The Role of the Cis-Lunar Libration Point in Lunar Operations

Total Page:16

File Type:pdf, Size:1020Kb

The Role of the Cis-Lunar Libration Point in Lunar Operations View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Embry-Riddle Aeronautical University The Space Congress® Proceedings 1966 (3rd) The Challenge of Space Mar 7th, 8:00 AM The Role of the Cis-Lunar Libration Point in Lunar Operations W. Raithel General Electric Company Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings Scholarly Commons Citation Raithel, W., "The Role of the Cis-Lunar Libration Point in Lunar Operations" (1966). The Space Congress® Proceedings. 4. https://commons.erau.edu/space-congress-proceedings/proceedings-1966-3rd/session-13/4 This Event is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in The Space Congress® Proceedings by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. The Role of the Cis-Lunar Libration Point in Lunar Operations W. Raithel General Electric Company PhiladeIphia, Pennsylvania The purpose of this presentation is (4-body system) this balance is disturb­ to define the advantages which result ed. It appears that the two conditions from the use of the cis-lunar libration of constant celestial configuration and point LI as place of departure for des­ exact force balance are incompatible in cent to the Moon, as parking place for the Earth-Moon-Sun system. the Command Module and as place of ren­ dezvous after take-off of the Lunar In context with the initially stat­ Landing Vehicle (LLV) from the Moon in ed objective we can disregard this defi­ regard to simplifying operations in nition problem and address ourselves to lunar space and increasing the chances determining the magnitude of the force of success of lunar missions. imbalance at the 3-body libration points and to determining the motions of a The Earth-Moon System contains five spacecraft relative to these points, points where the initial forces are in Fig. 2 shows the radial accelerations exact balance with the gravitational due to 4-body conditions acting on a ve­ forces from Earth and Moon and which re­ hicle positioned at the 3-body libration main in fixed position relative to the points. The accelerations are plotted Earth-Moon configuration. These are the for LI and L4 in terms of standard ter­ so-called libration points. The unique­ restrial acceleration n g" as function of ness of these positions has made them time in terms of Moon-phases. It should the subject of a number of studies be­ be noted that this imbalance is very- ginning with those of La Grange in the small and can easily be counteracted by 18th century. a propulsion device. Weight addition, •required for station -keeping is a func­ For the restricted 3-body model, tion of spacecraft weight, time on sta- considering only Earth and Moon rotating tion, and propulsion method. In terms around their barycenter, the location of of velocity increment the station-keeping the libration points is shown in Fig. 1. effort amounts to an average of 10 ft/ The orbits of the triangular points L4 sec /day or 300 ft /sec for one month on and L5 are ellipses similar to that of station. An ion engine can do this sta­ the Moon's orbit, whose axes are tilted tion-keeping job with an additional 60° from that of the Moon. The orbits weight in the order of 1% of the total of the co-linear points L^, L£, and L3 vehicle weight for about one year. are ellipses concentric with that of the Moon. It should be noted that the tri­ If we do not use station-keeping, angular points are basically stable, the spacecraft drifts out of position whereas the co-linear points are basical­ even in the so-called stable cases. Typ­ ly unstable positions. The term "unsta­ ical trajectories are shown in Fig. 3 ble" means that any displacement of a and 4. From these diagrams and the above body from the exact location of the li­ discussion, we can conclude in unscien­ bration point will result in an ever- tific terms: increasing displacement away from the point. • The degree of stability of the triangular points L4 and L^ is The forces acting on a body at the not as great as expected. so-defined libration points are balanced only if the effect of the Sun is neglect­ • The degree of instability of ed (3-body system) . If the effect of the co-linear points Lj_, L2, the gravitational field of the Sun and and L3 is not as great as feared the motion of the Earth-Moon System and ample time is available for around the Sun is taken into account, corrective action in form of 605 propulsive forces. made in the following steps: The com­ bined spacecraft; namely, Command