whole or in part is prohibited without written permission from Jon Peddie Research. This report is the property of Jon Peddie Research (JPR) and made available to a restricted number of clients only upon these terms and conditions. Agreement not to copy or disclose. This report and all future reports or other materials provided by JPR pursuant to this subscription (collectively, “Reports”) are protected by: (i) federal copyright, pursuant to the Copyright Act of 1976; and (ii) the nondisclosure provisions set forth immediately following. License, exclusive use, and agreement not to disclose. Reports are the trade secret property exclusively of JPR and are made available to a restricted number of clients, for their exclusive use and only upon the following terms and conditions. JPR grants site-wide license to read and utilize the information in the Reports, exclusively to the initial subscriber to the Reports, its subsidiaries, divisions, and employees (collectively, “Subscriber”). The Reports shall, at all times, be treated by Subscriber as proprietary and confidential documents, for internal use only. Subscriber agrees that it will not reproduce for or share any of the material in the Reports (“Material”) with any entity or individual other than Subscriber (“Shared Third Party”) (collectively, “Share” or “Sharing”), without the advance written permission of JPR. Subscriber shall be liable for any breach of this agreement and shall be subject to cancellation of its subscription to Reports. Without limiting this liability, Subscriber shall be liable for any damages suffered by JPR as a result of any Sharing of any Material, without advance written permission of JPR.
    [Show full text]
  • High Performance Computing
    C R C P R E S S . T A Y L O R & F R A N C I S High Performance Computing A Chapter Sampler www.crcpress.com Contents 1. Overview of Parallel Computing From: Elements of Parallel Computing, by Eric Aubanel 2. Introduction to GPU Parallelism and CUDA From: GPU Parallel Program Development Using CUDA, by Tolga Soyata 3. Optimization Techniques and Best Practices for Parallel Codes From: Parallel Programming for Modern High Performance Computing Systems, by Pawel Czarnul 4. Determining an Exaflop Strategy From: Programming for Hybrid Multi/Manycore MMP Systems, by John Levesque, Aaron Vose 5. Contemporary High Performance Computing From: Contemporary High Performance Computing: From Petascale toward Exascale, by Jeffrey S. Vetter 6. Introduction to Computational Modeling From: Introduction to Modeling and Simulation with MATLAB® and Python, by Steven I. Gordon, Brian Guilfoos 20% Discount Available We're offering you 20% discount on all our entire range of CRC Press titles. Enter the code HPC10 at the checkout. Please note: This discount code cannot be combined with any other discount or offer and is only valid on print titles purchased directly from www.crcpress.com. www.crcpress.com Copyright Taylor & Francis Group. Do Not Distribute. CHAPTER 1 Overview of Parallel Computing 1.1 INTRODUCTION In the first 60 years of the electronic computer, beginning in 1940, computing performance per dollar increased on average by 55% per year [52]. This staggering 100 billion-fold increase hit a wall in the middle of the first decade of this century. The so-called power wall arose when processors couldn't work any faster because they couldn't dissipate the heat they pro- duced.
    [Show full text]
  • Spotlight on Ansys 12.0
    TM EXCELLENCE IN ENGINEERING SIMULATION ADVANTAGEVOLUME III ISSUE 1 2009 SPOTLIGHT ON ANSYS 12.0 FRAMEWORK MULTIPHYSICS HIGH-PERFORMANCE PAGE 6 PAGE 11 COMPUTING PAGE 25 EDITORIAL Engineering Simulation: t pa Needed Now © iStockphoto.com/Atra More Than Ever In a tough economy, forward-thinking companies are investing in leading-edge simulation technology to drive top-line revenue growth and bottom-line savings. Time and cost benefits of engineering simulation are this simulation method has the potential to reduce crack well documented. Predicting product performance and growth analysis time by over 90 percent compared determining optimal solutions early in the design phase help with manual methods. The productivity gain will enable to avoid late-stage problems and to eliminate trial-and-error engineers to analyze more designs annually, thus keeping testing cycles that drive up costs and bog down schedules. up with increased demand for turbochargers around the Simulation enables engineers to perform what-if studies world and strengthening the company’s leadership and to compare alternatives, processes that otherwise position in this competitive industry sector. would be impractical. Indeed, bottom-line savings are The prediction method is based on improved fracture one key benefit that prompts most companies to implement mechanics capabilities for calculating J integrals, one of simulation, and are most readily quantified in return-on- the many enhancements in ANSYS 12.0. Previewed in the investment calculations. Spotlight section of this issue, the release is a milestone A second, and potentially greater, benefit is boosting for the software supplier and a huge step forward for the top-line revenue growth.
    [Show full text]