Food Packaging Technology Packaging Technology Series

Total Page:16

File Type:pdf, Size:1020Kb

Food Packaging Technology Packaging Technology Series Food Packaging Technology Packaging Technology Series Series Editor: Geoff A. Giles, Global Pack Management, GlaxoSmithKline, London. A series which presents the current state of the art in chosen sectors of the packaging industry. Written at professional and reference level, it is directed at packaging technologists, those involved in the design and development of packaging, users of packaging and those who purchase packaging. The series will also be of interest to manufacturers of packaging machinery. Titles in the series: Design and Technology of Packaging Decoration for the Consumer Market Edited by G.A. Giles Materials and Development of Plastics Packaging for the Consumer Market Edited by G.A. Giles and D.R. Bain Technology of Plastics Packaging for the Consumer Market Edited by G.A. Giles and D.R. Bain Canmaking for Can Fillers Edited by T.A. Turner PET Packaging Technology Edited by D.W. Brooks and G.A. Giles Food Packaging Technology Edited by R. Coles, D. McDowell and M.J. Kirwan Packaging Closures and Sealing Systems Edited by N. Theobald FOOD PACKAGING TECHNOLOGY Edited by RICHARD COLES Consultant in Food Packaging, London DEREK MCDOWELL Head of Supply and Packaging Division Loughry College, Northern Ireland and MARK J. KIRWAN Consultant in Packaging Technology London Blackwell Publishing © 2003 by Blackwell Publishing Ltd Trademark Notice: Product or corporate names may be trademarks or registered Editorial Offices: trademarks, and are used only for identification 9600 Garsington Road, Oxford OX4 2DQ and explanation, without intent to infringe. Tel: +44 (0) 1865 776868 108 Cowley Road, Oxford OX4 1JF, UK First published 2003 Tel: +44 (0) 1865 791100 Blackwell Munksgaard, 1 Rosenørns Allè, Library of Congress Cataloging in P.O. Box 227, DK-1502 Copenhagen V, Publication Data Denmark A catalog record for this title is available Tel: +45 77 33 33 33 from the Library of Congress Blackwell Publishing Asia Pty Ltd, 550 Swanston Street, Carlton South, British Library Cataloguing in Victoria 3053, Australia Publication Data Tel: +61 (0)3 9347 0300 A catalogue record for this title is available Blackwell Publishing, 10 rue Casimir from the British Library Delavigne, 75006 Paris, France ISBN 1–84127–221–3 Tel: +33 1 53 10 33 10 Originated as Sheffield Academic Press Published in the USA and Canada (only) by Set in 10.5/12pt Times CRC Press LLC by Integra Software Services Pvt Ltd, 2000 Corporate Blvd., N.W. Pondicherry, India Boca Raton, FL 33431, USA Printed and bound in Great Britain, Orders from the USA and Canada (only) to using acid-free paper by CRC Press LLC MPG Books Ltd, Bodmin, Cornwall USA and Canada only: For further information on ISBN 0–8493–9788–X Blackwell Publishing, visit our website: The right of the Author to be identified as the www.blackwellpublishing.com Author of this Work has been asserted in accordance with the Copyright, Designs and Patents Act 1988. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher. This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use. Contents Contributors xv Preface xvii 1 Introduction 1 RICHARD COLES 1.1 Introduction 1 1.2 Packaging developments – an historical perspective 2 1.3 Food supply and the protective role of packaging 4 1.4 The value of packaging to society 7 1.5 Definitions and basic functions of packaging 8 1.6 Packaging strategy 9 1.7 Packaging design and development 9 1.7.1 The packaging design and development framework 12 1.7.1.1 Product needs 13 1.7.1.2 Distribution needs and wants of packaging 13 1.7.1.3 Packaging materials, machinery and production processes 16 1.7.1.4 Consumer needs and wants of packaging 18 1.7.1.5 Multiple food retail market needs and wants 22 1.7.1.6 Environmental performance of packaging 26 1.7.2 Packaging specifications and standards 28 1.8 Conclusion 29 Literature reviewed and sources of information 29 2 Food biodeterioration and methods of preservation 32 GARY S. TUCKER 2.1 Introduction 32 2.2 Agents of food biodeterioration 33 2.2.1 Enzymes 33 2.2.2 Microorganisms 34 2.2.2.1 Bacteria 35 2.2.2.2 Fungi 38 