Module This latter conclusion is significant (CM) and Lunar Landing Vehicle (LLV), in evaluating the operational usefulness will be placed into the vicinity of L^ of the libration points. In this con­ with the additional expenditure of 1500- text we are interested not in the exact 2000 ft/sec over the lunar escape veloc­ points and their theoretical stability ity. After reaching L^ the LLV is de­ but rather in volumes of Earth-Moon Space tached and departs whenever ready for in which a spacecraft can be held in fix­ the desired place on the near side of ed position relative to the lunar surface the Moon with an additional propulsive with a minimum of propulsive energy, in effort of AV = 500-1000 ft/sec. During other words, play the role of a synchro­ the approach the landing area is always nous satellite of the Moon. In fact, a in full view of both LLV and CM. The more detailed analysis will show that duration of stay on the Moon is complete­ the point or rather flight path of mini­ ly at the discretion of the crew and mum station-keeping energy is not L^ but limited only by considerations of safety slightly off. and the consumption rate of expendables. After accomplishing its mission, the LLV For the case of Li we have plotted takes off and proceeds directly to the in Fig. 5 the velocity increment in ft/ waiting Command Module at L]_. During sec/day required to keep the spacecraft all this time, descent, stay on the Moon, in the vicinity of L-^, as a function of and ascent, there is always line-of- interval between corrective impulses, sight connection between LLV and CM. and in Fig. 6 some typical trajectories Rendezvous and docking in the vicinity in the vicinity of L^. Through suitable of LI are conducted in an environment optimization this energy can be further where the effect of gravitation and reduced. spacecraft motion are very small and practically uncoupled simplifying the Up to this point we have discussed job of the pilots during the maneuver. the properties of the libration points After completing rendezvous, the Command and approaches to cope with the peculiar­ Module disorbits for return to Earth ities of these points in space. We now with about 1500-2000 ft/sec and with would like to discuss the operational complete freedom of timing. advantages offered by the LI position. This location appears to be attractive The main advantages of this avenue for several reasons: of approach to lunar travel are: • Of the five libration points, • Unlimited window for the start L-JL is closest to the Moon at of LLV to the Moon. There is an average distance of 31,000 no need to have functional N.M. countdown coincide with a cer­ tain time and position in lunar • The spacecraft can be kept in orbit. the vicinity of L^ at the cost of less than Av = 10 ft/sec/ • Unlimited launch window for day in spite of the inherent return to LLV from the lunar instability of the position. surface. • The position is well-defined • Full-time communications as for practical purposes in spite well as optical and RF tracking of the mathematical difficul­ from L-^ to the near side of the ties and can be determined with Moon simplify greatly the nav­ sufficient accuracy with state- igation problem by permitting a of-the-art means. more active role of the pilot and a considerable reduction in • A spacecraft in L-^ is in fixed dependence on earth-based com­ position to the near side of puter and support operation. the Moon playing the role of a synchronous satellite. • Increased flexibility for be­ ginning return flight to Earth. In the proposed concept a t'rip made from the Earth to the Moon and back would be • Landings far off the lunar 606 equator can be made without in­ • Widening of launch window for creased propulsion requirements LLV both to and from the Moon. or without imposing operational restrictions, something which • Freeing the pilot from complete cannot be done with rendezvous dependence upon earth-based in low lunar orbit without computer by simplifying naviga­ changes in present LEM. tion and rendezvous control. Each of these advantages is at least • Full-time line-of-sight connec­ very desirable. Unfortunately, it is tion between the spacecraft and difficult to express the degree of im­ LLV. provement in simple numerical terms such as Ib, ft/sec, or similar units, without After acquiring more experience as to having to make use of subjective value man's capabilities and usefulness in judgments introducing individual opinions. space, we will be in a better position In sum total, however, it is hard to dis­ to provide answers to these questions.
