Tubulin Post-Translational Modifications and the Construction of Microtubular Organelles in Trypanosoma Brucei

Total Page:16

File Type:pdf, Size:1020Kb

Tubulin Post-Translational Modifications and the Construction of Microtubular Organelles in Trypanosoma Brucei Tubulin post-translational modifications and the construction of microtubular organelles in Trypanosoma brucei ROSEMARY SASSE and KEITH GULL* hiologicnl Laboratory, University of Kent, Canterbury, Kent CT2 7NJ, UK * Author for correspondence Summary We have used specific monoclonal antibodies to in the cell cycle. T. brucei therefore, represents a facilitate a study of acetylated and tyrosinated cell type with extremely active mechanisms for a'-tubulin in the microtubule (MT) arrays in the the post-translational modification of a-tubulin. Trypanosoma brucei cell. Acetylated a-tubulin is Our analyses of the timing of acquisition and not solely located in the stable microtubular modulation in relation to MT construction in T. arrays but is present even in the ephemeral brucei, suggest that acetylation and detyrosin- microtubules of the mitotic spindle. Moreover, ation of a'-tubulin are two independently regu- there is a uniform distribution of this isoform in lated post-translational modifications, that are all arrays. Studies of flagella complexes show that not uniquely associated with particular subsets of acetylation is concomitant with assembly of MTs. MTs of defined lability, position or function. Post- There is no subsequent major modulation in the assembly detyrosination of a-tubulin may pro- content of acetylated a'-tubulin in MTs. Con- vide a mechanism whereby the cell could discri- minate between new and old MTs, during con- versely, polymerizing flagellar MTs have a high struction of the cytoskeleton through the cell tyrosinated n-tubulin content, which is sub- cycle. However, we also suggest that continuation sequently reduced to a basal level at a discrete of detyrosination, allows the cell, at cell division, point in the cell cycle. The MTs of the intranu- to partition into daughter cells two equivalent sets clear mitotic spindle appear never to contain of cytoskeletal MTs. tyrosinated a-tubulin, suggesting that they are actually constructed of detyrosinated a'-tubulin or Key words: tubulin, acetylation, tyrosination, that detyrosination is extremely rapid at this time microtubules, Trypanosoma bnicei. Introduction 1982) and the second involves the acetylation of a lysinc within the polypeptide chain (L'Hernault & Roscn- Tubulin isotypc diversity can be established in cells by baum, 1983, 1985a,b). Evidence that these events lead the expression of a heterogeneous multi-gene family to the production of distinct sub-populations of MTs (Cleveland & Sullivan, 1985). However, initial examin- within cells comes mainly from the use of monoclonal ation of the products of these genes suggests that they and polyclonal antibodies that can discriminate be- do not become located in specific microtubule (MT) arrays within the cell (Lewis et al. 1987; Lopata & tween the tubulin isoforms; tyrosinated and detyrosin- Cleveland, 1987). In contrast to this position, two ated (Glu) a'-tubulin and acetylated a'-tubulin (Gun- reversible post-translational events are now known that dersen et al. 1984; Thompson et al. 1984; Piperno & lead not only to the production of specific tubulin Fuller, 1985; LeDizet & Piperno, 1986; Diggins & isoforms, but ultimately to the production of hetero- Dove, 1987; Kreis, 1987; Piperno et al. 1987; Sassee/ geneous populations of microtubules (MTs) within one al. 1987; Wehland & Weber, 1987). cell. Both reversible post-translational modifications In cultured animal cells, while the majority of affect the a'-tubulin molecule. The first involves the interphase MTs appear to be tyrosinated removal of the carboxy-terminal tyrosine residue O'-tubulin-rich (Wehland et al. 1983; Gunderscn et al. (Barra et al. 1973; Agarana