REVIEW Multiple Myeloma: the Cells of Origin – a Two-Way Street

Total Page:16

File Type:pdf, Size:1020Kb

REVIEW Multiple Myeloma: the Cells of Origin – a Two-Way Street Leukemia (1998) 12, 121–127 1998 Stockton Press All rights reserved 0887-6924/98 $12.00 REVIEW Multiple myeloma: the cells of origin – A two-way street JR Berenson, RA Vescio and J Said West Los Angeles VA Medical Center, UCLA School of Medicine, Los Angeles, CA, USA Multiple myeloma results from an interplay between the mono- earlier precursor cells may be responsible for the proliferation clonal malignant plasma cells and supporting nonmalignant of the malignant population. The presence of a circulating cells in the bone marrow. Recent studies suggest that the final transforming event in this B cell disorder occurs at a late stage tumor component without obvious plasma cell morphology of B cell differentiation based on the characteristics of the also suggests that less mature lymphocytes may be part of the immunoglobulin genes expressed by the malignant clone as clone as well, which could explain the dissemination of the well as surface markers present on the tumor cells. Recently, disease throughout the bone marrow.4 In addition, evidence an increasing pathogenic role in this malignancy by the nonma- for tumor cells at even earlier stages of hematopoietic differen- lignant cells in the bone marrow has been suggested by several tiation came from studies showing the high rate of acute non- studies. Specific infection of these supporting cells by the lymphoblastic leukemia in these patients and the presence of recently identified Kaposi’s sarcoma-associated herpes virus 5,6 (KSHV) suggests a novel mechanism by which this nonmalig- non-lymphoid surface markers on malignant plasma cells. A nant population may lead to the development of this B cell variety of molecular biological techniques have subsequently malignancy and support its growth. been used to characterize further the cell types which are part Keywords: multiple myeloma; immunoglobulin genes; Kaposi’s of the malignant clone in this B cell malignancy. sarcoma-associated herpes virus Immunogenotypes Introduction Because of the monoclonal nature of the Ig synthesized by the malignant cells, the genes, which lead to the production of Multiple myeloma is characterized by the accumulation of this protein, can be used as molecular markers capable of malignant plasma cells in the bone marrow compartment.1 identifying surface markers on the malignant cells. In addition, These terminally differentiated B-lymphocytes all produce an specific characteristic changes in these genes occur at differ- identical immunoglobulin (Ig) known as a monoclonal pro- ent stages of B cell differentiation; and thus allow determi- tein, the laboratory hallmark of this malignancy. Although the nation of which cell types in this lineage are part of the predominant cell type in the bone marrow of these patients tumor clone. has the characteristics of a plasma cell, the low proliferative Each antibody-producing B cell produces a single type of activity of these cells has raised the possibility that less mature antibody. Early in normal B cell development, rearrangement B-lymphocytes represent the proliferating population, which of four separate gene segments leads to the development of give rise to the overabundant malignant plasma cell. Recent the heavy chain portion of a unique functional antibody.7 advances in molecular biological techniques have led to the These gene segments encode the constant region which deter- determination of the stage of B cell differentiation at which mines the class of antibody (eg C␮ for IgM, C␥ for IgG, C␣ this disease begins. for IgA), and three other gene segments which encode the The tumor cells which reside within the bone marrow are variable region of the heavy chain; variable (VH), diversity (D), 7–10 supported by a nonmalignant population of stromal cells and joining (JH). Since these latter three joined segments which produce cytokines that enhance myeloma cell growth encode for the specific antigen recognition site of the final and prevent apoptosis. Moreover, the tumor cells themselves antibody, the recombination of genes which comprise this orchestrate the production of cytokines by these nonmalignant region must be unique to each antibody-producing cell. Thus, bone marrow cells which can lead to a further increase in specific changes in these genes occur during the maturation tumor cell burden. Recent demonstration of the Kaposi’s sar- of the antibody-producing B cell. Most of a single functional coma-associated herpesvirus in some of these nonmalignant heavy chain variable region is encoded by one of ෂ50 func- cells provides an additional novel mechanism by which the tional VH genes whereas shorter stretches of amino acids are bone marrow microenvironment may support this B cell derived from one or more D and one of six functional JH malignancy. genes.7–10 In addition, increased antibody specificity is accomplished by the addition of non-germline nucleotides (N segments).11 Once a functional heavy chain rearrangement The malignant cell of origin has occurred, the ␬ (and, if