Recommended publications
  • Rare Astronomical Sights and Sounds
    Jonathan Powell Rare Astronomical Sights and Sounds The Patrick Moore The Patrick Moore Practical Astronomy Series More information about this series at http://www.springer.com/series/3192 Rare Astronomical Sights and Sounds Jonathan Powell Jonathan Powell Ebbw Vale, United Kingdom ISSN 1431-9756 ISSN 2197-6562 (electronic) The Patrick Moore Practical Astronomy Series ISBN 978-3-319-97700-3 ISBN 978-3-319-97701-0 (eBook) https://doi.org/10.1007/978-3-319-97701-0 Library of Congress Control Number: 2018953700 © Springer Nature Switzerland AG 2018 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.
    [Show full text]
  • Tellurium Tellurium N
    Experiment Description/Manual Tellurium Tellurium N Table of contents General remarks ............................................................................................................................3 Important parts of the Tellurium and their operation .....................................................................4 Teaching units for working with the Tellurium: Introduction: From one´s own shadow to the shadow-figure on the globe of the Tellurium ...........6 1. The earth, a gyroscope in space ............................................................................................8 2. Day and night ..................................................................................................................... 10 3. Midday line and division of hours ....................................................................................... 13 4. Polar day and polar night .................................................................................................... 16 5. The Tropic of Cancer and Capricorn and the tropics ........................................................... 17 6. The seasons ........................................................................................................................ 19 7. Lengths of day and night in various latitudes ......................................................................22 Working sheet “Lengths of day in various seasons” ............................................................ 24 8. The times of day .................................................................................................................25
    [Show full text]
  • Lunar Laser Ranging: the Millimeter Challenge
    REVIEW ARTICLE Lunar Laser Ranging: The Millimeter Challenge T. W. Murphy, Jr. Center for Astrophysics and Space Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0424, USA E-mail: [email protected] Abstract. Lunar laser ranging has provided many of the best tests of gravitation since the first Apollo astronauts landed on the Moon. The march to higher precision continues to this day, now entering the millimeter regime, and promising continued improvement in scientific results. This review introduces key aspects of the technique, details the motivations, observables, and results for a variety of science objectives, summarizes the current state of the art, highlights new developments in the field, describes the modeling challenges, and looks to the future of the enterprise. PACS numbers: 95.30.Sf, 04.80.-y, 04.80.Cc, 91.4g.Bg arXiv:1309.6294v1 [gr-qc] 24 Sep 2013 CONTENTS 2 Contents 1 The LLR concept 3 1.1 Current Science Results . 4 1.2 A Quantitative Introduction . 5 1.3 Reflectors and Divergence-Imposed Requirements . 5 1.4 Fundamental Measurement and World Lines . 10 2 Science from LLR 12 2.1 Relativity and Gravity . 12 2.1.1 Equivalence Principle . 13 2.1.2 Time-rate-of-change of G ....................... 14 2.1.3 Gravitomagnetism, Geodetic Precession, and other PPN Tests . 14 2.1.4 Inverse Square Law, Extra Dimensions, and other Frontiers . 16 2.2 Lunar and Earth Physics . 16 2.2.1 The Lunar Interior . 16 2.2.2 Earth Orientation, Precession, and Coordinate Frames . 18 3 LLR Capability across Time 20 3.1 Brief LLR History .
    [Show full text]
  • Moon-Earth-Sun: the Oldest Three-Body Problem
    Moon-Earth-Sun: The oldest three-body problem Martin C. Gutzwiller IBM Research Center, Yorktown Heights, New York 10598 The daily motion of the Moon through the sky has many unusual features that a careful observer can discover without the help of instruments. The three different frequencies for the three degrees of freedom have been known very accurately for 3000 years, and the geometric explanation of the Greek astronomers was basically correct. Whereas Kepler’s laws are sufficient for describing the motion of the planets around the Sun, even the most obvious facts about the lunar motion cannot be understood without the gravitational attraction of both the Earth and the Sun. Newton discussed this problem at great length, and with mixed success; it was the only testing ground for his Universal Gravitation. This background for today’s many-body theory is discussed in some detail because all the guiding principles for our understanding can be traced to the earliest developments of astronomy. They are the oldest results of scientific inquiry, and they were the first ones to be confirmed by the great physicist-mathematicians of the 18th century. By a variety of methods, Laplace was able to claim complete agreement of celestial mechanics with the astronomical observations. Lagrange initiated a new trend wherein the mathematical problems of mechanics could all be solved by the same uniform process; canonical transformations eventually won the field. They were used for the first time on a large scale by Delaunay to find the ultimate solution of the lunar problem by perturbing the solution of the two-body Earth-Moon problem.
