The National Biological Diversity Strategy and Action Plan

Total Page:16

File Type:pdf, Size:1020Kb

The National Biological Diversity Strategy and Action Plan THE NATIONAL BIOLOGICAL DIVERSITY STRATEGY AND ACTION PLAN 2007 The National Biological Diversity Strategy and Action Plan Prepared by Republic of Turkey Ministry of Environment and Forestry General Directorate of Nature Conservation and National Parks Department of Nature Conservation National Focal Point of Convention on Biological Diversity ISBN: 978-605-393-030-3 © All rights reserved by Republic of Turkey Ministry of Environment and Forestry Republic of Turkey Ministry of Environment and Forestry General Directorate of Nature Conservation and National Parks Department of Nature Conservation National Focal Point of Convention on Biological Diversity Söğütözü Cad. 14/E 14. Kat Beştepe/Ankara Phone: 0312 207 60 61-62 Fax: 0312 207 58 91 Web: www.cbd.gov.tr Web: www.cevreorman.gov.tr Graphic design Abdullah Dalkılıç Press Tasarım Ofset 1st Press / Ankara 2008 Phone: 0312 384 75 04 Living resources, which are important in terms of food and agriculture and which are steadily decreasing, are counted today among the important advantages a country may possess. The arable lands and water resources of the world are rapidly becoming polluted and disappearing. Scientists think that mankind will in the near future be faced with a serious shortage of water and food. In the light of these developments, the biological diversity of a country is becoming a major strength, especially in terms of genetic resources. As a country that has vital resources for people’s food security. Turkey is one of the fortunate countries of the world from the viewpoint of biological diversity. This considerable wealth both offers our country economic opportunities and imposes upon it the responsibility to establish a conservation- utilization balance. Our country will be able to use these opportunities and to establish a conservation- utilization balance and carry its biological diversity over to future generations through plans and programmes that also ensure harmony between sectors. As required by Article 6 of the UN Convention on Biological Diversity, to which we are a party, our country must prepare national strategies, plans and programmes to achieve the conservation and sustainable use of biological diversity. The National Biological Diversity Strategy and Action Plan (NBSAP) has been prepared with the aims of meeting our obligations under the UN Convention on Biological Diversity, implementing actions in conformity with the regulations of the European Union in the sector of nature conservation, and achieving the goals of conservation and sustainable use through a comprehensive and integrated approach to the biological diversity of our country. The NBSAP includes goals and actions that will directly or indirectly affect all sectors that play a role in the conservation, management and utilization of biological diversity. It also defi nes the priorities and commitments of our country at the international level with regard to the conservation and sustainable use of biological diversity. For these reasons, the contribution and participation to be provided by the relevant institutions and organizations at the stage of implementation as they did during the preparation of the NBSAP will be one of the most important elements of the heritage that we will leave to future generations. Prof. Dr. Veysel EROĞLU Minister of the Environment and Forestry CONTENT PREFACE ................................................................................................................................................. 7 1. EXECUTIVE SUMMARY ................................................................................................................... 9 1.1. INTRODUCTION .................................................................................................................... 9 1.2. ASSESSMENT ........................................................................................................................11 1.3. THE STRATEGY IN BRIEF ..................................................................................................12 2. INTRODUCTION .............................................................................................................................. 17 2.1. THE CONVENTION ON BIOLOGICAL DIVERSITY AND THE NBSAP ........................17 2.2. THE METHOD USED IN UPDATING THE NBSAP........................................................... 20 3. TURKEY’S BIOLOGICAL DIVERSITY AND ITS SIGNIFICANCE ............................................ 20 3.1. TURKEY’S GEOGRAPHICAL FEATURES ........................................................................ 