1 Geographical Information Systems (GIS)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Uch Enmek Example(Altai Republic,Siberia)
Faculty of Environmental Sciences Institute for Cartography Master Thesis Concept and Implementation of a Contextualized Navigable 3D Landscape Model: The Uch Enmek Example(Altai Republic,Siberia). Mussab Mohamed Abuelhassan Abdalla Born on: 7th December 1983 in Khartoum Matriculation number: 4118733 Matriculation year: 2014 to achieve the academic degree Master of Science (M.Sc.) Supervisors Dr.Nikolas Prechtel Dr.Sander Münster Submitted on: 18th September 2017 Faculty of Environmental Sciences Institute for Cartography Task for the preparation of a Master Thesis Name: Mussab Mohamed Abuelhassan Abdalla Matriculation number: 4118733 Matriculation year: 2014 Title: Concept and Implementation of a Contextualized Navigable 3D Landscape Model: The Uch Enmek Example(Altai Republic,Siberia). Objectives of work Scope/Previous Results:Virtual Globes can attract and inform websites visitors on natural and cultural objects and sceneries.Geo-centered information transfer is suitable for majority of sites and artifacts. Virtual Globes have been tested with an involvement of TUD institutes: e.g. the GEPAM project (Weller,2013), and an archaeological excavation site in the Altai Mountains ("Uch enmek", c.f. Schmid 2012, Schubert 2014).Virtual Globes technology should be flexible in terms of the desired geo-data configuration. Research data should be controlled by the authors. Modes of linking geo-objects to different types of meta-information seems evenly important for a successful deployment. Motivation: For an archaeological conservation site ("Uch Enmek") effort has already been directed into data collection, model development and an initial web-based presentation.The present "Open Web Globe" technology is not developed any further, what calls for a migra- tion into a different web environment. -
Digital Mapping & Spatial Analysis
Digital Mapping & Spatial Analysis Zach Silvia Graduate Community of Learning Rachel Starry April 17, 2018 Andrew Tharler Workshop Agenda 1. Visualizing Spatial Data (Andrew) 2. Storytelling with Maps (Rachel) 3. Archaeological Application of GIS (Zach) CARTO ● Map, Interact, Analyze ● Example 1: Bryn Mawr dining options ● Example 2: Carpenter Carrel Project ● Example 3: Terracotta Altars from Morgantina Leaflet: A JavaScript Library http://leafletjs.com Storytelling with maps #1: OdysseyJS (CartoDB) Platform Germany’s way through the World Cup 2014 Tutorial Storytelling with maps #2: Story Maps (ArcGIS) Platform Indiana Limestone (example 1) Ancient Wonders (example 2) Mapping Spatial Data with ArcGIS - Mapping in GIS Basics - Archaeological Applications - Topographic Applications Mapping Spatial Data with ArcGIS What is GIS - Geographic Information System? A geographic information system (GIS) is a framework for gathering, managing, and analyzing data. Rooted in the science of geography, GIS integrates many types of data. It analyzes spatial location and organizes layers of information into visualizations using maps and 3D scenes. With this unique capability, GIS reveals deeper insights into spatial data, such as patterns, relationships, and situations - helping users make smarter decisions. - ESRI GIS dictionary. - ArcGIS by ESRI - industry standard, expensive, intuitive functionality, PC - Q-GIS - open source, industry standard, less than intuitive, Mac and PC - GRASS - developed by the US military, open source - AutoDESK - counterpart to AutoCAD for topography Types of Spatial Data in ArcGIS: Basics Every feature on the planet has its own unique latitude and longitude coordinates: Houses, trees, streets, archaeological finds, you! How do we collect this information? - Remote Sensing: Aerial photography, satellite imaging, LIDAR - On-site Observation: total station data, ground penetrating radar, GPS Types of Spatial Data in ArcGIS: Basics Raster vs. -
Implementing OGC Web Map Service Client Applications Using JSP, JSTL and XMLC
Implementing OGC Web Map Service Client Applications Using JSP, JSTL and XMLC Hao Ding , Richard Pascoe & Neville Churcher Department of Computer Science University of Canterbury. Christchurch, New Zealand Phone: +64 3 364-2362 Fax: +64 3 364-2569 Email: [email protected] , {richard, neville}@cosc.canterbury.ac.nz Presented at SIRC 2002 – The 14th Annual Colloquium of the Spatial Information Research Centre University of Otago, Dunedin, New Zealand th December 3-5 2002 ABSTRACT Java technologies are widely used in web application development. In this paper are described three approaches to developing Java-based web applications and our experiences with applying each to the development of client that interact with servers implementing the OGC (Open GIS Consortium) Web Map Service (WMS) specification. Also described is the installation and configuration of open source software that implements the WMS specification. The paper is concluded with some preliminary insights into when one of the three approaches to WMS client implementation is more suited to another. Keywords and phrases: WMS, JSP, JSTL, XMLC, map layer, web map server 1.0 INTRODUCTION Of the many technologies, such as Common Gateway Interface (CGI), Active Server Pages (ASP), JavaServer Pages (JSP), that are used to develop web applications, three are of particular interest to the research presented here. These three technologies or approaches to developing clients that utilise web services are JavaServer Pages (JSP), JSP with the use of tags from the JSP Standard Tag Library (JSTL), and the eXtensible Markup Language Compiler (XMLC). JSP is a more convenient way to write Java servlets, and allows the insertion of Java code directly into static HTML (Hypertext Markup Language) pages. -