    [Show full text]
  • The Moon and Eclipses
    Lecture 10 The Moon and Eclipses Jiong Qiu, MSU Physics Department Guiding Questions 1. Why does the Moon keep the same face to us? 2. Is the Moon completely covered with craters? What is the difference between highlands and maria? 3. Does the Moon’s interior have a similar structure to the interior of the Earth? 4. Why does the Moon go through phases? At a given phase, when does the Moon rise or set with respect to the Sun? 5. What is the difference between a lunar eclipse and a solar eclipse? During what phases do they occur? 6. How often do lunar eclipses happen? When one is taking place, where do you have to be to see it? 7. How often do solar eclipses happen? Why are they visible only from certain special locations on Earth? 10.1 Introduction The moon looks 14% bigger at perigee than at apogee. The Moon wobbles. 59% of its surface can be seen from the Earth. The Moon can not hold the atmosphere The Moon does NOT have an atmosphere and the Moon does NOT have liquid water. Q: what factors determine the presence of an atmosphere? The Moon probably formed from debris cast into space when a huge planetesimal struck the proto-Earth. 10.2 Exploration of the Moon Unmanned exploration: 1950, Lunas 1-3 -- 1960s, Ranger -- 1966-67, Lunar Orbiters -- 1966-68, Surveyors (first soft landing) -- 1966-76, Lunas 9-24 (soft landing) -- 1989-93, Galileo -- 1994, Clementine -- 1998, Lunar Prospector Achievement: high-resolution lunar surface images; surface composition; evidence of ice patches around the south pole.
    [Show full text]
  • L1 Lunar Lander Element Conceptual Design Report
    EX15-01-092 L1 Lunar Lander Element Conceptual Design Report Engineering Directorate November 2000 National Aeronautics and Space Administration Lyndon B. Johnson Space Center Houston, Texas 77058 Table Of Contents i List of Figures………………………………………………………………………….……………iv ii List of Tables……………………………………………………………………………….………. v iii Contact Information………………………………………………………………………………..vi iv Introduction……………...………………………………………………………………………….vii 1.0 Element Description……………………………………………………………………….………..1 1.1 Design Objectives, Constraints & Requirements……………………………….…………..1 1.2 Vehicle Configuration Trades………………………………………………….……………3 1.3 Operations Concept…………………………………………………………….……………5 1.4 Vehicle Mass Statement…………………………………………………..………………. 9 1.5 Power Profile………………………………………………………………..……………. 10 2.0 Propulsion System…………………………………………………………………..…………….. 12 2.1 Functional Description and Design Requirements…………………………..……………. 12 2.2 Trades Considered and Results……………………………………………..……………... 12 2.3 Reference Design Description………………………………………………..…………… 12 2.4 Technology Needs and Design Challenges…………………………………..…………….13 3.0 Structure..……………………………………………………………….………….……………….14 3.1 Functional Description and Design Requirements………………………………...……….14 3.2 Trades Considered and Results……………………………………………………………..15 3.3 Reference Design Description……………………………………………………...………15 3.4 Technology Needs and Design Challenges…………………………………………………16 4.0 Electrical Power System…………………………………………………………………………….17 4.1 Functional Description and Design Requirements………………………………………….17 4.2 Trades
    [Show full text]
  • Analytical Formulation of Lunar Cratering Asymmetries Nan Wang (王楠) and Ji-Lin Zhou (周济林)