2.2.3 Non-enzymic biodeterioration 40 2.3 Food preservation methods 41 2.3.1 High temperature 41 2.3.1.1 Blanching 42 2.3.1.2 Thermal processing 42 2.3.1.3 Continuous thermal processing (aseptic) 47 2.3.1.4 Pasteurisation 51 2.3.2 Low temperature 52 2.3.2.1 Freezing 52 2.3.2.2 Chilling and cooling 53 vi CONTENTS 2.3.3 Drying and water activity control 54 2.3.4 Chemical preservation 56 2.3.4.1 Curing 57 2.3.4.2 Pickling 58 2.3.4.3 Smoking 58 2.3.5 Fermentation 59 2.3.6 Modifying the atmosphere 60 2.3.7 Other techniques and developments 61 2.3.7.1 High pressure processing 61 2.3.7.2 Ohmic heating 62 2.3.7.3 Irradiation 62 2.3.7.4 Membrane processing 62 2.3.7.5 Microwave processing 63 References 63 3 Packaged product quality and shelf life 65 HELEN BROWN and JAMES WILLIAMS 3.1 Introduction 65 3.2 Factors affecting product quality and shelf life 68 3.3 Chemical/biochemical processes 69 3.3.1 Oxidation 70 3.3.2 Enzyme activity 73 3.4 Microbiological processes 74 3.4.1 Examples where packaging is key to maintaining microbiological shelf life 75 3.5 Physical and physico-chemical processes 77 3.5.1 Physical damage 77 3.5.2 Insect damage 78 3.5.3 Moisture changes 78 3.5.4 Barrier to odour pick-up 81 3.5.5 Flavour scalping 81 3.6 Migration from packaging to foods 81 3.6.1 Migration from plastic packaging 83 3.6.2 Migration from other packaging materials 86 3.6.3 Factors affecting migration from food contact materials 88 3.6.4 Packaging selection to avoid migration and packaging taints 89 3.6.5 Methods for monitoring migration 89 3.7 Conclusion 91 References 91 4 Logistical packaging for food marketing systems 95 DIANA TWEDE and BRUCE HARTE 4.1 Introduction 95 4.2 Functions of logistical packaging 96 4.2.1 Protection 97 4.2.2 Utility/productivity 98 4.2.3 Communication 99 CONTENTS vii 4.3 Logistics activity-specific and integration issues 100 4.3.1 Packaging issues in food processing and retailing 100 4.3.2 Transport issues 101 4.3.3 Warehousing issues 104 4.3.4 Retail customer service issues 106 4.3.5 Waste issues 107 4.3.6 Supply chain integration issues 108 4.4 Distribution performance testing 109 4.4.1 Shock and vibration testing 110 4.4.2 Compression testing 111 4.5 Packaging materials and systems 112 4.5.1 Corrugated fiberboard boxes 112 4.5.2 Shrink bundles 115 4.5.3 Reusable totes 115 4.5.4 Unitization 116 4.6 Conclusion 119 References 119 5 Metal cans 120 BEV PAGE, MIKE EDWARDS and NICK MAY 5.1 Overview of market for metal cans 120 5.2 Container performance requirements 120 5.3 Container designs 121 5.4 Raw materials for can-making 123 5.4.1 Steel 123 5.4.2 Aluminium 124 5.4.3 Recycling of packaging metal 124 5.5 Can-making processes 124 5.5.1 Three-piece welded cans 125 5.5.2 Two-piece single drawn and multiple drawn (DRD) cans 126 5.5.3 Two-piece drawn and wall ironed (DWI) cans 127 5.6 End-making processes 129 5.6.1 Plain food can ends and shells for food/drink easy-open ends 130 5.6.2 Conversion of end shells into easy-open ends 130 5.7 Coatings, film laminates and inks 131 5.8 Processing of food and drinks in metal packages 132 5.8.1 Can reception at the packer 132 5.8.2 Filling and exhausting 133 5.8.3 Seaming 135 5.8.4 Heat processing 137 5.8.5 Post-process can cooling, drying and labelling 138 5.8.6 Container handling 139 5.8.7 Storage and distribution 140 5.9 Shelf life of canned foods 141 5.9.1 Interactions between the can and its contents 142 5.9.2 The role of tin 142 5.9.3 The dissolution of tin from the can surface 144 5.9.4 Tin toxicity 145 viii CONTENTS 5.9.5 Iron 146 5.9.6 Lead 147 5.9.7 Aluminium 147 5.9.8 Lacquers 147 5.10 Internal corrosion 148 5.11 Stress corrosion cracking 148 5.12 Environmental stress cracking corrosion of aluminium alloy beverage can ends 149 5.13 Sulphur staining 149 5.14 External corrosion 149 5.15 Conclusion 150 References and further reading 151 6 Packaging of food in glass containers 152 P.J. GIRLING 6.1 Introduction 152 6.1.1 Definition of glass 152 6.1.2 Brief history 152 6.1.3 Glass packaging 152 6.1.4 Glass containers market sectors for foods and drinks 153 6.1.5 Glass composition 153 6.1.5.1 White flint (clear glass) 153 6.1.5.2 Pale green (half white) 154 6.1.5.3 Dark green 154 6.1.5.4 Amber (brown in various colour