20 3.2. TURKEY’S SOCIOECONOMIC FEATURES ......................................................................21 3.3. GENERAL INFORMATION CONCERNING TURKEY’S BIOLOGICAL DIVERSITY ....................23 3.3.1. Ecosystem Diversity ....................................................................................................... 23 3.3.2. Species Diversity ............................................................................................................ 27 3.3.3. Genetic Diversity ............................................................................................................ 33 4. THE CURRENT STATE OF BIOLOGICAL DIVERSITY ............................................................... 37 4.1. CURRENT MECHANISMS CONCERNING THE CONSERVATION AND SUSTAINABLE USE OF BIOLOGICAL DİVERSİTY ................................................................................... 37 4.1.1. The Institutional Structure .............................................................................................. 37 4.1.2. Nature conservation policies and environmental law .....................................................38 4.2. BIOLOGICAL DIVERSITY CONSERVATION ACTIVITIES .............................................44 4.2.1. Ex-situ Conservation (Conservation Outside the Natural Habitat or Artifi cial Conservation) 44 4.2.2. In-situ Conservation (Conservation in the Natural Habitat or Conservation On Site) .................45 4.2.3. Important projects conducted at national level ...............................................................50 4.3. AGRICULTURAL AREA AND STEPPE BIOLOGICAL DIVERSITY ............................... 52 4.3.1 Agricultural Area and Steppe Biological diversity .......................................................... 52 4.3.2. Institutional Structure and Capacity .............................................................................. 64 4.3.3. Policy and Legislation .................................................................................................... 65 4.3.4. National Practices ........................................................................................................... 65 4.3.5. Threats to Farmlands and Steppes Biological diversity and their Causes ...................... 66 4.3.6. Gaps and Needs .............................................................................................................. 68 4.4. FOREST AND MOUNTAIN BIOLOGICAL DIVERSITY .................................................. 69 4.4.1 Forest and Mountain Biological Diversity ..................................................................... 69 4.4.2. Institutional Structure and Capacity .............................................................................. 71 4.4.3. Policy and Legislation .................................................................................................... 71 4.4.4. National Practices ........................................................................................................... 73 4.4.5. Threats to Forest and Mountain Biological diversity and their Causes ..........................75 4.4.6. Gaps and Needs .............................................................................................................. 76 4.5. INLAND WATERS BIOLOGICAL DIVERSITY ................................................................. 77 4.5.1. Inland waters Biological Diversity ...................................................................................... 77 4.5.2. Institutional Structure and Capacity ............................................................................... 81 4.5.3. Policy and Legislation .................................................................................................... 82 4.5.4. National Practices ........................................................................................................... 82 4.5.5. Threats to inland waters biological diversity and their causes ....................................... 83 4.5.6. Gaps and Needs .............................................................................................................. 84 4.6. COASTAL AND MARINE BIOLOGICAL DIVERSITY ..................................................... 84 4.6.1 Coastal and Marine Biological diversity ......................................................................... 84 4.6.2. Institutional Structure and Capacity ............................................................................... 95 4.6.3. Policy and Legislation .................................................................................................... 96 4.6.4. National Practices ........................................................................................................... 97 4.6.5 Threats to coastal and marine biological diversity and their causes ..............................101 4.6.7. Gaps and Needs ...........................................................................................................