    A&A 594, A52 (2016) Astronomy DOI: 10.1051/0004-6361/201628598 & c ESO 2016 Astrophysics Analytical formulation of lunar cratering asymmetries Nan Wang (王`) and Ji-Lin Zhou (hN林) School of Astronomy and Space Science and Key Laboratory of Modern Astronomy and Astrophysics in Ministry of Education, Nanjing University, 210046 Nanjing, PR China e-mail: [email protected] Received 28 March 2016 / Accepted 3 July 2016 ABSTRACT Context. The cratering asymmetry of a bombarded satellite is related to both its orbit and impactors. The inner solar system im- pactor populations, that is, the main-belt asteroids (MBAs) and the near-Earth objects (NEOs), have dominated during the late heavy bombardment (LHB) and ever since, respectively. Aims. We formulate the lunar cratering distribution and verify the cratering asymmetries generated by the MBAs as well as the NEOs. Methods. Based on a planar model that excludes the terrestrial and lunar gravitations on the impactors and assuming the impactor encounter speed with Earth venc is higher than the lunar orbital speed vM, we rigorously integrated the lunar cratering distribution, and derived its approximation to the first order of vM=venc. Numerical simulations of lunar bombardment by the MBAs during the LHB were performed with an Earth–Moon distance aM = 20−60 Earth radii in five cases. Results. The analytical model directly proves the existence of a leading/trailing asymmetry and the absence of near/far asymmetry. The approximate form of the leading/trailing asymmetry is (1+A1 cos β), which decreases as the apex distance β increases. The numer- ical simulations show evidence of a pole/equator asymmetry as well as the leading/trailing asymmetry, and the former is empirically described as (1 + A2 cos 2'), which decreases as the latitude modulus j'j increases.
    [Show full text]
  • Iaa-Pdc-15-04-17 from Sail to Soil – Getting Sailcraft out of the Harbour on a Visit to One of Earth’S Nearest Neighbours
    4th IAA Planetary Defense Conference – PDC 2015 13-17 April 2015, Frascati, Roma, Italy IAA-PDC-15-04-17 FROM SAIL TO SOIL – GETTING SAILCRAFT OUT OF THE HARBOUR ON A VISIT TO ONE OF EARTH’S NEAREST NEIGHBOURS Jan Thimo Grundmann(1,2), Waldemar Bauer(1,3), Jens Biele(8,9), Federico Cordero(11), Bernd Dachwald(12), Alexander Koncz(13,14), Christian Krause(8,10), Tobias Mikschl(16,17), Sergio Montenegro(16,18), Dominik Quantius(1,4), Michael Ruffer(16,19), Kaname Sasaki (1,5), Nicole Schmitz(13,15), Patric Seefeldt (1,6), Norbert Tóth(1,7), Elisabet Wejmo(1,8) (1)DLR Institute of Space Systems, Robert-Hooke-Strasse 7, 28359 Bremen (2)+49-(0)421-24420-1107, (3)+49-(0)421-24420-1197, (4)+49-(0)421-24420-1109, (5)+49-(0)421-24420-1150, (6)+49-(0)421-24420-1609, (7)+49-(0)421-24420-1186, (8)+49-(0)421-24420-1107, (11)DLR Space Operations and Astronaut Training – MUSC, 51147 Köln, Germany (9)+49-2203-601-4563, (10)+49-2203-601-3048, (11)Telespazio-VEGA, Darmstadt, Germany, [email protected] (12) Faculty of Aerospace Engineering, FH Aachen University of Applied Sciences, Hohenstaufenallee 6, 52064 Aachen, Germany, +49-241-6009-52343 / -52854, (13)DLR Institute of Planetary Research, Rutherfordstr. 2, 12489 Berlin (14)+49-(0)30 67055-575, (15)+49-(0)30 67055-456, (16)Informatik 8, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany Keywords: small spacecraft, solar sail, GOSSAMER roadmap, MASCOT, co-orbital asteroid ABSTRACT The DLR-ESTEC GOSSAMER roadmap envisages the development of solar sailing by successive low-cost technology demonstrators towards first science missions.