et al. 1980; Thompson, 1984), Glu ar-tubulin-rich MTs are confined to Journal of Cell Science 90, - (1988) Printed in Great Britain © The Company of Biologists Limited 1988 577 specialized arrays such as the centrioles, primary cilia their tubulin isoform composition. and midbodies, and some differentiated structures We have used the monoclonal antibody, 6-1 IB-1 such as axons (Gundersen & Bulinski, 1986a,6; Cam- (Piperno & Fuller, 1985), in order to provide an bray-Deakin & Burgoyne, 1987a,6; VVehland & Weber, immunological characterization of the acetylated 1987). A subpopulation of Glu O'-tubulin-rich MTs a'-tubulin isoform of T. brucei. Use of this antibody in does exist in the cytoplasm of some cells; however, immunofluorescence studies reveals that acetylated their number can vary between cell lines and even a'-tubulin is present throughout all of the MT arrays of between cells of the same cell line (Gundersen et al. this cell, even in the spindle MTs. Therefore, acety- 1984; Gundersen & Bulinski, 19866; Cambray-Deakin lated a'-tubulin is not solely located to the stable MT & Burgoyne, 19876; Kreis, 1987; Schulze et al. 1987; arrays. Studies of isolated flagella complexes show that Wchland & Weber, 1987). In many cases Glu MTs MTs become acetylated during their polymerization have been characterized as being more stable in terms phase and show no subsequent major modulations in of drug resistance, cold stability and turnover (Cam- the content of acetylated a'-tubulin. Conversely, stain- bray-Deakin & Burgoyne, 19876; Gundersen et al. ing with the tyrosinated cv-tubulin-specific antibody 1987; Kreis, 1987; Schulze et al. 1987; Wehland & YL1/2 (Kilmartin et al. 1982; Wehland et al. 1984), Weber, 1987). Acetylation of a'-tubulin was originally shows that these polymerizing MTs have a high characterized as a post-translational modification oc- tyrosinated a'-tubulin content, which is subsequently curring during formation of the flagellum in Chlamy- reduced to a basal level. This may provide the cell with domonas (L'Hernault & Rosenbaum, 1983, 1986a,6). a method for discriminating between new and old MTs Subsequently, it was detected in other microorganisms during the cell cycle, whilst also permitting the pro- and, via the use of monoclonal antibodies, in animal duction of equivalent daughter cells at cytokinesis. The cells (Thompson et al. 1984; Piperno & Fuller, 1985; MTs of the intranuclear mitotic spindle appear never to Diggins & Dove, 1987; LiDizet & Piperno, 1987; contain tyrosinated a'-tubulin, suggesting that they are Piperno et al. 1987; Sasse et al. 1987). In animal cells actually constructed of detyrosinated a'-tubulin or that the population of acetylated MTs has a distribution detyrosination is extremely rapid at this time in the cell pattern showing a remarkable similarity to that of Glu cycle. T. brucei therefore, represents a cell type with MTs (compare Gundersen et al. (1984) with Thomp- extremely active mechanisms for the post-translational son et al. (1984) and Piperno et al. (1987)). These modification of a'-tubulin. Our analyses of the timing relationships have recently been assessed directly by of acquisition and modulation in relation to MT comparing the stable, the acetylated and the detyrosin- construction in T. brucei suggests that acetylation and ated MTs within the same cell (Cambray-Deakin & detyrosination of a'-tubulin are two independently Burgoyne, 19876; Schulze et al. 1987). In some regulated post-translational modifications, that are not cultured animal cells these were found to be properties uniquely associated with particular subsets of MTs of of the same cytoplasmic MT sub-set; however, vari- defined lability, position or function. ations in this relationship were found in other cell types (Schulze et al. 1987). Materials and methods We have recently shown that both the acetylation and tyrosination post-translational modification cycles