unsuccessful, ␭) light chain 12 undergoes a similar rearrangement of VL,JL, and C genes. The low proliferative rate of the phenotypically identified Additional specificity of the antibody is rendered by the malignant cell2 and inability of these cells to sustain tumor mutation of nucleotides within the specific areas of the vari- growth in vivo as demonstrated by kinetic studies3 imply that able region which bind antigen directly known as comp- lementarity determining regions (CDRs) leading to enhanced avidity of the antibody for antigen.13 This process of somatic Correspondence: JR Berenson, West Los Angeles VA Medical Center, UCLA School of Medicine, 11301 Wilshire Blvd (111H), Los Angeles, mutation occurs late in B cell development in germinal cen- CA 90073, USA; Fax: 310 268 4908 ters. Following the secretion of a functional active antibody, Received 20 November 1997; accepted 21 November 1997 this process ceases within this terminally differentiated B cell. Review JR Berenson et al 122 In multiple myeloma, the properties of the Ig genes allow of normal plasma cells have not been completed, it is precise determination of the stage of B cell development dur- unknown whether this increased frequency of D-D fusion and ing which malignant transformation occurred. Specifically, lack of N-region addition is specific to myeloma. Use of spe- comparison of the myeloma VH gene sequence to the most cific JH and D genes is quite comparable to usage in mature homologous germline gene has shown marked somatic B-lymphocytes further supporting the late B cell origin of mutation (median 8%) of this gene segment.14 This frequency myeloma. of somatic mutation is only found in the most differentiated B cells after antigenic stimulation has occurred. In further sup- port of an antigenically driven process leading to these malig- Immunophenotype nant clones, analysis of regions which bind antigen within these genes, the CDRs, demonstrates a marked predilection Early studies using aneuploidy as a basis of malignant plasma for somatic mutations compared to the other parts of the gene cell determination suggested the existence of myeloid, mega- which are primarily responsible for maintaining the structural karyocytic, and T cell markers on the surface of the malignant integrity of the molecule, the so-called framework regions clone in myeloma.4 However, the use of these so-called ‘lin- (FRs).15 Moreover, in antigenically driven cells, mutations eage-specific markers’ was problematic since it was learned occurring within the CDRs should be more often associated that normal plasma cells could express these same antigens.32 with a change in the encoded amino acid compared to those The presence of a unique molecular marker, the Ig gene changes occurring in the FRs. Indeed, the ratio of replacement expressed by the malignant clone, has allowed a more precise to silent mutations is double in the CDRs compared to the FRs determination of surface markers present on the malignant in multiple myeloma.14 clone. Importantly, analysis of multiple clones shows no clonal diversity in VH genes from myeloma patients, and determi- nation of these sequences during the course of their disease CD34 shows no clonal evolution.14,16,17 These results differ from other B cell tumors originating in germinal centers at earlier CD34 is expressed on early hematopoietic precursors includ- stages of B cell differentiation.18 Analysis of CDR3 genes com- ing the pluripotent stem cell.33 However, some B cells also 34 prised of the D, JH and N segments further supports the high express this surface marker. Reinfusion of hematopoietic rate of somatic mutation with a high replacement to silent cells selected for CD34 can lead to rapid and sustained ratio.19 These segments also show a lack of clonal diversity.19 engraftment following myeloablative chemotherapy.35 Since Thus, these results suggest that the final oncogenic event in we and others had previously demonstrated the presence of myeloma occurs very late in B cell differentiation. Although tumor cells in not only the bone marrow but also the blood some studies have suggested the existence of a pre-class of myeloma patients, it became of both biological and clinical switched (C␮-containing) monoclonal cell in this disease,20–22 importance to determine whether any malignant cells the frequency of these cells and their contribution to the expressed this stem cell marker in myeloma patients. Initially, malignant process has not been established. Using colony CD34+ cells were purified from myeloma patients’ bone mar- hybridization techniques, our laboratory has not been able to row using a combination of an immunoadsorption column demonstrate C␮-containing clonal cells in myeloma.23 and flow sorting. Using a sensitive PCR-based assay with pri- mers derived from the unique CDRs expressed by the patient’s malignant clone, no tumor cells were detected in the CD34- 36 Use of specific VH, D, and JH genes expressing population. Several other groups have confirmed this initial report37,38 although two reports have suggested the + 39,40 The approximately 50 functional VH genes have been divided existence of a CD34 tumor cell in myeloma.
