1.03 Solar System Abundances of the Elements
Total Page:16
File Type:pdf, Size:1020Kb
1.03 SolarSystemAbundances ofthe Elements H.Palme Universita¨tzuKo¨ln,Germany and A.Jones Universite´ ParisSud, France 1.03.1 ABUNDANCESOFTHE ELEMENTS IN THE SOLAR NEBULA 41 1.03.1.1 HistoricalRemarks 41 1.03.1.2 SolarSystemAbundancesofthe Elements 42 1.03.1.2.1 Isthe elementalandisotopic composition ofthe solarnebulauniform? 42 1.03.1.2.2 The composition ofthe solarphotosphere 43 1.03.1.3 AbundancesofElements inMeteorites 45 1.03.1.3.1 Undifferentiated anddifferentiated meteorites 45 1.03.1.3.2 Cosmochemicalclassification ofelements 45 1.03.1.4CIChondritesasStandardfor SolarAbundances 47 1.03.1.4.1 Chemicalvariations amongchondritic meteorites 47 1.03.1.4.2 CI chondrites 51 1.03.1.4.3 The CI abundance table 51 1.03.1.4.4Comparison withAnders andGrevesseabundance table 53 1.03.1.5SolarSystemAbundancesofthe Elements 53 1.03.1.5.1 Comparison ofmeteoriteandsolarabundances 53 1.03.1.5.2 Solarsystemabundancesversus mass number 54 1.03.1.5.3 Othersourcesfor solarsystemabundances 55 1.03.2 THE ABUNDANCESOFTHE ELEMENTS IN THE ISM 55 1.03.2.1 Introduction 55 1.03.2.2 The Natureofthe ISM 56 1.03.2.3 The ChemicalComposition ofthe ISM 57 1.03.2.3.1 The composition ofthe interstellargasandelementaldepletions 57 1.03.2.3.2 The composition ofinterstellardust 57 1.03.2.3.3 Did the solarsysteminheritthe depletion ofvolatileelements from the ISM? 59 1.03.2.3.4The ISM oxygenproblem 59 1.03.3 SUMMARY 60 REFERENCES 60 1.03.1 ABUNDANCES OF THE ELEMENTS composition ofcosmic matter,utilizingcompo- IN THE SOLAR NEBULA sitionaldataon the Earth’s crust andmeteorites. Thisled to the discovery byHarkins (1917) that 1.03.1.1 HistoricalRemarks elements withevenatomic numbers aremore abundant thanthosewithodd atomic numbers,the Atthe beginningofthe twentiethcentury so-called Oddo–Harkins rule, best exemplified attempts weremadeto definethe average for the rareearthelements (REEs). Duringthe 41 42 SolarSystemAbundancesofthe Elements 1920s and1930s VictorMoritz Goldschmidtand years therehasbeenacontinuous convergence of hiscolleaguesinGo¨ttingen,andlaterinOslo, abundancesderived from meteoritesandthose measured andcompiled awealthofchemicaldata obtained from solarabsorption linespectroscopy. on terrestrialrocks,meteorites,andindividual Theagreement isnow betterthan ^ 10% for most phasesofmeteorites. Onthe basisofthesedata elements,asdescribed below. Goldschmidt(1938)setupacosmic abundance tablewhich he publishedin1938inthe ninth 1.03.1.2 SolarSystemAbundancesofthe Elements volumeofhis Geochemische Verteilungsgesetze derElemente ( The GeochemicalLaws ofthe 1.03.1.2.1 Isthe elementalandisotopic Distribution ofthe Elements )entitled Die Men- composition ofthe solarnebula genverha¨ltnissederElementeundderAtom-Arten uniform? ( The Proportions ofthe Elements andthe Various Inthe past itwasassumed thatthe Sun,the KindsofAtoms). Goldschmidtbelieved that planets andall otherobjects ofthe solarsystem meteoriteswouldprovide the average composition formed from agaseousnebulawithwell-defined ofcosmic matter. He used the word“cosmic” chemicalandisotopic composition.Thediscovery because, incitingcontemporaneous astronomers, ofcomparatively large andwidespread variations he thoughtthatmeteoritesrepresent interstellar inoxygenisotopic compositions hascast doubt materialfrom outside the solarsystem. Inhisbook upon thisassumption (see Begemann,1980and he mentioned asecondreasonfor usingmeteorite referencestherein).Inaddition,evidence for data.Most meteoriteswill be representativeof incompletemixinginthe primordialsolarnebula average cosmic matter,becausetheyhavenot isprovided byisotopic anomaliesfor avariety of beenaffected byphysicochemicalprocesses(e.g., elements inthe refractoryinclusions ofcarbon- meltingandcrystallization),although chondrules aceouschondritesandbydetection ofthe huge withinthemhaveexperienced meltingandcrystal- isotopeanomaliesofcarbon,nitrogen,silicon,and lization,the meteoritesasawholehavenot. In someheavy elementsintiny grains ofmeteorites, contrast,the crustofthe Earth, which formed by such assilicon carbide,nanodiamond, and the meltingofthe mantle, providesonly avery graphitegrains (e.g.,Anders andZinner,1993; biased samplingofelementalabundancesinthe Chapter1.02). Agoodexamplefor such isotope bulkEarth.Goldschmidtcalculated the average anomaliesisgiveninFigure1,wherethe unusual concentrations ofelements incosmic matterby isotopic composition ofneodymium inanaggre- usingaweighted meanofelement abundancesin gateofSiC grains from the Murchison carbon- meteoritephases:metal(two parts),sulfide (one aceouschondriteisshown (Richter etal .,1992). part),andsilicates(10 parts).Inthiswayhe Theneodymium isotopic compositions ofall other obtained the cosmic abundancesof66 elements. Itwasduringthe sametimethatastronomers