densities) 154 6.1.5.5 Blue 154 6.2 Attributes of food packaged in glass containers 154 6.2.1 Glass pack integrity and product compatibility 156 6.2.1.1 Safety 156 6.2.1.2 Product compatibility 156 6.2.2 Consumer acceptability 156 6.3 Glass and glass container manufacture 156 6.3.1 Melting 156 6.3.2 Container forming 157 6.3.3 Design parameters 158 6.3.4 Surface treatments 158 6.3.4.1 Hot end treatment 158 6.3.4.2 Cold end treatment 159 6.3.4.3 Low-cost production tooling 160 6.3.4.4 Container inspection and quality 161 6.4 Closure selection 163 6.4.1 Normal seals 164 6.4.2 Vacuum seals 164 6.4.3 Pressure seals 164 6.5 Thermal processing of glass packaged foods 165 6.6 Plastic sleeving and decorating possibilities 165 6.7 Strength in theory and practice 166 6.8 Glass pack design and specification 167 6.8.1 Concept and bottle design 167 6.9 Packing – due diligence in the use of glass containers 169 CONTENTS ix 6.10 Environmental profile 171 6.10.1 Reuse 171 6.10.2 Recycling 171 6.10.3 Reduction – lightweighting 172 6.11 Glass as a marketing tool 172 References 172 Further reading 173 7 Plastics in food packaging 174 MARK J.
Recommended publications
  • Reducing Single-Use Plastic Waste in Education City
    REDUCING SINGLE-USE PLASTIC WASTE IN EDUCATION CITY A CASE STUDY JUNE 2020 04 Executive summary Introduction: single-use plastics 08 are a global environmental crisis International examples: countries 10 banning single-use plastics Qatar’s efforts to reduce 14 plastic waste 16 Case study: Education City QF as a testbed and research 30 partner for national policy Appendix 1: List of policies 32 implemented at Education City Appendix 2: QF's environmentally 36 friendly incentives for vendors 02 03 EXECUTIVE SUMMARY The world’s plastic pollution problem is terribly acute and single-use plastic products account for close to 50% of all plastic waste. This report highlights some of the international best practices deployed by various countries to combat this problem, as well as the approach adopted by Qatar Foundation (QF) in reducing single-use plastic consumption and waste in Education City. HIGHLIGHTS OF SUCCESSFUL POLICIES IMPLEMENTED IN EDUCATION CITY As a motivated participant and supporter of the government’s efforts to protect the environment, QF has launched several efforts aimed at reducing plastic consumption in Education City, which include the below: REGULATIONS MARKET-BASED ACTIVATION AWARENES RAISING AND BEHAVIOR NUDGING AND FINANCIAL INCENTIVES INFORMATION SHARING Mandated restriction of activities Financial incentives and disincentives to Variety of programs and interventions Nudging behaviors toward using regulatory instruments, guide behaviour toward environmentally designed to inform the public and environmentally responsible
    [Show full text]
  • Guidelines for Implementing Article 11 of the Convention
    Guidelines for implementation of Article 11 of the WHO Framework Convention on Tobacco Control (Packaging and labelling of tobacco products) Purpose, principles and use of terms Purpose 1. Consistent with other provisions of the WHO Framework Convention on Tobacco Control and the intentions of the Conference of the Parties to the Convention, these guidelines are intended to assist Parties in meeting their obligations under Article 11 of the Convention, and to propose measures that Parties can use to increase the effectiveness of their packaging and labelling measures. Article 11 stipulates that each Party shall adopt and implement effective packaging and labelling measures within a period of three years after entry into force of the Convention for that Party. Principles 2. In order to achieve the objectives of the Convention and its protocols and to ensure successful implementation of its provisions, Article 4 of the Convention states that Parties shall be guided, inter alia, by the principle that every person should be informed of the health consequences, addictive nature and mortal threat posed by tobacco consumption and exposure to tobacco smoke. 3. Globally, many people are not fully aware of, misunderstand or underestimate the risks for morbidity and premature mortality due to tobacco use and exposure to tobacco smoke. Well- designed health warnings and messages on tobacco product packages have been shown to be a cost-effective means to increase public awareness of the health effects of tobacco use and to be effective in reducing tobacco consumption. Effective health warnings and messages and other tobacco product packaging and labelling measures are key components of a comprehensive, integrated approach to tobacco control.
