Functional Connectivity of the Anterior Cingulate Cortex Within the Human Frontal Lobe: a Brain-Mapping Meta-Analysis

Total Page:16

File Type:pdf, Size:1020Kb

Functional Connectivity of the Anterior Cingulate Cortex Within the Human Frontal Lobe: a Brain-Mapping Meta-Analysis Exp Brain Res (2000) 133:55–65 Digital Object Identifier (DOI) 10.1007/s002210000400 REVIEW Lisa Koski · Tomáö Paus Functional connectivity of the anterior cingulate cortex within the human frontal lobe: a brain-mapping meta-analysis Published online: 10 May 2000 © Springer-Verlag 2000 Abstract A database of positron-emission-tomography testable hypotheses about functional and effective con- studies published between January 1993 and November nectivity within the human frontal lobe. 1996 was created to address several questions regarding the function and connectivity of the human anterior cin- Key words Anterior cingulate · Positron emission gulate cortex (ACC). Using this database, we have previ- tomography · Meta-analysis · Frontal cortex ously reported on the relationship between behavioural variables and the probability of blood-flow response in distinct subdivisions of the ACC. The goal of the current Introduction analysis was to discover which areas of the frontal cortex show increased blood-flow co-occurring consistently The anterior cingulate cortex (ACC) is a heterogeneous with increased blood-flow in the ACC. Analyses of the region in terms of its cytoarchitecture, connectivity and frequency distributions of peaks in the ACC and the re- function. Since Brodmann’s initial classification of areas maining frontal cortex (FC) yielded several important 24, 25 and 32, evidence has emerged for the further sub- findings. First, FC peaks in the precentral gyrus, superior division of the ACC into limbic and paralimbic regions frontal gyrus, middle frontal gyrus, inferior frontal gy- (Sanides 1964). Anatomists working in both the human rus, medial frontal gyrus and orbitomedial frontal gyri and monkey brain have identified several cytoarchitec- were more frequent in subtractions that also yielded a turally distinct regions within area 24, denoted as 24a, peak in the ACC than in those that did not yield an ACC 24b and 24c (human: Petrides and Pandya 1994; Vogt peak. Second, regional differences in the frequency dis- et al. 1995; Zilles et al. 1995; monkey: Barbas and Pan- tribution of these FC peaks were observed when the dya 1989; Matelli et al. 1991; Petrides and Pandya 1994; ACC peaks were subdivided into the rostral versus cau- Vogt and Pandya 1987; Vogt et al. 1987). Different corti- dal ACC and supracallosal versus subcallosal ACC. cal zones can also be distinguished along the rostral- Peaks in the precentral gyrus and in the vicinity of the caudal plane of the human ACC. The most obvious of supplementary motor area were more prevalent in sub- these is the gigantopyramidal field located in the caudal- tractions with co-occurring peaks in the caudal than with most portion of area 24c, in the dorsal bank of the cingu- the rostral ACC. Peaks in the middle frontal gyrus were late sulcus (Braak 1976). Subtle variations in cytoarchi- more frequent in subtractions with co-occurring peaks in tecture define further subdivisions of area 24 as it curves the paralimbic part of the supracallosal ACC, relative to around rostral to the genu of the corpus callosum (Vogt the subcallosal or limbic supracallosal ACC. These ob- et al. 1995). Cytoarchitectural differences along the ros- servations are consistent with known differences in the tral-caudal plane are also seen in area 32, a transitional anatomic connectivity in these cortical regions, as de- cortex that shares many features of its neighbouring neo- fined in non-human primates. Further analyses of the in- cortical areas. Sarkissov’s brain map (Sarkissov et al. fluence of behavioural variables on the relationships be- 1955) emphasises the resulting gradations from caudal to tween the ACC and other regions of the frontal cortex rostral to subcallosal area 32 in the use of the labels suggested that this type of meta-analysis may provide 32/8, 32/9, 32/10 and 32/12 (see Fig. 1). The anatomic and functional specificity of these sub- divisions is illustrated by the presence of one or more L. Koski · T. Paus (✉) cingulate motor areas in the caudal portion of area 24 Montreal Neurological Institute, 3801 rue University, Montreal, Quebec H3A 2B4, Canada (Luppino et al. 1991; Shima et al. 1991) that contain di- e-mail: [email protected] rect topographic connections to the spinal cord (Dum Tel.: 514-398-8504, Fax: 514-398–1338 and Strick 1991; He et al. 1995). Functional neuroimag- 56 Fig. 1 Cytoarchitectonic divi- sions of the frontal cortex ac- cording to Sarkissov et al. (1955). Note the ventral to dor- sal differentiation of parts a, b, and c within area 24. Also note that the paralimbic anterior cin- gulate area 32 is labelled as a