Open Source GIS: Geospatial Solutions in Transportation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pyqgis Developer Cookbook Release 2.18
PyQGIS developer cookbook Release 2.18 QGIS Project April 08, 2019 Contents 1 Introduction 1 1.1 Run Python code when QGIS starts.................................1 1.2 Python Console............................................2 1.3 Python Plugins............................................3 1.4 Python Applications.........................................3 2 Loading Projects 7 3 Loading Layers 9 3.1 Vector Layers.............................................9 3.2 Raster Layers............................................. 11 3.3 Map Layer Registry......................................... 11 4 Using Raster Layers 13 4.1 Layer Details............................................. 13 4.2 Renderer............................................... 13 4.3 Refreshing Layers.......................................... 15 4.4 Query Values............................................. 15 5 Using Vector Layers 17 5.1 Retrieving information about attributes............................... 17 5.2 Selecting features........................................... 18 5.3 Iterating over Vector Layer...................................... 18 5.4 Modifying Vector Layers....................................... 20 5.5 Modifying Vector Layers with an Editing Buffer.......................... 22 5.6 Using Spatial Index......................................... 23 5.7 Writing Vector Layers........................................ 23 5.8 Memory Provider........................................... 24 5.9 Appearance (Symbology) of Vector Layers............................. 26 5.10 Further -
Technical Paper on Spatial Data Infrastructure Standards
Integrated Spatial Planning Toolkit Module X: Technical Paper on Spatial Data Infrastructure Standards Draft October 28 2009 - for circulation and comment Prepared by: Dr Melissa Burgess Integrated Spatial Planning and Communications Specialist United Nations Development Programme Regional Center Bangkok Email: [email protected] Background: The United Nations Development Program - Regional Centre in Bangkok (UNDP-RCB) is managing a project funded by the Government of Japan titled “Better Informed Environmental Decision Making through Integrated Spatial Planning”, which is under implementation in the Asia-Pacific Region. A Toolkit designed to assist governments develop their capacity for Integrated Spatial Planning is being developed as part of this project. This document comprises the first draft of Module X of this Integrated Spatial Planning Toolkit, on Spatial Data Infrastructure Standards. Integrated Spatial Planning Toolkit Module X: Spatial Data Infrastructure Standards Page 1 Technical Paper on Spatial Data Introduction Spatial Data Infrastructure standards Spatial Data Infrastructure (SDI) comprise of those policies, organisational remits, data, technologies, standards, delivery mechanisms, and financial and human resources necessary to ensure that users of spatial data are supported in meeting their objectives by improving capacity for geographic information exchanges, harmonization and integration. SDI Standards describe objects, features and items that are collected, automated or affected by the activities or the functions of organisations. The development, publication and acceptance of data standards are important goals of an integrated information management solution. Such standards are essential for all users and producers of data and information. They are particularly important in any co-management, co-maintenance or partnership arrangements where data and information need to be shared or aggregated. -
Spatialist Documentation
