A Science-Driven Mission Concept to an Exoplanet
A Science-Driven Mission Concept to an Exoplanet Stacy Weinstein-Weiss1, Marc Rayman1, Slava Turyshev1, Abhijit Biswass1, Insoo Jun1, Hoppy Price1, Eric Mamajek1, John Callas1, Tim McElrath1, Dave Woerner1, John Brophy1, Mike Shao1, Leon Alkalai1, Nitin Arora1, Les Johnson2, Merav Opher3, Seth Redfield4, Ralph McNutt5, Carol Stoker6, Jennifer Blank6, Douglas Caldwell7, Louis Friedman8, Robert Frisbee8, Gary Bennett8 1 Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 2 NASA Marshall Space Flight Center, Redstone Arsenal Huntsville, AL 35812 3 Boston University, 1 Silber Way, Boston, MA 02215 4 Wesleyan University, 45 Wyllys Ave, Middletown, CT 06459 5 Applied Physics Laboratory, Johns Hopkins University, 11100 Johns Hopkins Rd, Laurel, MD 20723 6 NASA Ames Research Center, Moffett Blvd, Mountain View, CA 94035 7 SETI Institute, 189 N Bernardo Ave, Mountain View, CA 94043 8 Consultant A concept for a science-driven robotic mission to an exoplanet was developed by a team of scientists and engineers from NASA and academia. The concept and scope were based on key mission and science requirements designed to address the question: “What makes a flight mission to an exoplanet compelling, in terms of science return, compared to what we will be able to learn in the next few decades with large near-Earth telescopes or other remote sensing techniques such as a telescope at the Solar Gravity Lens Focus?” By thinking systematically through mission and science goals and objectives, key requirements were developed that would drive technology developments in all necessary aspects, not just on propulsion. Unique science measurements would be performed en route to the exoplanet, including exploring the environment in the outer regions of our solar system, the Oort Cloud, the local interstellar medium, and the astrospheric environment around the host star.
[Show full text]