transitional cortex that shares some of the features of medial areas 8, 9, 10 and 12 ing studies in humans support the existence of regions ten used when referring to simple inter-regional correla- within the ACC that are differentially involved in manu- tions, whereas “effective” connectivity refers to a more al, oculomotor and vocal responses (Paus et al. 1993; causal relationship between two systems such that one Picard and Strick 1996). neural system exerts direct influence over the other Although the empirical evidence is less striking, a (Friston et al. 1996). Second, new experimental methods distinction has also been made between the functions of that combine transcranial magnetic stimulation with posi- the supracallosal, or “cognitive”, and the subcallosal, or tron emission tomography (Paus et al. 1997), functional “visceral”, parts of the ACC (Mayberg 1997; Vogt et al. magnetic resonance imaging (Bohning et al. 1998) or 1995). In the monkey, these regions show somewhat dis- electroencephalography (Ilmoniemi et al. 1997) promise tinct patterns of connectivity. Areas 24 and 32 are pre- to demonstrate effective connectivity, without the behav- dominantly supracallosal and are interconnected with ioural confound inherent in traditional imaging approach- dorsolateral frontal areas (Barbas and Pandya 1989; es. Finally, with the growing body of PET experiments, it Morecraft et al. 1993), which have been implicated in is now possible to analyse large sets of data in which cognitive functions such as attention (Mesulam 1981; multiple brain regions may show activation peaks within Posner and Petersen 1990) and working memory (Gold- the same subtraction. The present study demonstrates man-Rakic 1987; Petrides 1996). Subcallosal area 25 how these data may be used to establish which areas of is interconnected with posterior orbitofrontal area 13 the brain show changes in activity that co-occur in a con- (Barbas and Pandya 1989) and has been implicated in sistent manner with changes in a particular region of in- the control of respiration, blood pressure and other auto- terest, i.e. across studies and across various behavioural nomic functions (see Kaada 1960 for a review). manipulations. Our knowledge of the connections between the ACC We recently compiled a database of 107 published and other parts of the frontal cortex has been restricted to PET studies and were able to demonstrate a quantitative non-human primates (Barbas and Pandya 1989; Bates and relationship between increases in the rate of behavioural Goldman-Rakic 1993; Luppino et al. 1993; Morecraft and response across tasks and increases in activation specific Van Hoesen 1992, 1993; Vogt and Pandya 1987), as the to the caudal part of the ACC (Paus et al. 1998). We also invasiveness of anatomical tracing techniques precludes found that increases in task difficulty affected cingulate their use in humans. Research into the connectivity of the blood-flow in a regionally differentiated way, with the human brain relies on the recent development of new greatest increases seen in the paralimbic part of the su- techniques using functional neuroimaging. First, statisti- pracallosal section of the ACC, smaller increases seen in cal methods such as principal components analysis the limbic part of the this section, and negligible changes (Friston et al. 1993), structural equation modelling seen in the subcallosal portion of the ACC. (Horwitz et al. 1995; McIntosh et al. 1994) and multivari- For the present study, we looked for evidence of func- ate partial least squares (McIntosh et al. 1996, 1999) have tional connectivity between the ACC and other parts of been used to evaluate co-activations of brain regions dur- the frontal cortex by returning to our database and as- ing the performance of cognitive tasks. Depending on the sessing which areas of the frontal cortex contained acti- approach, different aspects of inter-regional interactions vation peaks in the same subtractions that produced are emphasised: the term “functional” connectivity is of- peaks in subregions of the ACC. This approach was vali- 57 dated by the confirmation of strong predictions of func- Difficulty Level for the paralimbic, rather than limbic, portions of tional connectivity between the caudal ACC and the pri- the supracallosal cingulate. Only those subtractions containing at least one peak in the mary and supplementary motor areas. Our approach also ACC and one peak elsewhere in the frontal cortex were included suggested connections between supracallosal cingulate in the dataset for the present study. Therefore, the first step of this and the middle frontal gyrus. Finally, we investigated analysis was to conduct a set of tests to determine whether the re- whether these relationships between subregions were de- lationships between the ACC subdivisions and the behavioural variables observed in the earlier study remained significant.