spatialist Documentation John Truckenbrodt, Felix Cremer, Ismail Baris Jul 17, 2020 Contents 1 Installation 1 1.1 Installation of dependencies.......................................1 1.2 Installation of spatialist..........................................2 2 API Documentation 3 2.1 Raster Class...............................................3 2.2 Raster Tools...............................................8 2.3 Vector Class............................................... 12 2.4 Vector Tools............................................... 16 2.5 General Spatial Tools........................................... 18 2.6 Database Tools.............................................. 21 2.7 Ancillary Functions........................................... 21 2.8 ENVI HDR file manipulation...................................... 24 2.9 Data Exploration............................................. 25 3 Some general examples 27 3.1 in-memory vector object rasterization.................................. 27 4 Changelog 29 4.1 v0.4.................................................... 29 4.2 v0.5.................................................... 29 4.3 v0.6.................................................... 30 5 Indices and tables 31 Python Module Index 33 Index 35 i ii CHAPTER 1 Installation The most convenient way to install spatialist is by using conda: conda install --channel conda-forge spatialist See below for more detailed Linux installation instructions outside of the Anaconda framework. 1.1 Installation of dependencies 1.1.1 GDAL spatialist requires -
Overview of GIS Applications Risk Assessment and Risk Management of Climate Change Hazards
Overview of GIS applications risk assessment and risk management of climate change hazards Fact irrigated lands Planed irrigated lands Watershed Water bodies Settlements River Soil types Overview of GIS applications risk assessment and risk management of climate change hazards © 2010 PREPARED The European Commission is funding the Collaborative project ‘PREPARED Enabling Change’ (PREPARED, project number 244232) within the context of the Seventh Framework Programme 'Environment'.All rights reserved. No part of this book may be reproduced, stored in a database or retrieval system, or published, in any form or in any way, electronically, mechanically, by print, photoprint, microfilm or any other means without prior written permission from the publisher COLOPHON Title Overview of GIS applications, risk assessment and risk management of climate change hazards Report number Prepared 2011.015 Deliverable number D2.5.1 Author(s) Ielizaveta Dunaieva (Crimean Scientific and Research Center) Victor Popovych (Crimean Scientific and Research Center) Elisa Traverso (Iren Acqua Gas) Quality Assurance Patrick Smeets (KWR Watercycle Research Institute) Document history Version Team member Status Date update Comments 01 Ielizaveta Dunaieva Draft 27-08-2010 Chapters 1-4, 6 02 Ielizaveta Dunaieva Draft 24-06-2011 Applications from cities Simferopol and Genoa added 03 Patrick Smeets Final 03-08-2011 QA by WA leader This report is: PU = Public Summary The first step to prepare for climate change effects on the water cycle is a risk assessment for the observed system to be prepared and, if it is necessary, protected. Risk assessment (RA) means the determination of qualitative and quantitative value of risks, related to a certain situation and the recognized hazards. -
Spatial Data Management for Disaster Risk Management
Collecting, creating and analysing spatial data for Disaster Risk Assessments: the issues and pitfalls Maryna Strydom (GIS Tg SA) Tel: (011) 441 6163 [email protected] Overview Spatial data types, representation and formats X and Y axes, and offsets Projections Data management principles Metadata Data analyses Storage/Curation of data “… data is every scientist’s second priority. When scientists are evaluated … their efforts in curating, managing and quality assurance of data sets that future generations of researchers can use are not taken into account … .” Dr J-B Minster, Chair: ICSU World Data Center System. Collecting and analysing spatial data during Disaster Risk Assessments is generally seen as a relatively easy one where data is collected and thereafter most of the actual project work revolves around the analysis of the data and modeling the risks… However, the time and effort that it takes to get the spatial data into a usable format and eventually give it back to the end-users in a way that they would be able to utilize it effectively in future exercises/projects, is generally underestimated… Spatial Data types Notable commercial or proprietary GIS software CAD / GIS (vector/raster): Autodesk – MapGuide and AutoCAD . Intergraph – photogrammetry . ERDAS IMAGINE – Remote Sensing , and Photogrammetry by Leica Geosystems Geospatial Imaging. ESRI – ArcView 3.x , ArcGIS , ArcSDE , ArcIMS , ArcServer, ArcPad (for GPS). IDRISI – imagery/remote sensing by Clark Labs. MapInfo – MapInfo Professional . MapPoint – by Microsoft. Caliper –Maptitude , TransCAD and TransModeler . GIS for transportation. Pictometry – allows oblique images to be draped with shapefiles. Black Coral Inc —geospatial collaboration capabilities that enable better outcomes for personnel and tactical teams operating in emergency response and military environments. -