Recommended publications
  • Evaluating the Risk to Ramsar Sites from Climate Change Induced Sea
    STRP Scientific and Technical Briefing Note Review Panel Number 5, December 2012 Ramsar Convention on Wetlands Purpose of this BN Evaluating the risk to Ramsar Sites from To provide a preliminary as- climate change induced sea level rise sessment of coastal Ramsar Sites that are at risk to inunda- his Briefing Note and the accompanying web map service and data tion as a consequence of sea Tsets, developed by the Center for International Earth Science Infor- level rise, in order to provide mation Network (CIESIN) of Columbia University, provide a preliminary site managers with information that may assist them in assess- assessment of the risk to coastal wetlands designated as Wetlands of ing adaptation strategies. International Importance (Ramsar Sites) under the Ramsar Convention on Wetlands from rising sea levels due to climate change. Two scenarios are evaluated, 0-1 meter sea level rise (SLR), which is close to what the Background information Intergovernmental Panel on Climate Change (IPCC) predicts for this cen- tury, and 0-2 meter SLR, which is an upper bound for SLR in this century CIESIN, through its NASA- if land-based ice sheets respond faster than expected to temperature supported Socioeconomic changes (AMAP 2011, Pfeffer et al. 2008). It has to be recognized that Data and Applications Center (SEDAC), conducted a glo- sea level rise will not be consistent globally, but is affected by coastal bal analysis of Ramsar Sites bathymetry and local topography and tides, while the extent of areas and developed this report in periodically submerged will also be affected by storm surges (Strauss et response to a request by the al.
    [Show full text]
  • The First Miocene Fossils of Lacerta Cf. Trilineata (Squamata, Lacertidae) with A
    bioRxiv preprint doi: https://doi.org/10.1101/612572; this version posted April 17, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. The first Miocene fossils of Lacerta cf. trilineata (Squamata, Lacertidae) with a comparative study of the main cranial osteological differences in green lizards and their relatives Andrej Čerňanský1,* and Elena V. Syromyatnikova2, 3 1Department of Ecology, Laboratory of Evolutionary Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, 84215, Bratislava, Slovakia 2Borissiak Paleontological Institute, Russian Academy of Sciences, Profsoyuznaya 123, 117997 Moscow, Russia 3Zoological Institute, Russian Academy of Sciences, Universitetskaya nab., 1, St. Petersburg, 199034 Russia * Email: [email protected] Running Head: Green lizard from the Miocene of Russia Abstract We here describe the first fossil remains of a green lizardof the Lacerta group from the late Miocene (MN 13) of the Solnechnodolsk locality in southern European Russia. This region of Europe is crucial for our understanding of the paleobiogeography and evolution of these middle-sized lizards. Although this clade has a broad geographical distribution across the continent today, its presence in the fossil record has only rarely been reported. In contrast to that, the material described here is abundant, consists of a premaxilla, maxillae, frontals, bioRxiv preprint doi: https://doi.org/10.1101/612572; this version posted April 17, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Some Biological Properties of Carp (Cyprinus Carpio L., 1758) Introduced Into Damsa Dam Lake, Cappadocia Region, Turkey
    Pakistan J. Zool., vol. 46(2), pp. 337-346, 2014. Some Biological Properties of Carp (Cyprinus carpio L., 1758) Introduced into Damsa Dam Lake, Cappadocia Region, Turkey Ramazan Mert¹* and Sait Bulut² ¹Department of Biology, Faculty of Arts and Sciences, Nevsehir Hacı Bektaş Veli University, Nevsehir, Turkey. 2Department of Science Education, Faculty of Education, Akdeniz University, Antalya, Turkey. Abstract.- Age composition, length–weight relationships, growth, and condition factors of the carp (Cyprinus carpio L.,1758) were determined using specimens (39.38% female and 60.62% male) collected from Damsa Dam Lake between May 2010 and April 2011. The age composition of the samples was from I to VIII. The length–weight relationship was calculated as W = 0.0181 TL 2.9689 for females and W = 0.0278 TL 2.8507 for males. The total lengths were between 17.1 and 69.2 cm, and the total weights were found to be between 86 and 5473 g. The majority of the individuals (48.12%) were between 46.0 and 55.0 cm length groups. The von Bertalanffy growth equation were found as L∞ = 86.80 cm, K = 0.189, t0 = -0.396 for females and L∞ = 85.34 cm, K = 0.175, t0 = -0.468 for males. The growth performance index was also estimated as Ф′ = 7.260 for females and Ф′ = 7.151 for males. The mean condition factor was found as 1.582 for females and 1.572 for males. The total mortality (Z) was calculated as 0.25 yıl-1. Keywords: Carp, Cyprinus carpio, age composition, condition factor, Damsa Dam Lake.