Recommended publications
  • Correction for Partial-Volume Effects on Brain Perfusion SPECT in Healthy Men
    Correction for Partial-Volume Effects on Brain Perfusion SPECT in Healthy Men Hiroshi Matsuda, MD1; Takashi Ohnishi, MD1; Takashi Asada, MD2; Zhi-jie Li, MD1,3; Hidekazu Kanetaka, MD1; Etsuko Imabayashi, MD1; Fumiko Tanaka, MD1; and Seigo Nakano, MD4 1Department of Radiology, National Center Hospital for Mental, Nervous, and Muscular Disorders, National Center of Neurology and Psychiatry, Tokyo, Japan; 2Department of Neuropsychiatry, Institute of Clinical Medicine, University of Tsukuba, Ibaraki, Japan; 3Department of Nuclear Medicine, The Second Clinical Hospital of China Medical University, Shen-Yang City, China; and 4Department of Geriatric Medicine, National Center Hospital for Mental, Nervous, and Muscular Disorders, National Center of Neurology and Psychiatry, Tokyo, Japan The limited spatial resolution of SPECT scanners does not allow Functional changes in the brains of healthy elderly people an exact measurement of the local radiotracer concentration in and patients with neurodegenerative disorders have been brain tissue because partial-volume effects (PVEs) underesti- studied widely by SPECT. However, due to the limited mate concentration in small structures of the brain. The aim of this study was to determine which brain structures show greater spatial resolution of SPECT, the accurate measurement of influence of PVEs in SPECT studies on healthy volunteers and to tracer concentration in brain structures depends on several investigate aging effects on SPECT after the PVE correction. physical limitations—particularly, the relation between ob- Methods: Brain perfusion SPECT using 99mTc-ethylcysteinate ject size and scanner spatial resolution. This relation, known dimer was performed in 52 healthy men, 18–86 y old. The as the partial-volume effect (PVE), biases the measured regional cerebral blood flow (rCBF) was noninvasively measured concentration in small structures by diminishing the true using graphical analysis.