    [Show full text]
  • Strategy for Optimal, Long-Term Stationkeeping of Libration Point Orbits in the Earth-Moon System
    Strategy for Optimal, Long-Term Stationkeeping of Libration Point Orbits in the Earth-Moon System Thomas A. Pavlak∗ and Kathleen C. Howelly Purdue University, West Lafayette, IN, 47907-2045, USA In an effort to design low-cost maneuvers that reliably maintain unstable libration point orbits in the Earth-Moon system for long durations, an existing long-term stationkeeping strategy is augmented to compute locally optimal maneuvers that satisfy end-of-mission constraints downstream. This approach reduces stationkeeping costs for planar and three- dimensional orbits in dynamical systems of varying degrees of fidelity and demonstrates the correlation between optimal maneuver direction and the stable mode observed during ARTEMIS mission operations. An optimally-constrained multiple shooting strategy is also introduced that is capable of computing near optimal maintenance maneuvers without formal optimization software. I. Introduction Most orbits in the vicinity of collinear libration points are inherently unstable and, consequently, sta- tionkeeping strategies are a critical component of mission design and operations in these chaotic dynamical regions. Stationkeeping is particularly important for libration point missions in the Earth-Moon system since fast time scales require that orbit maintenance maneuvers be implemented approximately once per week. Assuming that acceptable orbit determination solutions require 3-4 days to obtain, stationkeeping ∆V planning activities must be quick, efficient, and effective. Furthermore, the duration of a libration point mission is often dictated by the remaining propellant so a key capability is maintenance maneuvers that are low-cost. Thus, to accommodate a likely increase in future operations in the vicinity of the Earth-Moon libration points, fast, reliable algorithms capable of rapidly computing low-cost stationkeeping maneuvers, with little or no human interaction, are critical.
    [Show full text]
  • Trajectory Sensitivities for Sun-Mars Libration Point Missions
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Calhoun, Institutional Archive of the Naval Postgraduate School Calhoun: The NPS Institutional Archive Faculty and Researcher Publications Faculty and Researcher Publications Collection 2016 Trajectory Sensitivities for Sun-Mars Libration Point Missions Kutrieb, Joshua M. http://hdl.handle.net/10945/48886 AAS 01-327 TRAJECTORY SENSITIVITIES FOR SUN-MARS LIBRATION POINT MISSIONS John P. Carrico*, Jon D. Strizzi‡, Joshua M. Kutrieb‡, and Paul E. Damphousse‡ Previous research has analyzed proposed missions utilizing spacecraft in Lissajous orbits about each of the co-linear, near-Mars, Sun-Mars libration points to form a communication relay with Earth. This current effort focuses on 2016 Earth-Mars transfers to these mission orbits with their trajectory characteristics and sensitivities. This includes further analysis of using a mid-course correction as well as a braking maneuver at close approach to Mars to control Lissajous orbit insertion and the critical parameter of the phasing of the two-vehicle relay system, with one spacecraft each in orbit about L1 and L2. Stationkeeping sensitivities are investigated via a monte carlo technique. Commercial, desktop simulation and analysis tools are used to provide numerical data; and on-going, successful collaboration between military and industry researchers in a virtual environment is demonstrated. The resulting data should provide new information on these trajectory sensitivities to future researchers and mission planners. INTRODUCTION “NASA is seeking innovation to attack the diversity of Mars…to change the vantage point from which we explore…” - CNN, 25 June 2001 The concept of using communication relay vehicles in orbit about colinear Lagrange points to support exploration of the secondary body is not entirely new, being first conceptualized in the case of the Earth-Moon system by R.