    [Show full text]
  • Flexible Packaging Buyers Guide 2018 - 2019 Flexible Packaging
    FLEXIBLE PACKAGING BUYERS GUIDE 2018 - 2019 FLEXIBLE PACKAGING • Innovative • Creates Shelf Appeal • Widely Extendible Into Diverse • Enables Visibility of Contents Product Categories • Provides Efficient Product to Package • Maintains and Indicates Freshness Ratios • Offers Consumer Conveniences • Uses Less Energy • Provides Reclosure and Dispensing • Creates Fewer Emissions Options • Creates Less Waste in the First • Is Easily Transported and Stored Place® As one of the fastest growing segments of the packaging industry, flexible packaging combines the best qualities of plastic, film, paper and aluminum foil to deliver a broad range of protective properties while employing a minimum of material. Typically taking the shape of a bag, pouch, liner, or overwrap, flexible packaging is defined as any package or any part of a package whose shape can be readily changed. Flexible packages are used for consumer and institutional products and in industrial applications, to protect, market, and distribute a vast array of products. Leading the way in packaging innovation, flexible packaging adds value and marketability to food and non-food products alike. From ensuring food safety and extending shelf life, to providing even heating, barrier protection, ease of use, resealability and superb printability, the industry continues to advance at an unprecedented rate. The life cycle attributes of flexible packaging demonstrate many sustainable advantages. Flexible packaging starts with less waste in the first place, greatly reducing landfill discards. Innovation and technology have enabled flexible packaging manufacturers to use fewer natural resources in the creation of their packaging, and improvements in production processes have reduced water and energy consumption, greenhouse gas emissions and volatile organic compounds.
    [Show full text]
  • Towards Distributed Recycling with Additive Manufacturing of PET Flake Feedstocks
    materials Article Towards Distributed Recycling with Additive Manufacturing of PET Flake Feedstocks Helen A. Little 1, Nagendra G. Tanikella 2, Matthew J. Reich 2, Matthew J. Fiedler 1, Samantha L. Snabes 1 and Joshua M. Pearce 2,3,4,* 1 re:3D Inc., 1100 Hercules STE 220, Houston, TX 77058, USA; [email protected] (H.A.L.); [email protected] (M.J.F.); [email protected] (S.L.S.) 2 Department of Material Science and Engineering, Michigan Technological University, Houghton, MI 49931, USA; [email protected] (N.G.T.); [email protected] (M.J.R.) 3 Department of Electrical and Computer Engineering, Michigan Technological University, Houghton, MI 49931, USA 4 Department of Electronics and Nanoengineering, School of Electrical Engineering, Aalto University, 00076 Espoo, Finland * Correspondence: [email protected]; Tel.: +1-906-487-1466 Received: 28 July 2020; Accepted: 22 September 2020; Published: 25 September 2020 Abstract: This study explores the potential to reach a circular economy for post-consumer Recycled Polyethylene Terephthalate (rPET) packaging and bottles by using it as a Distributed Recycling for Additive Manufacturing (DRAM) feedstock. Specifically, for the first time, rPET water bottle flake is processed using only an open source toolchain with Fused Particle Fabrication (FPF) or Fused Granular Fabrication (FGF) processing rather than first converting it to filament. In this study, first the impact of granulation, sifting, and heating (and their sequential combination) is quantified on the shape and size distribution of the rPET flakes. Then 3D printing tests were performed on the rPET flake with two different feed systems: an external feeder and feed tube augmented with a motorized auger screw, and an extruder-mounted hopper that enables direct 3D printing.