    [Show full text]
  • Translingual Neural Stimulation with the Portable Neuromodulation
    Translingual Neural Stimulation With the Portable Neuromodulation Stimulator (PoNS®) Induces Structural Changes Leading to Functional Recovery In Patients With Mild-To-Moderate Traumatic Brain Injury Authors: Jiancheng Hou,1 Arman Kulkarni,2 Neelima Tellapragada,1 Veena Nair,1 Yuri Danilov,3 Kurt Kaczmarek,3 Beth Meyerand,2 Mitchell Tyler,2,3 *Vivek Prabhakaran1 1. Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA 2. Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA 3. Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin, USA *Correspondence to [email protected] Disclosure: Dr Tyler, Dr Danilov, and Dr Kaczmarek are co-founders of Advanced Neurorehabilitation, LLC, which holds the intellectual property rights to the PoNS® technology. Dr Tyler is a board member of NeuroHabilitation Corporation, a wholly- owned subsidiary of Helius Medical Technologies, and owns stock in the corporation. The other authors have declared no conflicts of interest. Acknowledgements: Professional medical writing and editorial assistance were provided by Kelly M. Fahrbach, Ashfield Healthcare Communications, part of UDG Healthcare plc, funded by Helius Medical Technologies. Dr Tyler, Dr Kaczmarek, Dr Danilov, Dr Hou, and Dr Prabhakaran were being supported by NHC-TBI-PoNS-RT001. Dr Hou, Dr Kulkarni, Dr Nair, Dr Tellapragada, and Dr Prabhakaran were being supported by R01AI138647. Dr Hou and Dr Prabhakaran were being supported by P01AI132132, R01NS105646. Dr Kulkarni was being supported by the Clinical & Translational Science Award programme of the National Center for Research Resources, NCATS grant 1UL1RR025011. Dr Meyerand, Dr Prabhakaran, Dr Nair was being supported by U01NS093650.
    [Show full text]
  • Dissection Technique for the Study of the Cerebral Sulci, Gyri and Ventricles
    Arq Neuropsiquiatr 2008;66(2-A):282-287 Dissection technique for the stuDy of the cerebral sulci, gyri anD ventricles João Paulo Mattos1, Marcos Juliano dos Santos2, João Flavio Daniel Zullo2, Andrei Fernandes Joaquim2, Feres Chaddad-Neto1, Evandro de Oliveira3 Abstract – Neuroanatomy in addition to neurophysiology, are the basic areas for the proper formation from health students to specialized professionals in neuroscience. A step by step guide for practical studies of neuroanatomy is required for this kind of knowledge to become more acceptable among medical students, neurosurgeons, neurologists, neuropediatricians and psychiatric physicians. Based on the well known courses of sulci, gyri and ventricles offered by Beneficência Portuguesa Hospital in São Paulo, Brazil, two times a year, since 1994, totalizing more than 20 complete courses, and answering the request of many neuroscience students and professionals whose asked for a practical guide to the neuroanatomy study, the authors suggest a protocol for the study of superficial and deep brain structures showing how to approach the more structures as possible with minimum damage to the anatomic piece and with the smaller number of brains. Key wordS: neuroanatomy, brain, dissection technique. técnica de dissecação para o estudo dos sulcos, giros e ventriculos cerebrais Resumo – Neuroanatomia e a neurofisiologia são as áreas básicas para a adequada formação desde estudantes na área da saúde a profissionais especializados em neurociências. Um guia prático, passo a passo, para o estudo
    [Show full text]
  • Mesial Frontal Epilepsy
    Epikpsia, 39(Suppl. 4):S49-S61. 1998 Lippincon-Raven Publishers, Philadelphia 0 International League Against Epilepsy Mesial Frontal Epilepsy Norman K. So Oregon Comprehensive Epilepsy Program, Legacy Portland Hospitals, Portland, Oregon, U.S.A. Summary: The mesiofrontal cortex comprises a number of occur. The task of localization of the epileptogenic zone can be distinct anatomic and functional areas. Structural lesions and challenging, whether EEG or imaging methods are used. Suc- cortical dysgenesis are recognized causes of mesial frontal epi- cessful localization can lead to a rewarding outcome after epi- lepsy, but a specific gene defect may also be important, as seen lepsy surgery, particularly in those with an imaged lesion. in some forms of familial frontal lobe epilepsy. The predomi- Key Words: Mesial frontal epilepsy-cingulate gyrus- nant seizure manifestations, which are not necessarily strictly Supplementary motor area-Absence seizure-Hypermotor correlated with a specific ictal onset zone, are absence, hyper- seizure-Postural tonic seizure-Epilepsy surgery. motor, and postural tonic seizures. Other seizure types also FUNCTIONAL ANATOMY convolution. Traditional cytoarchitectonics have further subdivided this anterior frontal region. The frontal pole The frontal lobe is the largest lobe in the brain, ac- refers to the anterior most portion of the frontal lobe, but counting for one-third to one-half of total brain volume there is little consensus on how far back this extends. and weight. On the medial surface, the most important One or more curved.sulci are seen anterior and inferior to landmark is the cingulate sulcus (Fig. 1). This runs as an the cingulate sulcus, called the superior and inferior ros- inverted “C” following the contour of the corpus callo- tral sulci.