op- Trypanosomes erate in Ttypanosoma brucei (Stieger et al. 1984; Procyclic Trypanosoma brucei brucei, stock 427 were grown Schneider et al. 1987; Sherwin et al. 1987). The in tissue-culture flasks in SDM 79 medium (Brun & Schonen- construction of new MT arrays takes place at discrete berger, 1979). Cells were harvested during exponential times within the cell cycle and a number of morpho- growth, i.e. at approximately 5X 106 cells ml"'. logical markers permit identification of the position of individual cells within the cell cycle (Sherwin et al. Antibodies 1987; Sherwin & Gull, 1988). The MT arrays con- The antibodies used in this study are as follows: 6-11B-1, a structed during the cell cycle vary in their type, mouse monoclonal antibody raised against sea-urchin sperm stability and position. Two sets of stable MTs are axonemes and characterized as reacting specifically with constructed, subpellicular MTs and flagellar MTs, acetylated a'-tubulin (Piperno & Fuller, 1985); YLl/2, a rat both of which remain present thereafter even during monoclonal antibody raised against yeast tubulin and charac- mitosis. Later in the cell cycle ephemeral MTs are terized as reacting with tubulin carrying an aromatic amino acid at its carboxy terminus (Kilmartin et al. 1982; Wehland polymerized in the intranuclear mitotic spindle (Vick- et al. 1984); DM1 A, a general crossreacting anti-tr-tubulin erman & Preston, 1976). This system therefore now monoclonal antibody (Blose et al. 1984); KMX-1, a general provides an opportunity to establish the relationship crossreacting anti-/3-tubulin monoclonal antibody (Birkett et between construction of discrete MT arrays, the timing al. 1985); a"T12, a rabbit polyclonal antisera specific for of their acquisition of post-translationally modified detyrosinated a'-tubulin (Kreis, 1987). O"T12 was used as a forms of tubulin and the subsequent modulation of potential probe for detyrosinated tubulin
Recommended publications
  • 3718 Issue63july2010 1.Pdf
    Issue 63.qxd:Genetic Society News 1/10/10 14:41 Page 1 JULYJULLYY 2010 | ISSUEISSUE 63 GENETICSGENNETICSS SOCIETYSOCIEETY NENEWSEWS In this issue The Genetics Society NewsNewws is edited by U Genetics Society PresidentPresident Honoured Honoured ProfProf David Hosken and items ittems for future future issues can be sent to thee editor,editor, preferably preferably U Mouse Genetics Meeting by email to [email protected],D.J.Hosken@@exeter.ac.uk, or U SponsoredSponsored Meetings Meetings hardhard copy to Chair in Evolutionary Evoolutionary Biology, Biology, UniversityUniversity of Exeter,Exeter, Cornwall Cornnwall Campus, U The JBS Haldane LectureLecture Tremough,Tremough, Penryn, TR10 0 9EZ UK.UK. The U Schools Evolutionn ConferenceConference Newsletter is published twicet a year,year, with copy dates of 1st June andand 26th November.November. U TaxiTaxi Drivers The British YeastYeaste Group Group descend on Oxford Oxford for their 2010 meeting: m see the reportreport on page 35. 3 Image © Georgina McLoughlin Issue 63.qxd:Genetic Society News 1/10/10 14:41 Page 2 A WORD FROM THE EDITOR A word from the editor Welcome to issue 63. In this issue we announce a UK is recognised with the award of a CBE in the new Genetics Society Prize to Queen’s Birthday Honours, tells us about one of Welcome to my last issue as join the medals and lectures we her favourite papers by Susan Lindquist, the 2010 editor of the Genetics Society award. The JBS Haldane Mendel Lecturer. Somewhat unusually we have a News, after 3 years in the hot Lecture will be awarded couple of Taxi Drivers in this issue – Brian and seat and a total of 8 years on annually to recognise Deborah Charlesworth are not so happy about the committee it is time to excellence in communicating the way that the print media deals with some move on before I really outstay aspects of genetics research to scientific issues and Chris Ponting bemoans the my welcome! It has been a the public.