    [Show full text]
  • Barriers and Chemistry in a Bottle: Mechanisms in Today's Oxygen Barriers for Tomorrow's Materials
    applied sciences Review Barriers and Chemistry in a Bottle: Mechanisms in Today’s Oxygen Barriers for Tomorrow’s Materials Youri Michiels 1,* , Peter Van Puyvelde 2 and Bert Sels 1,* 1 Centre for Surface Chemistry and Catalysis, KU Leuven, 3001 Heverlee, Belgium 2 Soft Matter, Rheology and Technology, KU Leuven, 3001 Heverlee, Belgium; [email protected] * Correspondence: [email protected] (Y.M.); [email protected] (B.S.); Tel.: +32-16-377690 (Y.M.); +32-16-321593 (B.S.) Received: 3 June 2017; Accepted: 21 June 2017; Published: 28 June 2017 Abstract: The stability of many organic compounds is challenged by oxidation reactions with molecular oxygen from the air in accordance with thermodynamics. Whereas glass or metal containers may protect such products, these packaging types also offer severe disadvantages over plastics. Large-scale packaging, especially for food and beverage industries, has shifted towards polymeric materials with passive and active oxygen barrier technologies over the last decades. Even though patent literature is flooded with innovative barrier systems, the mechanisms behind them are rarely reported. In a world where packaging requirements regarding recyclability and safety are continuously getting stricter, accompanied by the appearance of emerging applications for plastic oxygen barriers (such as organic semi-conductors), research towards new materials seems inevitable. To this cause, proper in-depth knowledge of the existing solutions is a prerequisite. This review therefore attempts to go deep into the problems at hand and explain the chemistry behind the existing solution strategies and finally discusses perspectives suggesting new applications such as organic light-emitting diodes (OLEDs) and solar cells.
    [Show full text]
  • Hi-TECH TOOLS CODING SYSTEMS
    COCOON PRINT PACK SYSTEMS Reg.Off: 16A-Old Nagardas Road ,Tiwari Compound, Near Krishna Dyeing Works, Andheri (E),Mumbai -400069 Mobile N0- (0) 9224277155 Email: - cocoonprintpack @ gmail . com Web: - www.sealing-machine.co.in Profile We are manufacturing of Coding, Batch Printing, Box Strapping, Liquid Filling, Sealing & Packaging, and Form Fill Seal Machines. specially referring to machinery for industries such as food, pharmaceutical, beverages, Oil, Milk, cosmetics, Spices, distillery etc. the name Seal-Tech Coding Systems. Stands out for sheer quality of its products. Our Products Batch Printing Machines o Electro Mechanical Motorized Table Top Coder o Ink Jet Printers o Auto speed Continuous On-Line Batch o Handy Marker Coder o Hand Stamping Machine Sealing Machine o Shrink Pack Sealing Machine o Vacuum Sealing Machine ( Single / Double Chember) o Handy Induction Sealing Machine / Continous Induction Sealing Machine o Continuous (Online) Sealing Machine o Hand Sealing Machine o Paddle Sealing machine Strapping & Tapping Machines o Automatic Carton (Box) Strapping Machine o Semi Automatic Carton (Box) Strapping Machine o Carton Tapping Machine Labelling Machine (Semi Automatic) Liquid Filling Machine (Semi Automatic) (FFS) Form Fill Seal Machine Manual Cup Sealer Bar Coder Hot Air Gun Ink Jet Printers model no:- IJP - P 2128 COCOON presents HONAZ / SORVEH (Canada, Dubai) make Industrial Inkjet Printer Model IJP - P 2128 which is an economical, no maintenance , user friendly, high resolution FOUR line Non-Contact printer that can be installed on any production line to print B.No., Mfg. Date, Exp. Date, MRP Rs., Logos, Bar Codes, Real Time Clock & Calendar, Serial No. (Agmark) etc. on bottles, tins, labels, cartons, caps, pouches, etc.