    [Show full text]
  • Seed MNI Coordinates Lobe
    MNI Coordinates Seed Lobe (Hemisphere) Region BAa X Y Z FP1 -18 62 0 Frontal Lobe (L) Medial Frontal Gyrus 10 FPz 4 62 0 Frontal Lobe (R) Medial Frontal Gyrus 10 FP2 24 60 0 Frontal Lobe (R) Superior Frontal Gyrus 10 AF7 -38 50 0 Frontal Lobe (L) Middle Frontal Gyrus 10 AF3 -30 50 24 Frontal Lobe (L) Superior Frontal Gyrus 9 AFz 4 58 30 Frontal Lobe (R) Medial Frontal Gyrus 9 AF4 36 48 20 Frontal Lobe (R) Middle Frontal Gyrus 10 AF8 42 46 -4 Frontal Lobe (R) Inferior Frontal Gyrus 10 F7 -48 26 -4 Frontal Lobe (L) Inferior Frontal Gyrus 47 F5 -48 28 18 Frontal Lobe (L) Inferior Frontal Gyrus 45 F3 -38 28 38 Frontal Lobe (L) Precentral Gyrus 9 F1 -20 30 50 Frontal Lobe (L) Superior Frontal Gyrus 8 Fz 2 32 54 Frontal Lobe (L) Superior Frontal Gyrus 8 F2 26 32 48 Frontal Lobe (R) Superior Frontal Gyrus 8 F4 42 30 34 Frontal Lobe (R) Precentral Gyrus 9 F6 50 28 14 Frontal Lobe (R) Middle Frontal Gyrus 46 F8 48 24 -8 Frontal Lobe (R) Inferior Frontal Gyrus 47 FT9 -50 -6 -36 Temporal Lobe (L) Inferior Temporal Gyrus 20 FT7 -54 2 -8 Temporal Lobe (L) Superior Temporal Gyrus 22 FC5 -56 4 22 Frontal Lobe (L) Precentral Gyrus 6 FC3 -44 6 48 Frontal Lobe (L) Middle Frontal Gyrus 6 FC1 -22 6 64 Frontal Lobe (L) Middle Frontal Gyrus 6 FCz 4 6 66 Frontal Lobe (R) Medial Frontal Gyrus 6 FC2 28 8 60 Frontal Lobe (R) Sub-Gyral 6 FC4 48 8 42 Frontal Lobe (R) Middle Frontal Gyrus 6 FC6 58 6 16 Frontal Lobe (R) Inferior Frontal Gyrus 44 FT8 54 2 -12 Temporal Lobe (R) Superior Temporal Gyrus 38 FT10 50 -6 -38 Temporal Lobe (R) Inferior Temporal Gyrus 20 T7/T3
    [Show full text]
  • Regional Cerebral Blood Flow in the Amygdala and Medial Prefrontal Cortex During Traumatic Imagery in Male and Female Vietnam Veterans with PTSD
    ORIGINAL ARTICLE Regional Cerebral Blood Flow in the Amygdala and Medial Prefrontal Cortex During Traumatic Imagery in Male and Female Vietnam Veterans With PTSD Lisa M. Shin, PhD; Scott P. Orr, PhD; Margaret A. Carson, PhD, RN; Scott L. Rauch, MD; Michael L. Macklin, BA; Natasha B. Lasko, PhD; Patricia Marzol Peters, BA; Linda J. Metzger, PhD; Darin D. Dougherty, MD; Paul A. Cannistraro, MD; Nathaniel M. Alpert, PhD; Alan J. Fischman, MD, PhD; Roger K. Pitman, MD Context: Theoretical neuroanatomic models of post- events. Psychophysiologic and emotional self-report data traumatic stress disorder (PTSD) and the results of pre- also were obtained to confirm the intended effects of vious neuroimaging studies of PTSD highlight the po- script-driven imagery. tential importance of the amygdala and medial prefrontal regions in this disorder. However, the functional rela- Results: The PTSD group exhibited rCBF decreases in tionship between these brain regions in PTSD has not been medial frontal gyrus in the traumatic vs neutral com- directly examined. parison. When