    [Show full text]
  • Ramsar Sites in Order of Addition to the Ramsar List of Wetlands of International Importance
    Ramsar sites in order of addition to the Ramsar List of Wetlands of International Importance RS# Country Site Name Desig’n Date 1 Australia Cobourg Peninsula 8-May-74 2 Finland Aspskär 28-May-74 3 Finland Söderskär and Långören 28-May-74 4 Finland Björkör and Lågskär 28-May-74 5 Finland Signilskär 28-May-74 6 Finland Valassaaret and Björkögrunden 28-May-74 7 Finland Krunnit 28-May-74 8 Finland Ruskis 28-May-74 9 Finland Viikki 28-May-74 10 Finland Suomujärvi - Patvinsuo 28-May-74 11 Finland Martimoaapa - Lumiaapa 28-May-74 12 Finland Koitilaiskaira 28-May-74 13 Norway Åkersvika 9-Jul-74 14 Sweden Falsterbo - Foteviken 5-Dec-74 15 Sweden Klingavälsån - Krankesjön 5-Dec-74 16 Sweden Helgeån 5-Dec-74 17 Sweden Ottenby 5-Dec-74 18 Sweden Öland, eastern coastal areas 5-Dec-74 19 Sweden Getterön 5-Dec-74 20 Sweden Store Mosse and Kävsjön 5-Dec-74 21 Sweden Gotland, east coast 5-Dec-74 22 Sweden Hornborgasjön 5-Dec-74 23 Sweden Tåkern 5-Dec-74 24 Sweden Kvismaren 5-Dec-74 25 Sweden Hjälstaviken 5-Dec-74 26 Sweden Ånnsjön 5-Dec-74 27 Sweden Gammelstadsviken 5-Dec-74 28 Sweden Persöfjärden 5-Dec-74 29 Sweden Tärnasjön 5-Dec-74 30 Sweden Tjålmejaure - Laisdalen 5-Dec-74 31 Sweden Laidaure 5-Dec-74 32 Sweden Sjaunja 5-Dec-74 33 Sweden Tavvavuoma 5-Dec-74 34 South Africa De Hoop Vlei 12-Mar-75 35 South Africa Barberspan 12-Mar-75 36 Iran, I. R.
    [Show full text]
  • “Khosrov Forest” State Reserve
    Strasbourg, 21 November 2011 [de05e_12.doc] T-PVS/DE (2012) 5 CONVENTION ON THE CONSERVATION OF EUROPEAN WILDLIFE AND NATURAL HABITATS GROUP OF SPECIALISTS -EUROPEAN DIPLOMA OF PROTECTED AREAS 9-10 FEBRUARY 2012, STRASBOURG ROOM 14, PALAIS DE L’EUROPE ---ooOoo--- APPLICATION PRESENTED BY THE MINISTRY OF NATURE PROTECTION OF THE REPUBLIC OF ARMENIA “KHOSROV FOREST” STATE RESERVE Document prepared by the Directorate of Culture and Cultural and Natural Heritage This document will not be distributed at the meeting. Please bring this copy. Ce document ne sera plus distribué en réunion. Prière de vous munir de cet exemplaire - 2 - T-PVS/DE (2011) 5 Council of Europe European Diploma Area Information Form for candidate Sites Site Code (to be given by Council of Europe) B E 1. SITE IDENTIFICATION 1.1. SITE NAME “Khosrov Forest” State Reserve 1.2. COUNTRY Republic of Armenia 1.3. DATE CANDIDATURE 2 0 1 1 1.4. SITE INFORMATION 2 0 1 1 1 1 2 5 COMPILATION DATE Y Y Y Y M M D D 1.5. ADRESSES: Administrative Authorities National Authority Regional Authority Local Authority Name: “Environmental Project Name: Name: Implementation Unit” State Address: Address: Agency under the Ministry of Nature Protection of RA Address: 129 Armenakyan str., Yerevan, 0047 Republic of Armenia Tel.: Tel.: Fax.: Fax.: Tel.: +374 10 65 16 31 e-mail: e-mail: Fax.: +374 10 65 00 89 e-mail: [email protected] - 3 - T-PVS/DE (2011) 5 1.6. ADRESSES: Site Authorities Site Manager Site Information Centre Council of Europe Contact Name: “Khosrov Forest” State Name: “Khosrov Forest” State Name: “Environmental Project Reserve Reserve Implementation Unit” State Director Adress: : Kasyan 79 Agency -director (Mr.