    [Show full text]
  • The Trypanosoma Brucei Subpellicular Microtubule Array Is Organized Into Functionally Discrete
    bioRxiv preprint doi: https://doi.org/10.1101/2020.11.09.375725; this version posted November 9, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 The Trypanosoma brucei subpellicular microtubule array is organized into functionally discrete 2 subdomains defined by microtubule associated proteins 3 4 Amy N. Sinclair1,#, Christine T. Huynh1, Thomas E. Sladewski1, Jenna L. Zuromski2, Amanda E. 5 Ruiz2, and Christopher L. de Graffenried1,†,* 6 7 1. Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 8 02912 9 2. Department of Pathology and Laboratory Medicine, Center for International Health Research, 10 Brown University, Providence, RI 02903 11 *To whom correspondence should be addressed. Phone: +1 (401) 863-6148 E-mail: 12 [email protected]. 13 #. ORCID: 0000-0001-6688-6754 14 †. ORCID: 0000-0003-3386-6487 15 16 Short title: Subpellicular array subdomains in T. brucei 17 18 Abbreviations: Flagellum attachment zone (FAZ), microtubule associated protein (MAP), 19 nucleus (N), kinetoplast (K), immunogold electron microscopy (iEM), transmission electron 20 microscopy (TEM), RNA interference (RNAi), mNeonGreen (mNG), maltose binding protein 21 (MBP), total internal reflection fluorescence microscopy (TIRF) 22 23 Keywords: cytoskeleton, microtubules, microtubule associated proteins, subpellicular 24 microtubule array, trypanosomatid, cell morphology bioRxiv preprint doi: https://doi.org/10.1101/2020.11.09.375725; this version posted November 9, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • A N N U a L R E P O R T 2 0
    0 1 0 2 Acknowledgements T R HFSPO is grateful for the support of the following organizations: O P Australia E R National Health and Medical Research Council (NHMRC) L Canada A Canadian Institute of Health Research (CIHR) U Natural Sciences and Engineering Research Council (NSERC) N European Union N European Commission - A Directorate General Information Society (DG INFSO) European Commission - Directorate General Research (DG RESEARCH) France Communauté Urbaine de Strasbourg (CUS) Ministère des Affaires Etrangères et Européennes (MAEE) Ministère de l’Enseignement Supérieur et de la Recherche (MESR) Région Alsace Germany Federal Ministry of Education and Research (BMBF) India Department of Biotechnology (DBT), Ministry of Science and Technology Italy Ministry of Education, University and Research (CNR) Japan Ministry for Economy, Trade and Industry (METI) Ministry of Education, Culture, Sports, Science and Technology (MEXT) Republic of Korea Ministry of Education, Science and Technology (MEST) New Zealand Health Research Council (HRC) Norway Research Council of Norway (RCN) Switzerland State Secretariat for Education and Research (SER) United Kingdom The International Human Frontier Science Biotechnology and Biological Sciences Research Program Organization (HFSPO) Council (BBSRC) 12 quai Saint Jean - BP 10034 Medical Research Council (MRC) 67080 Strasbourg CEDEX - France Fax. +33 (0)3 88 32 88 97 United States of America e-mail: [email protected] National Institutes of Health (NIH) Web site: www.hfsp.org National Science Foundation (NSF) Japanese web site: http://jhfsp.jsf.or.jp HUMAN FRONTIER SCIENCE PROGRAM The Human Frontier Science Program is unique, supporting international collaboration to undertake innovative, risky, basic research at the frontiers of the life sciences.