this comparison was conducted sepa- rately by subgroup, MCVs and FNVs with PTSD exhib- Objective: To examine the relationship between the ited these medial frontal gyrus decreases. Only MCVs amygdala and medial prefrontal regions during symp- exhibited rCBF increases in the left amygdala. How- tom provocation in male combat veterans (MCVs) and ever, for both subgroups with PTSD, rCBF changes in me- female nurse veterans (FNVs) with PTSD. dial frontal gyrus were inversely correlated with rCBF changes in the left amygdala and the right amygdala/ Design: Case-control study. periamygdaloid cortex. Furthermore, in the traumatic con- dition, for both subgroups with PTSD, symptom sever- Setting: Academic medical center.
    [Show full text]
  • A Scoping Review of Neuromodulation Techniques in Neurodegenerative Diseases: a Useful Tool for Clinical Practice?
    medicina Review A Scoping Review of Neuromodulation Techniques in Neurodegenerative Diseases: A Useful Tool for Clinical Practice? Fabio Marson 1,2 , Stefano Lasaponara 3,4 and Marco Cavallo 5,6,* 1 Research Institute for Neuroscience, Education and Didactics, Fondazione Patrizio Paoletti, 06081 Assisi, Italy; [email protected] 2 Department of Human Neuroscience, Sapienza University of Rome, 00185 Rome, Italy 3 Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy; [email protected] 4 Department of Human Sciences, LUMSA University, 00193 Rome, Italy 5 Faculty of Psychology, eCampus University, 22060 Novedrate, Italy 6 Clinical Psychology Service, Saint George Foundation, 12030 Cavallermaggiore, Italy * Correspondence: [email protected]; Tel.: +39-347-830-6430 Abstract: Background and Objectives: Neurodegenerative diseases that typically affect the elderly such as Alzheimer’s disease, Parkinson’s disease and frontotemporal dementia are typically char- acterised by significant cognitive impairment that worsens significantly over time. To date, viable pharmacological options for the cognitive symptoms in these clinical conditions are lacking. In recent years, various studies have employed neuromodulation techniques to try and contrast patients’ decay. Materials and Methods: We conducted an in-depth literature review of the state-of-the-art of the contribution of these techniques across these neurodegenerative diseases. Results: The present review reports that neuromodulation techniques targeting cognitive impairment do not allow to Citation: Marson, F.; Lasaponara, S.; Cavallo, M. A Scoping Review of draw yet any definitive conclusion about their clinical efficacy although preliminary evidence is very Neuromodulation Techniques in encouraging. Conclusions: Further and more robust studies should evaluate the potentialities and Neurodegenerative Diseases: A limitations of the application of these promising therapeutic tools to neurodegenerative diseases.