    [Show full text]
  • Birdwatching Tour
    PIRT “Via Pontica” Birdwatching Tour PROMOTING INNOVATIVE RURAL TOURISM IN THE BLACK SEA BASIN REGION 2014 Table of Contents Birdwatching Sites .......................................................................................................................................................................................................... 2 Armenia ...................................................................................................................................................................................................................... 2 Bulgaria .................................................................................................................................................................................................................... 18 Georgia ..................................................................................................................................................................................................................... 36 Turkey ...................................................................................................................................................................................................................... 51 Technical Requirements, Issues and Solutions ............................................................................................................................................................ 70 Detailed Itinerary ........................................................................................................................................................................................................
    [Show full text]
  • Seasonal Variations in Zooplankton Species of Lake Gölhisar, a Shallow Lake in Burdur, Turkey
    Pakistan J. Zool., vol. 46(4), pp. 927-932, 2014. Seasonal Variations in Zooplankton Species of Lake Gölhisar, a Shallow Lake in Burdur, Turkey Meral Apaydın Yağcı* Fisheries Research Station, 32500, Eğirdir, Isparta, Turkey Abstract.- Seasonal variations of zooplankton species were investigated between Spring 2002 and Winter 2003 in Lake Gölhisar, Burdur, Turkey. A total of 31 species comprising 15 Rotifera (48%), 11 Cladocera (36%), and 5 Copepoda (16%) were recorded. Keratella quadrata, Daphnia longispina and Acanthodiaptomus denticornis were the common species during the study period. Maximum number of taxa were observed from Rotifera and Cladocera during summer, while minimum taxa was determined from Copepoda during winter. Keywords: Rotifera, Cladocera, Copepoda. INTRODUCTION lake Van, (Yildiz et al., 2010), lake Sünnet (Deveci et al., 2011), Beymelek lagoon and lake Kaynak (Yalım et al., 2011), lake İznik (Apaydın Yağcı and In the lake ecosystem, phytoplanktons are Ustaoğlu, 2012). However, the zooplankton fauna of important food source of some invertebrate Lake Gölhisar has not been studied so far. organisms, whereas, zooplanktons provide an The purpose of the investigation was to important food source for larval fish. The major determine the zooplankton species and its seasonal groups of zooplankton in freshwater ecosystems are variations in lake Gölhisar. Rotifera, Cladocera and Copepoda. Many rotifers play an important role in lacustrine food webs MATERIALS AND METHODS because they have a rapid turnover rate and metabolism (Segers, 2004). Rajashekhar et al. Study site (2009) stated that rotifera are sensitive to Lake Gölhisar which is in the western Taurus environmental changes and are therefore useful Mountains in Turkey is established in drainage indicators of water quality.