Geoserver, the Open Source Server for Interoperable Spatial Data Handling
GeoServer, the open source server for interoperable spatial data handling Ing. Simone Giannecchini, GeoSolutions Ing. Andrea Aime, GeoSolutions Outline Who is GeoSolutions? Quick intro to GeoServer What’s new in the 2.2.x series What’s new in the 2.3.x series What’s cooking for the 2.4.x series GeoSolutions Founded in Italy in late 2006 Expertise • Image Processing, GeoSpatial Data Fusion • Java, Java Enterprise, C++, Python • JPEG2000, JPIP, Advanced 2D visualization Supporting/Developing FOSS4G projects GeoTools, GeoServer GeoNetwork, GeoBatch, MapStore ImageIO-Ext and more: https://github.com/geosolutions-it Focus on Consultancy PAs, NGOs, private companies, etc… GeoServer quick intro GeoServer GeoSpatial enterprise gateway − Java Enterprise − Management and Dissemination of raster and vector data Standards compliant − OGC WCS 1.0, 1.1.1 (RI), 2.0 in the pipeline − OGC WFS 1.0, 1.1 (RI), 2.0 − OGC WMS 1.1.1, 1.3 − OGC WPS 1.0.0 Google Earth/Maps support − KML, GeoSearch, etc.. ---------- -------------------- PNG, GIF ------------------- Shapefile ------------------- WMS JPEG ---------- 1.1.1 TIFF, 1.3.0 Vector files GeoTIFF PostGIS SVG, PDF Oracle Styled KML/KMZ H2 Google maps DB2 SQL Server Shapefile MySql WFS GML2 Spatialite 1.0, 1.1, GML3 GeoCouch DBMS GeoRSS 2.0 Raw vector data GeoJSON CSV/XLS ArcSDE WPS WFS 1.0.0 GeoServer GeoServer GeoTIFF Servers WCS ArcGrid GeoTIFF 1.0,1.1.1 GTopo30 WMS 2.0.1 Raw raster Img+World ArcGrid data GTopo30 GWC Formats and Protocols and Formats Img+world (WMTS, KML superoverlays Mosaic Raster files TMS, Google maps tiles MrSID WMS-C) OGC tiles JPEG 2000 ECW,Pyramid, Oracle GeoRaster, PostGis Raster OSGEO tiles Administration GUI RESTful Configuration Programmatic configuration of layers via REST calls − Workspaces, Data stores / coverage stores − Layers and Styles, Service configurations − Freemarker templates (incoming) Exposing internal configuration to remote clients − Ajax - JavaScript friendly Various client libraries available in different languages (Java, Python, Ruby, …). -
Spatial Data Studio Ltom.02.011 Interoperabilty & Webgis
SPATIAL DATA STUDIO LTOM.02.011 INTEROPERABILTY & WEBGIS Alexander Kmoch DATA INTEROPERABILITY • Introduction & Motivation • Service Orientied Architecture • Spatial Data Infrastructure • Open Geospatial Consortium INTRODUCTION & MOTIVATION ● Spatial Information and its role in taking informed decision making ● Spatial data transfer ● Web services ● Open GIS vs. Open Source The Network is the Computer (* (* John Gage, 1984 SPATIAL INFORMATION AND TECHNOLOGIES SPATIAL DATA TRANSFER: FROM CLASSIC PAPER MAPS TO WEB SERVICES Web Services Online download (FTP) Offline copy (CD/DVD) Print Copy (paper maps) Source: Fu and Sun, 2011 WEB SERVICES ● “A Web Service is a software system designed to support interoperable machine-to-machine interaction over a network” (W3C, 2004) ● Interface to application functionality accessible through a network ● Intermediary between data/applications and users WEB SERVICES FUNCTIONALITY Web Client File data Send Request Desktop Client Send response Mobile Client geodatabase FUNCTIONALITIES OF THE GEOSPATIAL WEB SERVICES ● Map services: display an image of the spatial data, but not the raw data ● Data services: ● Editing services: create, retrieve, update and delete the geo-data online; e.g. OSM mapping capabilities ● Search services: INSPIRE Geoportal ● Analytical services ● Geocoding services: transforming the addresses into X,Y coordinates ● Network analysis services: e.g. finding the shortest path/route between two locations: A and B ● Geoprocessing services: mapping the crime hotspots using a GIS tool that -
What Is Openjump