    [Show full text]
  • Supplementary Figure 1 A
    100 r = 0.82 100 r = 0.87 100 r = 0.93 p = 0.002 p = 0.001 p < 0.001 90 90 90 80 80 80 VVIQ_1 VVIQ_2 VVIQ_1 70 70 70 60 60 60 55 60 65 70 75 80 85 90 95 100 55 60 65 70 75 80 85 90 95 100 55 60 65 70 75 80 85 90 95 100 VVIQ_2 VVIQ_3 VVIQ_3 100 100 100 r = 0.78 r = 0,85 R = 0.90 90 p = 0.005 90 p = 0.001 90 p < 0.001 80 80 80 70 70 70 VVIQ_S1 VVIQ_S1 60 60 VVIQ_S2 60 50 50 50 40 40 40 40 50 60 70 80 90 100 40 50 60 70 80 90 100 40 50 60 70 80 90 100 VVIQ_S2 VVIQ_S3 VVIQ_S3 Supplementary Figure 1 A. SES (Sensory Component) piercing durchstoßen hot heiss hammering hämmernd stinging stechend glowing glühend throbbing pochend tearing reißend burning brennend knocking klopfend cutting* * schneidend* 0 1 2 3 4 5 B. SES (Affective Component) disabling lähmend unbearable unerträglich terrible furchtbar torturing marternd enervating entnervend heavy schwer nasty scheusslich awful schauderhaft miserable elend murdering mörderisch violent heftig exhaustive erschöpfend cruel grausam excrutiating quälend 0 1 2 3 4 5 Supplementary Figure 2 Supplemental Table 1: Group level (N=10) brain activation during pain Imagination (A.), pain memory (B.) and pain imagination vs. pain memory (C.). A. Pain Imagination Cluster T-contrast Brain area BA x,y,z size t value Activations Right Hemisphere Frontal lobe 56,-2,16 5 4.47 Cerebellum anterior lobe, 2,-46,-6 22 6.48 Vermis 4-5 19 Cerebellum posterior lobe,inferior semi-lunar lobe 12,-72,-50 12 6.11 Activations Left Hemisphere Precentral gyrus (face) -54,-8,38 14 4.65 Postcentral gyrus (tooth) -60,-18,26 30 5.01
    [Show full text]
  • Task Positive and Default Mode Networks During a Working Memory in Children with Primary Monosymptomatic Nocturnal Enuresis and Healthy Controls
    nature publishing group Articles Clinical Investigation Task positive and default mode networks during a working memory in children with primary monosymptomatic nocturnal enuresis and healthy controls Kaihua Zhang1, Jun Ma2, Du Lei1,3, Mengxing Wang1, Jilei Zhang1 and Xiaoxia Du1 BACKGROUND: Nocturnal enuresis is a common develop- event-related brain potentials indicated that maturational mental disorder in children, and primary monosymptomatic delays in central nervous system development are indicators nocturnal enuresis (PMNE) is the dominant subtype. of PMNE pathogenesis (5–8). Primary nocturnal enuresis chil- METHODS: This study investigated brain functional abnor- dren show a higher prevalence of all sleep disturbances (9). malities that are specifically related to working memory in Furthermore, the prevalence of fine motor coordination and children with PMNE using function magnetic resonance imag- visuomotor integration were abnormal in prepubertal children ing (fMRI) in combination with an n-back task. Twenty children with PMNE. These studies suggested that PMNE should not be with PMNE and 20 healthy children, group-matched for age considered as a voiding disorder alone (10). and sex, participated in this experiment. Magnetic resonance imaging (MRI) techniques, such as RESULTS: Several brain regions exhibited reduced activation structural MRI, functional MRI (fMRI), and diffusion MRI, during the n-back task in children with PMNE, including the provide efficient, feasible and noninvasive methods to inves- right precentral gyrus and the right inferior parietal lobule tigate the biological mechanisms of incontinence. Several extending to the postcentral gyrus. Children with PMNE exhib- studies reported alterations in brain functions in patients with ited decreased cerebral activation in the task-positive network, urgency and urge incontinence using fMRI (11,12).
    [Show full text]
  • Aberrant Hippocampal Subregion Networks Associated with the Classifications of Amci Subjects: a Longitudinal Resting­State Study
    Aberrant hippocampal subregion networks associated with the classifications of aMCI subjects: a longitudinal resting-state study Article (Published Version) Bai, Feng, Xie, Chunming, Watson, David R, Shi, Yongmei, Yuan, Yonggui, Wang, Yi, Yue, Chunxian, Teng, Yuhuan, Wu, Di and Zhang, Zhijun (2011) Aberrant hippocampal subregion networks associated with the classifications of aMCI subjects: a longitudinal resting-state study. PLoS Biology, 6 (12). e29288-e29288. ISSN 1544-9173 This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/62354/ This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version. Copyright and reuse: Sussex Research Online is a digital repository of the research output of the University. Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available. Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.