begantoextractquantitativeinformation about elementalabundancesinthe Sun bysolarabsorp- tion spectroscopy anditwassoon realized thatthe compositions ofthe Sun andthe wholeEarthare similar,except for hydrogenandotherextremely volatileelements (see Russell,1941). Almost 20 years afterGoldschmidt,Suess and Urey(1956) publishedanewabundance table, which inpart relied on solarabundances. In addition,Suess andUrey(1956) introduced argumentsbased on nucleosynthesis. Theirso- called semiempiricalabundance rules,primarily the smoothabundance variation ofodd-mass nuclei withincreasingmass number,wereapplied to estimateabundancesfor elements for which analyticaldatafrom meteoriteswerenot available or had large errors. The Suess andUreycompi- Figure1 Nd isotopesinanaggregateofmeteoritic lation wasvery influentialfor theoriesofnucleo- SiC from Murchison. The deviation ofthe Nd isotopic composition from normalisgiveninpermil(d ). All synthesisandfor the development ofnuclear 144 astrophysicsingeneral. Latercompilationsby ratios arenormalized to Nd.Fullsymbolsare measured ratios. Error bars areinmost casessmaller Cameron (1973),Anders andGrevesse(1989), thansymbol sizes. Calculated s-process productions are PalmeandBeer(1993),andothers tookinto indicated.All previous analysesofNdisotopesin accountimproved analyticaldataon meteorites terrestrial,lunar,or meteoritesamplesfall alongthe line andthe moreaccuratedetermination ofelemental marked “average solarsystem,”which isused for abundancesinthe solarphotosphere.Overthe normalization (source Richter etal .,1992). Abundancesofthe Elementsinthe SolarNebula 43 solarsystemmaterials analyzed (i.e.,terrestrial, transition probabilitiesdetermined inlaboratory lunar,andmeteoritic samples) areindistinguish- experiments. The mainneed for improvingsolar ablewithinthe scaleofFigure1andtheseother abundance dataismoreaccuratetransition materialswouldfall on the linedesignated probabilities(GrevesseandSauval,1998). “averagesolarsystem.”Such s-process com- InTable1,the composition ofthe solar ponents havealsobeenfoundfor otherelements: photosphereasobtained byabsorption spec- For example, Nicolussi etal .(1998)identified troscopy isgiven. Abundancesarenormalized to nearlypures-process molybdenum insomeSiC 1012 Hatoms,the usualpractice inastronomy. grains (see Chapter1.02,figure10). Thesefindings Most ofthe dataarefrom GrevesseandSauval confirm the presence ofmaterialofdistinct (1998),which isanupdateofthe photospheric nucleosynthetic origins atthe timeofaccretion of abundance tablebyAnders andGrevesse(1989). meteoriteparent bodies. However,such isotope For nitrogen,magnesium,silicon,andironnew anomaliesareconfined to avery small fraction (a photospheric abundancesfrom Holweger(2001) fewppm)ofthe bulkofameteorite, i.e.,this wereused.Thesedataaremarked HinTable1. materialistruly exotic.Moreover,itislikely that Theiruncertaintiesrange from about 30% for the morewidespread oxygenisotopeanomaliesare nitrogento12% for silicon. The accuracyofiron not ofnucleosynthetic originbut wereproducedby isgivenas20%. Thestandarddeviations listed by fractionation processeswithinthe solarnebulaor a Holweger(2001) are, inall casesexcept silicon, precursor molecularcloud(Chapter1.06),itisstill largerthanthosegivenbyGrevesseandSauval areasonableworkinghypothesisthatthe bulkof (1998). Holwegerascribesthistohismore the matterofthe solarsystemformed from a conservativeprocedurefor calculatingerrors. A chemically andisotopically uniform reservoir,the newdetermination ofthe solarlead isincluded primordialsolarnebula.The composition ofthis (Biemont etal .,2000)andmarked BinTable1. nebula, the average solarsystemcomposition,is Theoxygenabundance wastakenfrom apaperby well knownandcarriesthe signaturesofavariety of Allende Prieto etal .(2001),marked A1inTable1. nucleosynthetic processesinstellarenvironments. Thesolaroxygenabundance hasgonedown Although the elementalcomposition ofthe solar considerably,from8.93 ^ 0.35(Anders and systemisroughly similartothatofmany other Grevesse, 1989) and8.83 ^ 0.06 (Grevesseand stars,inparticularwithrespecttothe relative Sauval,1998)to8.736 ^ 0.078(Holweger,2001) abundancesofthe nongaseous elements,thereare, and8.69 ^ 0.05(Allende Prieto etal .,2001). This indetail,compositionaldifferencesamongstars 50% decreaseisimportant because, based on the andthereare, inaddition,truly exotic stars that oldvalue, itwasthoughtthatthe interstellar makethe term “cosmic abundancesofelements” medium (ISM)musthavehad adifferent H/Oratio questionable.We will thereforeusethe term “solar thanthe Sun (see below).The carbon abundance systemabundancesofthe elements”inthischapter. hasalso beenrevised downward, asindicated in Table1(Allende Prieto etal .,2002). The new carbon andoxygenlead to ahigherC/Oratioof 1.03.1.2.2 The composition ofthe solar 0.50 ^