URP 6276) Web
URP 6276 Internet Geographic Information Systems Fall 2014 Instructor: Zhong-Ren Peng, Ph.D. (Architecture building, Room 462, phone 352-291-1491, e-mail: [email protected]) Teaching Assistant: Xinyu Fu ([email protected]) Prerequisite: URP 6270 or by consent with Instructor Required Textbook: Zhong-Ren Peng and Ming-Hsiang Tsou, 2003, Internet GIS: Distributed Geographic Information Services for the Internet and Wireless Networks, New York: John Wiley & Sons. Course Overview This course focuses on the advanced topic in geographic information systems (GIS): Internet GIS. Internet GIS is a network-centric GIS technology that uses the Internet and the World Wide Web as a primary means of providing access to the functionality (i.e., analysis tools, mapping capability) of GIS and to the spatial data and other data needed for various GIS applications. It provides users capability to work interactively with maps and conduct spatial analysis on the Web. It has many applications in urban planning, e-government and e-business. There are two goals of the course. The first one is to offer you theoretic background so that you will have a better understanding of the concepts of Internet GIS, such as how Internet GIS works, the different architecture models, and the state of art of the Internet GIS technology. The second goal is to offer you hands-on experience to use Internet GIS programs so that you can gain necessary skills to work with Internet GIS programs. The course will start with an introduction to networking basics and the evolution of software architecture, specifically the client/server model. -
Development of a Web Mapping Application Using Open Source
Centre National de l’énergie des sciences et techniques nucléaires (CNESTEN-Morocco) Implementation of information system to respond to a nuclear emergency affecting agriculture and food products - Case of Morocco Anis Zouagui1, A. Laissaoui1, M. Benmansour1, H. Hajji2, M. Zaryah1, H. Ghazlane1, F.Z. Cherkaoui3, M. Bounsir3, M.H. Lamarani3, T. El Khoukhi1, N. Amechmachi1, A. Benkdad1 1 Centre National de l’Énergie, des Sciences et des Techniques Nucléaires (CNESTEN), Morocco ; [email protected], 2 Institut Agronomique et Vétérinaire Hassan II (IAV), Morocco, 3 Office Régional de la Mise en Valeur Agricole du Gharb (ORMVAG), Morocco. INTERNATIONAL EXPERTS’ MEETING ON ASSESSMENT AND PROGNOSIS IN RESPONSE TO A NUCLEAR OR RADIOLOGICAL EMERGENCY (CN-256) IAEA Headquarters Vienna, Austria 20–24 April 2015 Context In nuclear disaster affecting agriculture, there is a need for rapid, reliable and practical tools and techniques to assess any release of radioactivity The research of hazards illustrates how geographic information is being integrated into solutions and the important role the Web now plays in communication and disseminating information to the public for mitigation, management, and recovery from a disaster. 2 Context Basically GIS is used to provide user with spatial information. In the case of the traditional GIS, these types of information are within the system or group of systems. Hence, this disadvantage of traditional GIS led to develop a solution of integrating GIS and Internet, which is called Web-GIS. 3 Project Goal CRP1.50.15: “ Response to Nuclear Emergency affecting Food and Agriculture” The specific objective of our contribution is to design a prototype of web based mapping application that should be able to: 1. -
Chapter 13.2: Topographic Maps 1
Chapter 13.2: Topographic Maps 1 A map is a model or representation of objects and terrain in the actual environment. There are numerous types of maps. Some of the types of maps include mental, planimetric, topographic, and even treasure maps. The concept of mapping was introduced in the section using natural features. Maps are created for numerous purposes. A treasure map is used to find the buried treasure. Topographic maps were originally used for military purposes. Today, they have been used for planning and recreational purposes. Although other types of maps are mentioned, the primary focus of this section is on topographic maps. Types of Maps Mental Maps – The mind makes mental maps all the time. You drive to the grocery store. You turn right onto the boulevard. You identify a street sign, building or other landmark and know where this is where you turn. You have made a mental map. This was discussed under using natural features. Planimetric Maps – A planimetric map is a two dimensional representation of objects in the environment. Generally, planimetric maps do not include topographic representation. Road maps, Rand McNally ® and GoogleMaps ® (not GoogleEarth) are examples of planimetric maps. Topographic Maps – Topographic maps show elevation or three-dimensional topography two dimensionally. Topographic maps use contour lines to show elevation. A chart refers to a nautical chart. Nautical charts are topographic maps in reverse. Rather than giving elevation, they provide equal levels of water depth. Topographic Maps Topographic maps show elevation or three-dimensional topography two dimensionally. Topographic maps use contour lines to show elevation. -