    [Show full text]
  • Supplementary Materials
    Supplementary Materials. Holt et al. 2009. Schizophrenia Bulletin Supplementary Table 1: Example stimuli. Table S1. Example Stimuli. First sentence Second sentence Neutral Positive Negative (without the critical word) critical word critical word critical word Nancy’s son ended up just He was already a ____ by husband millionaire criminal like his father. age 25. Stephen owned a lot of Everyone knew that he ____ bought loved forged nineteenth century art. paintings of old masters. An unfamiliar man rang He had come to _____ her. register congratulate arrest Lenora's doorbell one day. Mr. Jenners planned to The reason for this was obvious reassuring hidden move his family to New _____ to the children. York. Cheryl's baby cried when She quieted him with pacifier lullaby drug she took him to bed. a ____ that night. Two-sentence descriptions of social situations for each of three experimental conditions (neutral, positive and negative), were constructed. For each pair of sentences, the first sentence was neutral and ambiguous in content. The emotional meaning of the sentence- pair was conferred by a positively-valenced, negatively-valenced or neutral word (the critical word) in the second sentence. Thus, other than one valence-associated or neutral word in the second sentence, the three conditions were identical in word content. The critical words of each condition were matched with respect to mean number of letters, frequency, and abstractness, but differed according to their affective valence and arousal. Norming studies in participants who did not participate in the fMRI study confirmed that the three conditions systematically differed according to their emotional valence (ratings on a 1-7 Likert scale: positive sentence pairs: mean valence rating > 5; negative sentence pairs: mean valence rating < 3; neutral sentence pairs: mean valence rating >3 and < 5) 1.
    [Show full text]
  • Altered Diffusion in the Frontal Lobe in Parkinson Disease
    Altered Diffusion in the Frontal Lobe in Parkinson ORIGINAL RESEARCH Disease A.T. Karagulle Kendi BACKGROUND AND PURPOSE: Parkinson disease (PD) is characterized by basal ganglia abnormalities. S. Lehericy However, there are neurodegenerative changes in PD that extend beyond the basal ganglia and that are not sufficiently evaluated with standard MR imaging. The aim of this study was to characterize M. Luciana whole-brain gray matter (GM) and white matter (WM) changes in PD by using diffusion tensor imaging K. Ugurbil (DTI). P. Tuite MATERIALS AND METHODS: Thirteen control and 12 subjects with nondemented PD were examined by using DTI and 3D anatomic T1-weighted images. Statistical parametric mapping analyses of DTI and anatomic images were performed. Patients were evaluated with a variety of neurocognitive measures and the Unified Parkinson’s Disease Rating Scale (UPDRS) OFF (cessation of medication) and ON (taking medications as normal) their antiparkinsonian medications. RESULTS: The PD participants had dopa-responsive features as ascertained by the UPDRS OFF versus ON medications and had no cognitive impairment. Decreased fractional anisotropy (FA) was observed in subjects with PD bilaterally in the frontal lobes, including the supplementary motor area, the presupplementary motor area, and the cingulum. There were no significant differences in mean diffusivity or GM/WM attenuation between PD subjects and controls. CONCLUSION: Statistical parametric mapping analysis of DTI showed changes in FA in frontal areas without volume loss. These results confirm that the neurodegenerative process extends beyond the basal ganglia in PD. arkinson disease (PD) is a neurodegenerative disorder voxel-based DTI provides information on the orientation of Pcharacterized by bradykinesia, rigidity, resting tremor, diffusion in WM fiber bundles.
    [Show full text]