    [Show full text]
  • CV December 2019Pub
    CURRICULUM VITAE December 2019 1. Personal data. Stephen M. Beverley Address: Birthdate: 10/25/1951 Department of Molecular Microbiology Male Washington University School of Medicine U.S. citizen 660 S. Euclid Ave. Married, 1 dependent St. Louis, MO 63110 314-747-2630, -2634 FAX [email protected] 2. Education. Ph.D. - Department of Biochemistry, University of California, Berkeley, June, 1979. Allan C. Wilson, thesis advisor. B.S. - Department of Biology, California Institute of Technology. June 1973 (with honors). Leroy Hood, undergraduate research advisor. 3. Appointments. 2018 – Ernest St. John Simms Distinguished Professor in Molecular Microbiology, Washington University Medical School. 1997-2018 Head, Dept. of Molecular Microbiology, Washington University Medical School. 1997- 2018 Director, Center for Infectious Disease Research, Washington University Medical School 1997-2018 Marvin A. Brennecke Professor in Molecular Microbiology, Washington University Medical School. 1996-2003 Co-founder and Chief Scientist, Symbiontics Inc. 1995-97 Acting Chair, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School. 1993-97 Hsien Wu and Daisy Yen Wu Professorship in Biological Chemistry and Molecular Pharmacology, Harvard Medical School. 1992-97 Professor of Biological Chemistry and Molecular Pharmacology, Harvard Medical School. 1988-92 Associate Professor of Biological Chemistry and Molecular Pharmacology, Harvard Medical School. 1983-88 Assistant Professor of Pharmacology, Harvard Medical School. 1981-83 Postdoctoral Research Affiliate, Department of Biological Sciences, Stanford University (with R.T. Schimke). 1979-81 Damon Runyon - Walter Winchell Postdoctoral Research Fellow, Department of Biological Sciences, Stanford University (with R.T. Schimke). 4. Honors and Awards. B.S. with honors, California Institute of Technology (1973). Damon Runyon - Walter Winchell Postdoctoral Fellowship (1979-1981).
    [Show full text]
  • The ST Cross College Magazine 2015 Ad Quattuor Cardines Mundi
    CROSSWORD THE ST CROSS COLLEGE MAGAZINE 2015 AD QUAttUOR CARDINES MUNDI Contents ST Cross COLLEGE West Quad Campaign UNIVERSITY OF OXFORD 04 An update on the progress towards achieving this landmark project COVER STORY – The 161st Boat Race 05 St Cross students making history on the Tideway The Body in the Garden 06 Recent investigations undertaken by Oxford Archaeology ahead of the construction of the West Quad revealed a body in the garden The St Cross 50th Anniversary Lecture Series 08 This series of termly lectures brought three eminent speakers to Oxford to celebrate the th Crossword – Issue 23 College’s 50 Anniversary Editor: Susan Berrington St Cross Merchandise 09 A selection of gifts, books and momentos Managing Editor: Ella Bedrock Design: Broccoli Creative Design AI Risk 10 Stuart Armstrong looks at the risks associated with Contact details: Artificial Intelligence The Development & Alumni Relations Office St Cross College Students’ News 61 St Giles 12 Oxford ‘Four Corners’ - The St Cross International Poetry OX1 3LZ 13 Competition 2015 Tel: +44 (0)1865 278480 Kate Venables talks of the success of the ‘Four Corners’ Email: [email protected] International Poetry Competition www.stx.ox.ac.uk St Cross College Photography Competition 2015 Cover Image: 14 Students Jamie Cook (MSc Engineering Science) and Shelley Pearson (MSc Child Development Sports News and Education), who were in the winning Dark 16 Blue boats in this year’s Oxford and Cambridge Members’ News Boat Race, with Olympic gold medallist rower 18 Tim Foster (Dip Social Studies, 1996). Matriculation and College Photographs Photo credit: Phil Sills 20 The 2015 Telethon This edition of Crossword is printed using an 22 A conversation from the call room environmentally friendly, waterless printing process, on Forest Stewardship Council (FSC) certified paper and to Eco Management Audit The Four Corners of the World Scheme (EMAS) standards.