Geospatial Web Application Development to Access Irrigation Asset Data: Veterans Affairs Palo Alto Health Care System
Geospatial Web Application Development to Access Irrigation Asset Data: Veterans Affairs Palo Alto Health Care System by Megan Theresa Gosch A Thesis Presented to the Faculty of the USC Graduate School University of Southern California In Partial Fulfillment of the Requirements for the Degree Master of Science (Geographic Information Science and Technology) May 2016 Copyright ® 2016 by Megan Theresa Gosch DEDICATION To my mom, Carolyn Ann Eriksson, for everything. Gone too soon but forever in our hearts. ii ACKNOWLEDGMENTS I would like to thank my family for their continued support throughout my graduate coursework and thesis writing. Knowing the time you have allowed me to pursue my dream of finishing my master’s degree resulted in time not spent with you all. I hope for my three boys that you can now see that going to school when you are passionate about something is worth all the hard work. Thank you to all my teachers at USC, but especially Dr. Darren Ruddell my thesis chair, and my committee members Dr. Jennifer Swift and Dr. Robert Vos. You made this process a whole lot easier with your continued support and guidance. To Steve McGrath, Supervisory Engineer of the Veterans Affairs Palo Alto Health Care System, who supported this project throughout the entire process. Thank you also to Joanna Fong for her continued assistance and feedback. Last, but not least, to my husband Dave. Your love and encouragement are a continual inspiration to me. iii Table of Contents Dedication ...................................................................................................................................... -
TOPOGRAPHIC MAP of OKLAHOMA Kenneth S
Page 2, Topographic EDUCATIONAL PUBLICATION 9: 2008 Contour lines (in feet) are generalized from U.S. Geological Survey topographic maps (scale, 1:250,000). Principal meridians and base lines (dotted black lines) are references for subdividing land into sections, townships, and ranges. Spot elevations ( feet) are given for select geographic features from detailed topographic maps (scale, 1:24,000). The geographic center of Oklahoma is just north of Oklahoma City. Dimensions of Oklahoma Distances: shown in miles (and kilometers), calculated by Myers and Vosburg (1964). Area: 69,919 square miles (181,090 square kilometers), or 44,748,000 acres (18,109,000 hectares). Geographic Center of Okla- homa: the point, just north of Oklahoma City, where you could “balance” the State, if it were completely flat (see topographic map). TOPOGRAPHIC MAP OF OKLAHOMA Kenneth S. Johnson, Oklahoma Geological Survey This map shows the topographic features of Oklahoma using tain ranges (Wichita, Arbuckle, and Ouachita) occur in southern contour lines, or lines of equal elevation above sea level. The high- Oklahoma, although mountainous and hilly areas exist in other parts est elevation (4,973 ft) in Oklahoma is on Black Mesa, in the north- of the State. The map on page 8 shows the geomorphic provinces The Ouachita (pronounced “Wa-she-tah”) Mountains in south- 2,568 ft, rising about 2,000 ft above the surrounding plains. The west corner of the Panhandle; the lowest elevation (287 ft) is where of Oklahoma and describes many of the geographic features men- eastern Oklahoma and western Arkansas is a curved belt of forested largest mountainous area in the region is the Sans Bois Mountains, Little River flows into Arkansas, near the southeast corner of the tioned below. -
High Resolution Blank World Map
High Resolution Blank World Map Davy bedight adeptly. Andrea motivate his circumvallations assassinates scenically, but furious Myron never immobilizing so fermentation. Self-schooled Ronald sometimes memorizing his exudations epidemically and gyve so successlessly! To change and prepared a world blank map high resolution. What countries have won the international student volunteers around the pro bowl, jpg and share. Maps of gulf World SurferTodaycom. Completing the world blank map high resolution and resolution maps above to make them? At Europe Blank Map pagepage, view political map of Europe, physical map, country maps, satellite images photos and Europe Map Help. Download our currency of maps to help plan then visit to Manchester. Free for resolution blank high resolution luxury with all the map blank. The grid outline maps are demand for classroom activities. Blank world maps 3D Geography. Print these products and soweto, high resolution blank world map! Why does not include blank and i found a world blank high map of alleys, free printable download for education across educational purposes of. Are actually a program used in on the blank high world map available to tickle your gallery to greatly enhance your own any of your altered art maps on the! It is blank high resolution vector based pdf and resolution blank high. Map of the United States. Blank and greenland, map blank map does an info. World map Blank map Globe high-resolution map of then world install white png PNG keywords License PNG info resize png Relevant png images. Because they can. Free blank map of the voice for educational purposes. -