    [Show full text]
  • Interaction Mechanism and Response of Tidal Effect on the Shallow Geology of Europa Yifei Wang 1 ABSTRACT 1. INTRODUCTION 2
    1 Interaction Mechanism and Response of Tidal Effect on the Shallow Geology of Europa Yifei Wang 1 Beijing University of Aeronautics and Astronautics Department of Materials Science and Engineering Undergraduate ABSTRACT Europa has been confirmed to have a multilayered structure and complex geological condition in last two decades whose detail and cause of formation remains unclear. In this work, we start from analyzing the mechanism of tidal effect on satellite’s surface and discuss if interaction like tidal locking and orbital resonance play an important role in tidal effect including heating, underground convection and eruption. During discussion we propose the main factors affecting Europa’s tidal heat and the formation mechanism of typical shallow geological features, and provide theoretical support for further exploration. Keywords: Europa, tidal heating, tidal locking, orbital resonance 1. INTRODUCTION According to existing observations by Galileo radio-tracking/gravity data and Galileo SSI images, Europa has a complex structure and distribution of different components including solid ice layer, warm liquid ocean, local convection and eruption between solid and liquid region, and hard brittle lithosphere. And for Jupiter’s three moon system--IO, Europa and Ganymede, these are in the rotation and revolution of synchronous pattern which called tidal locking. Besides, it is confirmed that IO, Jupiter and Ganymede are in the situation of orbital resonance, whose orbital period ratio is about 1:2:4 and the ratio remains constant with time. Their effect on the surface is periodic during revolution. From Ogilvie and Lin’s work2, a response to tidal force is separated in two parts: an equilibrium tide and a dynamic tide which is irrelevant with time and the angular position to Jupiter and other satellites because of periodic interaction to the subsurface structure.
    [Show full text]
  • 12 Lunar Libration Point - \ , Gpo Price $ - I I - Cfsti Price(S) $
    ~_________ - https://ntrs.nasa.gov/search.jsp?R=19670017256 2020-03-24T00:44:51+00:00Z View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by NASA Technical Reports Server . *‘ L. ---- ~ X-507-67-167 -- -. , \ A ‘“HUMMINGBIRD” ,-’ FOR THE . I 12 LUNAR LIBRATION POINT - \ , GPO PRICE $ - I I - CFSTI PRICE(S) $ - Hard copy - Microfiche ff 653 July 65 F. 0. VONBUN ,- / APRIL1967 , - GODDARD SPACE FLCGHT CENTER - i GREENBELT, MARYLAND , - - I .Y i \“ , .. Q - X-507-67-167 A "HUMMINGBIRD" FOR THE L, LUNAR LIBRATION POINT F. 0. Vonbun April 1967 Goddard Space Flight Center Greenbelt, Maryland TABLE OF CONTENTS ABSTRACT...................................... vi SUMMARY ...................................... vi 1. ACCELERATIONS EXPERIENCED BY THE "HUMMINGBIRD". 1 A. General .. .. .. .. .. .... .. 1 B. Accelerations Along the Earth-Moon Line . 4 C. TheSun'sInfluence . .. ... 7 II. NECESSARY SPECIFIC IMPULSE FOR ECONOMIC STATION KEEPING. 9 A. Fuel to Spacecraft Mass Ratio . 9 B. Needed Station Keeping and Attitude Engines. 10 III. REFERENCES ................................... 15 iii A tlHUMMINGBIRD1l FOR THE L, LUNAR LIBRATION POINT F. 0. Vonbun ABSTRACT Consider as an example a spacecraft, contrary to all previously published investigations, NOT in an orbit but in a more or less permanent position in the vicinity of the far-sided lunar libration point L, , as commonly called, Such a spacecraft would be very useful for a communications relay between the back side of the moon and an earth tracking station. It could be placed Icaboverrthe lunar libration point in such a fashion that it is never occulted, thus making the stated communication link a continuous one, independent of time.
    [Show full text]