    [Show full text]
  • Parasitology Proteomics and the Trypanosoma Brucei Cytoskeleton
    Parasitology http://journals.cambridge.org/PAR Additional services for Parasitology: Email alerts: Click here Subscriptions: Click here Commercial reprints: Click here Terms of use : Click here Proteomics and the Trypanosoma brucei cytoskeleton: advances and opportunities NEIL PORTMAN and KEITH GULL Parasitology / Volume 139 / Special Issue 09 / August 2012, pp 1168 ­ 1177 DOI: 10.1017/S0031182012000443, Published online: 04 April 2012 Link to this article: http://journals.cambridge.org/abstract_S0031182012000443 How to cite this article: NEIL PORTMAN and KEITH GULL (2012). Proteomics and the Trypanosoma brucei cytoskeleton: advances and opportunities. Parasitology, 139, pp 1168­1177 doi:10.1017/S0031182012000443 Request Permissions : Click here Downloaded from http://journals.cambridge.org/PAR, IP address: 129.67.82.166 on 23 Oct 2012 1168 Proteomics and the Trypanosoma brucei cytoskeleton: advances and opportunities NEIL PORTMAN and KEITH GULL* The Sir William Dunn School of Pathology and Oxford Centre for Integrative Systems Biology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK (Received 4 January 2012; revised 16 February 2012; accepted 17 February 2012; first published online 4 April 2012) SUMMARY Trypanosoma brucei is the etiological agent of devastating parasitic disease in humans and livestock in sub-saharan Africa. The pathogenicity and growth of the parasite are intimately linked to its shape and form. This is in turn derived from a highly ordered microtubule cytoskeleton that forms a tightly arrayed cage directly beneath the pellicular membrane and numerous other cytoskeletal structures such as the flagellum. The parasite undergoes extreme changes in cellular morphology during its life cycle and cell cycles which require a high level of integration and coordination of cytoskeletal processes.
    [Show full text]
  • The Ship 2013/2014
    St Anne’s College Record 2013 – 2014 - Number 103 - Annual Publication of the ASM 2013 – 2014 The Ship St Anne’s College St Anne’s Careers Day 2014 - an initiative of the JCR, MCR and ASM/Keith Barnes St Anne’s College Record 2013-2014 Bristol & West Branch: Liz Alexander Photographs Number 103 Cambridge Branch: Sue Collins Annual Publication of the ASM London Branch: Clare Dryhurst All photographs unless otherwise credited Midlands Branch: Jane Darnton are the property of St Anne’s College, Committee 2013-2014 North East Branch: Gillian Pickford Oxford. Presidents: Clare Dryhurst North West Branch: Maureen Hazell and Jackie Ingram Oxford Branch: Stephanie North Front cover photo: Students hide their faces Honorary Secretary: Pam Jones South of England Branch: Maureen during Matriculation (reason unknown), Honorary Editor: Judith Vidal-Hall Gruffydd Jones October 2013/Keith Barnes; p.3, p.10, Ex Officio: Tim Gardam, Kate Davy p.71, inside back cover, and back cover – Designed and printed by Windrush Group Keith Barnes; p.24 – Digital images of new Until 2014: Kate Hampton Windrush House, Avenue Two. Library and Academic Centre supplied by Until 2015: Hugh Sutherland Station Lane, Witney, Oxfordshire OX28 4XW Fletcher Priest Architects Until 2016: David Royal Tel: 01993 772197 Contents Contents From the Editor 2 Gaudy Seminar 2013 – Tim Benton 40 ASM Presidents’ report 3 Gaudy Seminar 2013 – Mary Atkinson 42 From the Principal 4 Gaudy and Alumni Weekend 2014 44 Interview with the Principal 6 Careers – Will Harvey 47 From the Development
    [Show full text]
  • Communicating Biochemistry: Meetings and Events
    © The Authors. Volume compilation © 2011 Portland Press Limited Chapter 3 Communicating Biochemistry: Meetings and Events Ian Dransfield and Brian Beechey Scientific conferences organized by the Biochemical Society represent a key facet of activity throughout the Society’s history and remain central to the present mission of promoting the advancement of molecular biosciences. Importantly, scientific conferences are an important means of communicating research findings, establishing collaborations and, critically, a means of cementing the community of biochemical scientists together. However, in the past 25 years, we have seen major changes to the way in which science