    [Show full text]
  • 1St International Eurasian Ornithology Congress
    1st International Eurasian Ornithology Congress Erdoğan, A., Turan, L., Albayrak, T. (Ed.) 1ST INTERNATIONAL EURASIAN ORNITHOLOGY CONGRESS Antalya, Turkey 8-11 April 2004 Jointly organized by Akdeniz University - Antalya and Hacettepe University - Ankara i 1st International Eurasian Ornithology Congress Ali Erdoğan, Levent Turan, Tamer Albayrak (Editorial Board) 1ST INTERNATIONAL EURASIAN ORNITHOLOGY CONGRESS Antalya Turkey 8-11 April 2004 ISBN: 975-98424-0-8 Print: Sadri Grafik 2004 Antalya ii 1st International Eurasian Ornithology Congress HONORARY PRESIDENTS (ALPHABETICALLY ORDERED) Prof. Dr. Tunçalp ÖZGEN Rector of Hacettepe University, Ankara Prof.Dr.Yaşar UÇAR Rector of Akdeniz University, Antalya CONGRESS CHAIRMAN Prof.Dr. İlhami KİZİROĞLU Hacettepe University EXECUTİVE COMMİTTEE Prof. Dr. Ali ERDOĞAN (Chairman) Prof. Dr. İlhami KİZİROĞLU Assoc. Prof. Dr. Levent TURAN (Vice Chairman) Cengiz GÖKOĞLU (Mayor of Bogazkent ) SCIENTIFIC CONGRESS SECRETARY Tamer ALBAYRAK (Akdeniz University, Antalya) iii 1st International Eurasian Ornithology Congress SCIENTIFIC COMMITTEE Özdemir ADIZEL, (Yüzüncüyıl U. Van, Turkey ) Zafer AYAŞ, (Hacettepe U. Ankara, Turkey) Yusuf AYVAZ, (S. Demirel U. Isparta,Turkey) Walter BÄUMLER, (TU, Münich, Germany ) Franz BAIRLEIN, (Journal f.Ornithologie, Germany) Stuart BEARHOP, (University of Glasgow, UK) Einhard BEZZEL, (Falke, Germany) Mahmut BILGINER, (Ondokuz Mayıs U. Samsun, Turkey) Dan CHAMBERLAIN, (University of Stirling, UK) Ali ERDOĞAN, (Akdeniz U. Antalya, Turkey) Michael EXO, (Institut fuer Vogelforschung,
    [Show full text]
  • Literature Cited in Lizards Natural History Database
    Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica.
    [Show full text]
  • Opening Speech
    II. National Symposium On The Aegean Islands, 2-3 July 2004, Gökçeada - Çanakkale OPENING SPEECH Ali KURUMAHMUT Prime Ministry of Navigation Counsellorship Marine Transportation General Manager The Aegean Sea lies between the Turkish and the Greek main lands, as well as between the Morea peninsular and the southwestern edges of the Anatolian coasts, with the extension of the islands of Çuha, Küçük Çuha, Girit, Kaşot, Kerpe and Rodos that constitute its outer natural boundaries. In terms of the geographical structure, the Aegean, a semi-closed sea, has geological and geo-morphological characteristics peculiar to itself: it has about 1800 islands, islets and rocks of various sorts, as well as a number of geographical formations, scattered al over the Sea. There is little wonder that all these characteristics make the Aegean Sea a special one. The Aegean dispute between Greece and Turkey has been complicated for a number of reasons: for instance, there are many islands in the Aegean that Turkey ceded to Greece through international treaties. And these islands lying in the natural extension of the Turkish mainland surround Anatolia from north to the south. But Athens makes claims of sovereignty over many islands, islets, and rocks though Ankara never ceded any of them to Greece officially. The most obvious and famous case would be the Kardak rocks crisis that erupted between Turkey and Greece at the beginning of 1996. These complications make the Aegean a sea that is of special importance among the seas of the world. It is possible to divide the Aegean Islands into five categories in terms of their geographical locations, geological and geo-morphological characteristics, the historical perspectives of the sovereign powers to which they belonged, the manner in which the sovereignty over them was determined through international treaties, as well as their importance for geo-political and strategic purposes.