http://tsusiatsoftware.net/jts/javadoc/index.html What is OpenJUMP Download OpenJUMP facts sheet "JUMP is a computer program that uses a unified mapping platform as a visualisation framework..." (changed ESRI keynote on What is GIS? by M. Bobzien) But to be a bit more serious - OpenJUMP is an open source GIS software written in Java and it is based on JUMP GIS by Vivid Solutions. Furthermore... It is a Vector GIS that can read rasters as well . OpenJUMP is known to work on Windows, Linux and Mac platforms, but should work on any operating system that runs Java 1.5 or later. It is not just another free demo viewer, but you can edit, save, analyze etc. with JUMP / OpenJUMP . It works, even with medium size datasets, and with professional touch . It provides a GIS API with a flexible plugin structure, so that new features are relatively easy to develope around the sound mapping platform. It utilizes OGC standards like SFS, GML, WMS and WFS . It is already translated in English, Finnish, French, German, Italian, Portugese and Spanish. The translation in other languages is in progress. ..and it is free (under the GPL license). OpenJUMP finally adds some key enhancements to the original JUMP software, including: . I18N (internationalization), . more drawing and geometry editing tools, . advanced attribute query, . enhanced set of selection tools, . image export in Scalable Vector Graphics (SVG) format, . function to copy objects including attributes, . it can show layers dependent on the current map scale, . more classification methods for thematic coloring . ... OpenJUMP is the result of a larger umbrella project called the JUMP Pilot Project (JPP). -
Fonafifo Geographic Information System Needs Assessment
FONAFIFO GEOGRAPHIC INFORMATION SYSTEM NEEDS ASSESSMENT Submitted by: Richard J. Kotapish, GISP GISCorps Volunteer July 4, 2017 [Type here] TABLE OF CONTENTS Section Description Page Section 1: Introduction 3 Section 2: Existing Conditions Introduction and history 6 Software 7 Hardware 10 Network 13 GIS Data and GAP Analysis 14 Section 3: Department of Monitoring and Control Workflows Introduction 16 FONAFIFO PSA Workflows 16 Key Documents and Processes 17 Section 4: System Architecture / Technology Options Introduction 23 GIS Software Infrastructure: 23 Open Source, Esri and Cloud-based Considerations - GIS Software and Analysis Tools 26 Hardware Options 29 Unmanned Aerial Systems (UAS, UAV, Drones) 31 Remote Sensing 34 Metadata 34 Section 5: Costs, Benefits & Recommendations Introduction 36 Esri based solutions 36 Open Source GIS software 41 Mobile hardware solutions 42 Servers 42 UAS solutions 43 Shifted PSA Parcel Polygons 43 General Observations 45 Section 6: Next Steps Introduction 46 Task Series 46 Appendix “A” - Prioritized GIS Layers 49 Appendix “B” - Hardware Specifications 50 List of Figures Figure 1 - Existing FONAFIFO Operational Environment 14 Figure 2 - Simplified Geospatial Data Diagram 17 Figure 3 – PSA Application Workflow 19 Figure 4 – PSA Approval Process Workflow 19 Figure 5 - FONAFIFO Functional Environment 22 2 SECTION 1 INTRODUCTION 1.1 INTRODUCTION This GIS Needs Assessment Report is respectfully offered to the National Government of Costa Rica. This report provides various recommendations regarding the current and future use of Geographic Information System (GIS) technologies within the National Forestry Financing Fund (FONAFIFO). This GIS Needs Assessment Report is intended for your use in exploring new strategic directions for your GIS program. -
Evolution Et Ressources Des Logiciels SIG Libres
Evolution et ressources des logiciels SIG libres Veille Technologique 2009 Fabrice Dubertret Raphaël Loué Chloé Romier 2 Introduction Qu’est-ce qu’un logiciel SIG Open-Source? • Un système d'information géographique (SIG) est un système d'information capable d'organiser et de présenter des données alphanumériques spatialement référencées, ainsi que de produire des plans et des cartes • La désignation Open Source, "source ouverte" en français ou code source libre, s'applique aux logiciels dont la licence respecte des critères précisément établis par l'Open Source Initiative, c'est-à-dire la possibilité de libre redistribution, d'accès au code source, et de travaux dérivés • Intérêt économique, fonctionnel et évolutif 3 Sommaire I Fonctionnement général des logiciels SIG Open-Source 1 Projets et standards – OGC 2 Développement, financement 3 Compatibilité et longévité II Présentation de quelques logiciels 1 OpenJUMP 2 gvSIG 3 uDig 4 GRASS et QGIS III Ressources 1 Forums 2 Didacticiels / Tutoriels Conclusion 4 1 _ Projets et standards - OGC 2 _ Développement, financement 3 _ Compatibilité