    [Show full text]
  • Development of a Throttleless Natural Gas Engine
    February 2002 • NREL/SR-540-31141 Development of a Throttleless Natural Gas Engine Final Report John T. Kubesh Southwest Research Institute San Antonio, Texas National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute ••• Battelle ••• Bechtel Contract No. DE-AC36-99-GO10337 February 2002 • NREL/SR-540-31141 Development of a Throttleless Natural Gas Engine Final Report John T. Kubesh Southwest Research Institute San Antonio, Texas NREL Technical Monitor: Mike Frailey Prepared under Subcontract No. ZCI-9-29065-01 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute ••• Battelle ••• Bechtel Contract No. DE-AC36-99-GO10337 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Available electronically at http://www.osti.gov/bridge Available for a processing fee to U.S.
    [Show full text]
  • Food Safety Reduced Oxygen Packaging- Including Vacuum Packaging
    Food Safety Reduced Oxygen Packaging- including Vacuum packaging UVM Extension Fact Sheet- June 2013 Many food processors are interested in using vacuum packaging and other types of Reduced Oxygen Packaging (ROP). However, it is also important to know the food safety concerns and regulations associated with this packaging option. Benefits of ROP - Removal of oxygen prevents growth of aerobic spoilage organisms responsible for off-odors and texture changes. - Reduces oxidation of foods, retards rancidity and color deterioration. - Increases quality and shelf-life of refrigerated foods, which increases marketing appeal. Types of Reduced Oxygen Packaging include: a) Vacuum packaging: air is removed from a package of food and the package is hermetically sealed, so that a vacuum remains inside the package, such as sous vide. b) Modified atmosphere packaging: the atmosphere of the package is modified so that its composition is different from outside air (21% oxygen), but the atmosphere may change over time due to permeability of the packaging material or respiration of the food. Note that this method is generally considered safer than vacuum packaging as it generally maintains enough oxygen to control the growth of Clostridium botulinum. c) Controlled atmosphere packaging: the atmosphere of a food package is modified so that while the package is sealed, its composition is different from air, and continuous control of that atmosphere is maintained, such as by using oxygen scavengers or a combination of total replacement of oxygen, non-respiring food, and impermeable packaging material. What are the food safety concerns with vacuum packaging? A dangerous bacterium called Clostridium botulinum, which is not detectable by sight or smell, can grow in the absence of oxygen such as in vacuum packaged or canned foods.
    [Show full text]
  • Condiments – the Power and Potential of Packaging
    White Paper Condiments – the power and potential of packaging More than just a sauce Condiments and sauces can be seen on dinner tables A brief walk through any food store shows just how popular across the globe. Although often overlooked, they can be condiments have become over the years. Much time and key in adding colour, texture, taste and flavour to what is investment is given to attracting the attention of shoppers being consumed. However, the actual taste experience is in the condiments aisle and keeping them coming back for often determined as much by the packaging and branding more. Despite its significant size, the global condiments of the product as by its contents1. With packaging playing a market is projected to continue to expand, reaching USD key role in customer satisfaction and purchasing decisions2, 98.3 billion by 2024 and growing at a significant CAGR of what can manufacturers learn from consumer purchasing 5.4% during the forecast period, 2019–2024.3 behaviour and how has packaging evolved to cope with the many demands now being placed on it? The psychology of condiment packaging With competition fierce for shelf space, condiments A growing market producers have had to get ever-more creative in how Since salt and vinegar were first used to enhance the they attract shoppers to their products. Here are some flavour of foods in ancient times, people have been hooked of the ways that psychology plays a part in condiments on condiments. From the Roman practice of crushing the packaging design. innards of various fish and fermenting them in salt to create garum, to today’s brightly coloured ketchups and mustards, Capturing consumer attention: a flourishing industry has grown.