is communicated and also in the way that scientists interact and establish collabo- rations. For example, the ability to show videos, “fly through” molecular structures or show time-lapse or real-time movies of molecular events within cells has had a very positive impact on conveying difficult concepts in presentations. However, increased pressures on researchers to obtain/maintain funding can mean that there is a general reluctance to present novel, unpublished data. In addition, the development of email and electronic access to scientific journals has dramatically altered the potential for communi- cation and accessibility of information, perhaps reducing the necessity of attending meetings to make new contacts and to hear exciting new science. The Biochemical Society has responded to these challenges by progressive development of the meetings format to better match the
    [Show full text]
  • An Essential Role for the Leishmania Major Metacaspase in Cell Cycle Progression
    Cell Death and Differentiation (2008) 15, 113–122 & 2008 Nature Publishing Group All rights reserved 1350-9047/08 $30.00 www.nature.com/cdd An essential role for the Leishmania major metacaspase in cell cycle progression A Ambit1, N Fasel3, GH Coombs1,2,4 and JC Mottram*,1,2 Metacaspases (MCAs) are distant orthologues of caspases and have been proposed to play a role in programmed cell death in yeast and plants, but little is known about their function in parasitic protozoa. The MCA gene of Leishmania major (LmjMCA)is expressed in actively replicating amastigotes and procyclic promastigotes, but at a lower level in metacyclic promastigotes. LmjMCA has a punctate distribution throughout the cell in interphase cells, but becomes concentrated in the kinetoplast (mitochondrial DNA) at the time of the organelle’s segregation. LmjMCA also translocates to the nucleus during mitosis, where it associates with the mitotic spindle. Overexpression of LmjMCA in promastigotes leads to a severe growth retardation and changes in ploidy, due to defects in kinetoplast segregation and nuclear division and an impairment of cytokinesis. LmjMCA null mutants could not be generated and following genetic manipulation to express LmjMCA from an episome, the only mutants that were viable were those expressing LmjMCA at physiological levels. Together these data suggest that in L. major active LmjMCA is essential for the correct segregation of the nucleus and kinetoplast, functions that could be independent of programmed cell death, and that the amount of LmjMCA is crucial. The absence of MCAs from mammals makes the enzyme a potential drug target against protozoan parasites.
    [Show full text]
  • TRINITY 2005 Contents
    Fusion #4f 10/6/05 1:42 pm Page 2 fusionTHE NEWSLETTER OF THE SIR WILLIAM DUNN SCHOOL OF PATHOLOGY ISSUE 4 . TRINITY 2005 Contents Editorial 1 Editorial News 2 Anyone reading William James’s article on the history of Virology at the Dunn School Virology at the will not fail to notice his ‘aside’ speculation on why the Dunn School has been such a Dunn School 4 successful contributor to medical science and fundamental biology. It has always been an Institute without Divisions, and has consequently fostered strong interdisciplinary Albert Beyers 6 science. You, Me and HIV 7 Our strong publication record and success in attract senior figures in the areas of the raising grant funding attests to the success of molecular basis of cancer, and in cell-signalling. Jim Gowans that philosophy. This is, of course, a structure To achieve the former the Division has agreed to recirculated 8 which carries some risks, as certain important allow the department to fundraise for the Research Notes 9 areas may go through periods when the "active creation of the César Milstein Chair in Molecular Basis of Cancer. César Milstein was an old friend mass" in a given area would seem small. In Overcoming antibiotic recent years the department has had the of the department, and his discovery of resistance 10 satisfaction of seeing that some of its star monoclonal antibodies opened up many fields of scientists have moved to occupy important medical science for which many of his friends Fishing for leadership positions in other British Universities here are enormously grateful.