Interactive Topographic Web Mapping Using Scalable Vector Graphics
University of Nebraska at Omaha DigitalCommons@UNO Student Work 12-1-2003 Interactive topographic web mapping using scalable vector graphics Peter Pavlicko University of Nebraska at Omaha Follow this and additional works at: https://digitalcommons.unomaha.edu/studentwork Recommended Citation Pavlicko, Peter, "Interactive topographic web mapping using scalable vector graphics" (2003). Student Work. 589. https://digitalcommons.unomaha.edu/studentwork/589 This Thesis is brought to you for free and open access by DigitalCommons@UNO. It has been accepted for inclusion in Student Work by an authorized administrator of DigitalCommons@UNO. For more information, please contact [email protected]. INTERACTIVE TOPOGRAPHIC WEB MAPPING USING SCALABLE VECTOR GRAPHICS A Thesis Presented to the Department of Geography-Geology and the Faculty of the Graduate College University of Nebraska in Partial Fulfillment of the Requirements for the Degree Master of Arts University of Nebraska at Omaha by Peter Pavlicko December, 2003 UMI Number: EP73227 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. Dissertation WWisMng UMI EP73227 Published by ProQuest LLC (2015). Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 THESIS ACCEPTANCE Acceptance for the faculty of the Graduate College, University of Nebraska, in Partial fulfillment of the requirements for the degree Master of Arts University of Nebraska Omaha Committee ----------- Uf.A [JL___ Chairperson. -
Geospatial Data Availability for Haiti: an Aid in the Development of GIS-Based Natural Resource Assessments for Conservation Planning
United States Department of Agriculture Geospatial Data Availability Forest Service for Haiti: An Aid in the International Institute of Tropical Forestry Development of GIS-Based General Technical Report Natural Resource Assessments IITF-GTR-33 February 2007 for Conservation Planning Maya Quiñones, William Gould, and Carlos D. Rodríguez-Pedraza The Forest Service of the U.S. Department of Agriculture is dedicated to the principle of multiple use management of the Nation’s forest resources for sustained yields of wood, water, forage, wildlife, and recreation. Through forestry research, cooperation with the States and private forest owners, and management of the National Forests and National Grasslands, it strives—as directed by Congress—to provide increasingly greater service to a growing Nation. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or part of an individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, 1400 Independence Avenue, SW, Washington, DC 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer. Authors Maya Quiñones is a cartographic technician, William Gould is a research ecologist, and Carlos D. -
Technical Paper on Spatial Data Infrastructure Standards
Integrated Spatial Planning Toolkit Module X: Technical Paper on Spatial Data Infrastructure Standards Draft October 28 2009 - for circulation and comment Prepared by: Dr Melissa Burgess Integrated Spatial Planning and Communications Specialist United Nations Development Programme Regional Center Bangkok Email: [email protected] Background: The United Nations Development Program - Regional Centre in Bangkok (UNDP-RCB) is managing a project funded by the Government of Japan titled “Better Informed Environmental Decision Making through Integrated Spatial Planning”, which is under implementation in the Asia-Pacific Region. A Toolkit designed to assist governments develop their capacity for Integrated Spatial Planning is being developed as part of this project. This document comprises the first draft of Module X of this Integrated Spatial Planning Toolkit, on Spatial Data Infrastructure Standards. Integrated Spatial Planning Toolkit Module X: Spatial Data Infrastructure Standards Page 1 Technical Paper on Spatial Data Introduction Spatial Data Infrastructure standards Spatial Data Infrastructure (SDI) comprise of those policies, organisational remits, data, technologies, standards, delivery mechanisms, and financial and human resources necessary to ensure that users of spatial data are supported in meeting their objectives by improving capacity for geographic information exchanges, harmonization and integration. SDI Standards describe objects, features and items that are collected, automated or affected by the activities or the functions of organisations. The development, publication and acceptance of data standards are important goals of an integrated information management solution. Such standards are essential for all users and producers of data and information. They are particularly important in any co-management, co-maintenance or partnership arrangements where data and information need to be shared or aggregated.