    [Show full text]
  • 4 Active Packaging in Polymer Films M.L
    4 Active packaging in polymer films M.L. ROONEY 4.1 Introduction Polymers constitute either all or part of most primary packages for foods and beverages and a great deal of research has been devoted to the introduction of active packaging processes into plastics. Plastics are thermoplastic polymers containing additional components such as antioxidants and processing aids. Most forms of active packaging involve an intimate interaction between the food and its package so it is the layer closest to the food that is often chosen to be active. Thus polymer films potentially constitute the position of choice for incorporation of ingredients that are active chemically or physically. These polymer films might be used as closure wads, lacquers or enamels in cans and as the waterproof layer in liquid cartonboard, or as packages in their own right. The commercial development of active packaging plastics has not occurred evenly across the range of possible applications. Physical processes such as microwave heating by use of susceptor films and the generation of an equilibrium modified atmosphere (EMA) by modification of plastics films have been available for several years. Research continues to be popular in both these areas. Chemical processes such as oxygen scavenging have been adopted more rapidly in sachet form rather than in plastics. Oxygen scavenging sachets were introduced to the Japanese market in 1978 (Abe and Kondoh, 1989) whereas the first oxygen-scavenging beer bottle closures were used in 1989 (see Chapter 8). The development of plastics active packaging systems has been more closely tied to the requirements of particular food types or food processes than has sachet development.
    [Show full text]
  • White Paper MIGRATION SAFE PHARMACEUTICAL LABELS IMPROVE PATIENT SAFETY Table of Contents
    White Paper MIGRATION SAFE PHARMACEUTICAL LABELS IMPROVE PATIENT SAFETY Table of contents Executive summary ................................................................................................... 3 2. Drug packaging helps ensure patient safety ............................................................. 4 3. Packaging, a multi-faceted performer ...................................................................... 4 3.1. Primary packaging ...................................................................................... 5 3.2. Secondary packaging ................................................................................. 5 3.3. Tertiary packaging ...................................................................................... 5 3.4. Packaging type matters ................................................................................ 5 4. The future of pharma packaging is plastics ............................................................... 6 5. Control and complexity: Navigating packaging development ...................................... 7 5.1. Drug companies carefully control pharmaceutical packaging .............................. 8 5.2. Switch from glass to plastic containers ........................................................... 9 5.2.1 Low-quality or incorrectly selected labels can pose extractable and leaching risks ............................................................. 9 5.2.2 Migration studies help increase drug safety ........................................... 9 6. Test and test
    [Show full text]
  • Statement on the Registration of Polymers Under REACH Authored by and Signed by Members of the Scientific Community, April 2021
    Statement on the registration of polymers under REACH Authored by and signed by members of the scientific community, April 2021 People and the environment are widely exposed to polymers, the main constituents of plastics, as these chemicals continue to build up in terrestrial and ocean ecosystems and production is predicted to continue increasing (Geyer et al., 2017), resulting in emissions to our waterways of up to 53 million metric tons (Mt) per year by 2030 (Borrelle et al., 2020). Apart from plastics, polymeric substances are present in many other materials, products and applications, including but not limited to silicones, coatings, paints, detergents, household and personal care products, agricultural fertilizers and wastewater treatment, often leading to direct releases into the environment. Although polymers are manufactured and used in Europe in extremely high quantities (e.g. plastic production in Europe has been around 60 million tonnes per year over the last years (PlasticsEurope, 2020)), not enough is known about their identity, uses, physical, chemical, and hazardous properties, particularly because polymers have so far been exempt from registration under the European chemicals regulations REACH. To finally initiate the polymer registration process, currently the European Commission (EC) is developing a proposal on how and which polymers to register (Wood and PFA-Brussels, 2020). As scientists working in the fields of polymer chemistry, ecotoxicology, environmental chemistry, conservation biology, environmental sciences,
    [Show full text]