    [Show full text]
  • Authors 1St Author
    Authors 1st Author Dominique Piché, Isabella Tavernaro, Jana Fleddermann, Materials Department, University Juan G. Lozano, Aakash Varambhia, Mahon L. Maguire, of Oxford, Parks Road, Oxford Marcus Koch, Tomofumi Ukai, Armando J. Hernández OX1 3PH, England Rodríguez, Lewys Jones, Frank Dillon, Israel Reyes Molina, Mai Mitzutani, Evelio R. González Dalmau, Toru Maekawa, Peter D. Nellist, Annette Kraegeloh, Nicole Grobert Louise V. Webb, Alessandro Barbarulo, Jelle Huysentruyt, Division of Infection and Tom Vanden Berghe, Nozomi Takahashi, Steven Ley, Immunity, UCL Institute of Peter Vandenabeele, Benedict Seddon Immunity and Transplantation, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK Didac Carmona-Gutierrez, Andreas Zimmermann, Institute of Molecular Katharina Kainz, Federico Pietrocola, Guo Chen, Silvia Biosciences, NAWI Graz, Maglioni, Alfonso Schiavi, Jihoon Nah, Sara Mertel, University of Graz, Graz, 8010 Christine B. Beuschel, Francesca Castoldi, Valentina Austria Sica, Gert Trausinger, Reingard Raml, Cornelia Sommer, Sabrina Schroeder, Sebastian J. Hofer, Maria A. Bauer, Tobias Pendl, Jelena Tadic, Christopher Dammbrueck, Zehan Hu, Christoph Ruckenstuhl, Tobias Eisenberg, Sylvere Durand, Noélie Bossut, Fanny Aprahamian, Mahmoud Abdellatif, Simon Sedej, David P. Enot, Heimo Wolinski, Jörn Dengjel, Oliver Kepp, Christoph Magnes, Frank Sinner, Thomas R. Pieber, Junichi Sadoshima, Natascia Ventura, Stephan J. Sigrist, Guido Kroemer, Frank Madeo Andreas Körner, Martin Schlegel, Torsten Kaussen, Verena Department of Anesthesiology
    [Show full text]
  • Relationships Between the Major Kinetoplastid Paraflagellar Rod Proteins: a Consolidating Nomenclatureଝ Catarina Gadelha A,B, Jonathan H
    Molecular & Biochemical Parasitology 136 (2004) 113–115 Short communication Relationships between the major kinetoplastid paraflagellar rod proteins: a consolidating nomenclatureଝ Catarina Gadelha a,b, Jonathan H. LeBowitz c, Jerry Manning d, Thomas Seebeck e, Keith Gull a,∗ a Sir Willian Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK b Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil c Purdue University, West Lafayette, IN, USA d University of California, Irvine, CA, USA e University of Bern, Bern, Switzerland Received 5 March 2004; received in revised form 18 March 2004; accepted 18 March 2004 The Kinetoplastida comprise a family of flagellated mi- for the different species that has persisted is inaccurate and crobes that are defined by the presence of a network of con- misleading. catenated mitochondrial DNA called the kinetoplast and a As the genome projects of some of the cited species range of other unique features. One such is the paraflagel- (namely, Trypanosoma brucei, Trypanosoma cruzi and lar rod (PFR), which has an essential role in cell motility Leishmania major) are nearing completion, we wish to [1–3], an intricate sub-structural arrangement [4,5] and an introduce a consistent nomenclature for the major PFR interesting phylogenetic distribution [6,7]. proteins and genes in order to avoid confusing or mis- Although the complete composition of the PFR is still leading annotation. We advocate a standard nomenclature unknown, the major structural components have been de- for the major PFR components, based on points listed scribed in several species of Kinetoplastida. The first bio- below: chemical description in kinetoplastids identified the two major PFR proteins, PFR1 and PFR2, in Crithidia fascic- 1.
    [Show full text]