et longévité 5 Généralités L’Open Geospatial Consortium (OGC) • Consortium international fondé en 1994 pour développer et promouvoir des standards ouverts (spécifications OpenGIS®) garantir l'interopérabilité des contenus, des services et des échanges favoriser la coopération entre développeurs, fournisseurs et utilisateurs basé sur le principe du consensus volontaire • Recommandations faites et normes: WMS (Web Map Service), WFS (Web Feature Service), SFS (Simple Features – SQL), etc. 6 Généralités Développement et financement • L’aide initiale Développement d’un code fonctionnel Aide souvent gouvernementale GRASS (US Army Corps of Engineers) MapServer (NASA & Minnesota DNR), etc. -
STANDARD SOFTWARE for GIS (Unit: II) Semester: II Paper Code: GIS 09 Name of Paper: Advanced Remote Sensing & GIS PG Diploma in RS & GIS Dr
STANDARD SOFTWARE FOR GIS (Unit: II) Semester: II Paper Code: GIS 09 Name of Paper: Advanced Remote Sensing & GIS PG Diploma in RS & GIS Dr. SHYAMA PRASAD MUKHERJEE UNIVERSITY, RANCHI STANDARD SOFTWARE FOR GIS Software that is used to create, manage, analyze and visualize geographic data is usually incorporated under the umbrella term ‘GIS software’ (Steiniger & Weibel, 2009). Typical applications for GIS software include the evaluation of places for the location of new stores, the management of power and gas lines, the creation of maps, the analysis of past crimes for crime prevention, route calculations for transport tasks, the management of forests, parks and infrastructure, such as roads and water ways, as well as applications in risk analysis of natural hazards, and emergency planning and response. For this multitude of applications different types of GIS functions are required and different categories of GIS software exist, which provide a particular set of functions needed to fulfil certain data management tasks. Different functional categories of GIS software can be identified with respect to the tool sets that GIS software offers, and with respect to the tasks that can be accomplished. Such tasks involve basic activities that are common to daily computer usage such as (1) data visualization and exploration, (2) data creation, (3) data editing and (4) data storage. Other common GIS tasks include (5) data conflation, i.e., integration of data from different sources (Blasby, Davis, & Kim, 2002), (6) data queries to select a subset of the data, (7) data analysis, which we consider to be the creation of new information (output) from existing data (input), (8) data transformation, as some analysis tasks require the user to transform, or manipulate, the data beforehand (e.g. -
Performance Comparison of Spatial Indexing Structures For
PERFORMANCE COMPARISON OF SPATIAL INDEXING STRUCTURES FOR DIFFERENT QUERY TYPES by NEELABH PANT Presented to the Faculty of the Graduate School of The University of Texas at Arlington in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE IN COMPUTER SCIENCE AND ENGINEERING THE UNIVERSITY OF TEXAS AT ARLINGTON May 2015 Copyright © by Neelabh Pant 2015 All Rights Reserved ii To my father, mother and sister whose support and love have helped me all along. iii Acknowledgements I would like to thank my supervisor and mentor Dr. Ramez Elmasri without whom this thesis wouldn’t have ever got completed. His guidance and constant support have helped me to understand the Spatial Database and various indexing techniques in depth. I also thank Dr. Leonidas Fegaras and Dr. Bahram Khalili for their interest in my research and taking time to serve on my dissertation committee. I would also like to extend my appreciation to the Computer Science and Engineering Department to support me financially in my Master’s program. I would like to thank all the teachers who taught me at the University of Texas at Arlington including Mr. Saravanan Thirumuruganathan for believing in me and for encouraging me to pursue higher education. I would also like to thank Dr. Kulsawasd Jitkajornwanich for his support and encouragement. I extend my gratitude to all my research mates including Mr. Mohammadhani Fouladgar, Mr. Vivek Sharma, Mr. Surya Swaminathan and everyone else whose support, encouragement and motivation helped me to complete my goals. Finally, I would like to express my deep gratitude to my father and mother who have inspired and motivated me all the times to achieve my goals.