    [Show full text]
  • An Etymological Review of the Lizards of Iran: Families Lacertidae, Scincidae, Uromastycidae, Varanidae
    International Journal of Animal and Veterinary Advances 3(5): 322-329, 2011 ISSN: 2041-2908 © Maxwell Scientific Organization, 2011 Submitted: July 28, 2011 Accepted: September 25, 2011 Published: October 15, 2011 An Etymological Review of the Lizards of Iran: Families Lacertidae, Scincidae, Uromastycidae, Varanidae 1Peyman Mikaili and 2Jalal Shayegh 1Department of Pharmacology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran 2Department of Veterinary Medicine, Faculty of Agriculture and Veterinary, Shabestar Branch, Islamic Azad University, Shabestar, Iran Abstract: The etymology of the reptiles, especially the lizards of Iran has not been completely presented in other published works. Iran is a very active geographic area for any animals, and more especially for lizards, due to its wide range deserts and ecology. We have attempted to ascertain, as much as possible, the construction of the Latin binomials of all Iranian lizard species. We believe that a review of these names is instructive, not only in codifying many aspects of the biology of the lizards, but in presenting a historical overview of collectors and taxonomic work in Iran and Middle East region. We have listed all recorded lizards of Iran according to the order of the scientific names in the book of Anderson, The Lizards of Iran. All lizard species and types have been grouped under their proper Families, and then they have been alphabetically ordered based on their scientific binominal nomenclature. We also examined numerous published works in addition to those included in the original papers presenting each binomial. Key words: Etymology, genera, iran, lizards, Middle East, species, taxonomy. INTRODUCTION comprising the fauna of Iran, including Field guide to the reptiles of Iran, (Vol.
    [Show full text]
  • Freshwater Fish Fauna and Restock Fish Activities of Reservoir in the Dardanelles (Canakkale-Turkey)
    Journal of Central European Agriculture, 2012, 13(2), p.368-379 DOI: 10.5513/JCEA01/13.2.1062 Freshwater fish Fauna and Restock Fish Activities of Reservoir in the Dardanelles (Canakkale-Turkey) Selcuk BERBER1, Hüseyin SASI 2 1Department of Freshwater Biology, Fisheries Faculty, C. Onsekizmart University, Canakkale, Turkiye e-mail: [email protected] 2Department of Freshwater Biology, Fisheries Faculty, Mugla University, 48100, Mugla, Turkiye e-mail: [email protected] Abstract Turkey has, with geographic location including Istanbul and Çanakkale straits the system, 178,000 km in length streams, 906,000 ha of natural lakes, and 411,800 ha of dam lakes, and 28,000 ha of ponds due to richness inland waters which include freshwater fish. The fingerling fish (fry) were restocked approximately 250,000,000 in natural lakes, dam lakes and ponds for fisheries between years of 1979 and 2005. Canakkale has rich freshwater potential with 7 major rivers (Büyükdere, Karamenderes stream, Kavak brook, Kocacay stream, Sarıcay stream, Tuzla brook, Umurbey brook), 7 Dam Lakes (Atikhisar, Zeytinlikoy, Bayramic, Bakacak, Tayfur, Umurbey and Yenice-Gönen Dam lakes). In the studies, it has been determined that 15 fish species belonging to 6 families (Anguillidae, Atherinidae, Salmonidae, Cobitidae, Cyprinidae and Poecilidae) can be found in reservoirs. Fish restocking of the activities of the reservoir until today approximately 1,120,000 (Cyprinus carpio L., 1758) is introduced. In this study, the activity of Canakkale province in the fish restocking and reservoir exploiting possibilities were discussed in view of reservoir fisheries potential which is used insufficiently today. Keywords: Fish fauna, Dardanelles, Freshwater fish, Canakkale, Restocking Introduction Addition to being surrounded by Black Sea, Aegean Sea and Mediterranean Sea Turkey has a great freshwater potential with 178,000 km long streams and 906,000 ha natural lakes, 439,800 ha dam lakes and pond areas.
    [Show full text]