Recommended publications
  • Plasma Cells: Finding New Light at the End of B Cell Development Kathryn L
    © 2001 Nature Publishing Group http://immunol.nature.com REVIEW Plasma cells: finding new light at the end of B cell development Kathryn L. Calame Plasma cells are cellular factories devoted entire- Upon plasma cell differentiation, there is a marked increase in ly to the manufacture and export of a single prod- steady-state amounts of Ig heavy and light chain mRNA and, when 2 uct: soluble immunoglobulin (Ig). As the final required for IgM and IgA secretion, J chain mRNA . Whether the increase in Ig mRNA is due to increased transcription, increased mediators of a humoral response, plasma cells mRNA stability or, as seems likely, both mechanisms, remains con- play a critical role in adaptive immunity.Although troversial2. There is also an increase in secreted versus membrane intense effort has been devoted to studying the forms of heavy chain mRNA, as determined by differential use of poly(A) sites that may involve the availability of one component of regulation and requirements for early B cell the polyadenylation machinery, cleavage-stimulation factor Cst-643. development, little information has been avail- To accommodate translation and secretion of the abundant Ig able on plasma cells. However, more recent mRNAs, plasma cells have an increased cytoplasmic to nuclear ratio work—including studies on genetically altered and prominent amounts of rough endoplasmic reticulum and secreto- ry vacuoles. mice and data from microarray analyses—has Numerous B cell–specific surface proteins are down-regulated begun to identify the regulatory cascades that upon plasma cell differentiation, including major histocompatibility initiate and maintain the plasma cell phenotype. complex (MHC) class II, B220, CD19, CD21 and CD22.
    [Show full text]
  • T Cell Clones +CD8 Functional Diversity in Melanoma-Specific
    Trogocytosis Is a Gateway to Characterize Functional Diversity in Melanoma-Specific CD8+ T Cell Clones This information is current as Ronny Uzana, Galit Eisenberg, Yael Sagi, Shoshana of October 2, 2021. Frankenburg, Sharon Merims, Ninette Amariglio, Eitan Yefenof, Tamar Peretz, Arthur Machlenkin and Michal Lotem J Immunol 2012; 188:632-640; Prepublished online 7 December 2011; doi: 10.4049/jimmunol.1101429 Downloaded from http://www.jimmunol.org/content/188/2/632 Supplementary http://www.jimmunol.org/content/suppl/2011/12/07/jimmunol.110142 http://www.jimmunol.org/ Material 9.DC1 References This article cites 50 articles, 25 of which you can access for free at: http://www.jimmunol.org/content/188/2/632.full#ref-list-1 Why The JI? Submit online. by guest on October 2, 2021 • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2012 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Trogocytosis Is a Gateway to Characterize Functional Diversity in Melanoma-Specific CD8+ T Cell Clones Ronny Uzana,* Galit Eisenberg,* Yael Sagi,† Shoshana Frankenburg,* Sharon Merims,* Ninette Amariglio,‡ Eitan Yefenof,x Tamar Peretz,* Arthur Machlenkin,*,1 and Michal Lotem*,1 Trogocytosis, the transfer of membrane patches from target to immune effector cells, is a signature of tumor–T cell interaction.
    [Show full text]
  • How Many Different Clonotypes Do Immune Repertoires Contain?
    How many different clonotypes do immune repertoires contain? Thierry Mora and Aleksandra M. Walczak Laboratoire de physique de l'Ecole´ normale sup´erieure (PSL University), CNRS, Sorbonne Universit´e,and Universit´ede Paris, 75005 Paris, France Immune repertoires rely on diversity of T-cell and B-cell receptors to protect us against foreign threats. The ability to recognize a wide variety of pathogens is linked to the number of different clonotypes expressed by an individual. Out of the estimated ∼ 1012 different B and T cells in humans, how many of them express distinct receptors? We review current and past estimates for these numbers. We point out a fundamental limitation of current methods, which ignore the tail of small clones in the distribution of clone sizes. We show that this tail strongly affects the total number of clones, but it is impractical to access experimentally. We propose that combining statistical models with mechanistic models of lymphocyte clonal dynamics offers possible new strategies for estimating the number of clones. I. INTRODUCTION dent [9, 10]. The total number of different αβ pairs that the generation machinery can produce is much greater The diversity of immune repertoires plays an impor- than the total number of receptors in the whole human tant role in the host's ability to recognize and control population [9, 11, 12]. Thus, each person harbors only a wide range of pathogens. While actual recognition of a small fraction of the potential diversity of receptors. an antigen depends on having a relatively specific T-cell To estimate the number of distinct receptors, we need to or B-cell receptor (TCR or BCR), multiple experimen- count them.
    [Show full text]
  • Restoring Natural Killer Cell Immunity Against Multiple Myeloma in the Era of New Drugs
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Institutional Research Information System University of Turin Restoring Natural Killer Cell immunity against Multiple Myeloma in the era of New Drugs Gianfranco Pittari1, Luca Vago2,3, Moreno Festuccia4,5, Chiara Bonini6,7, Deena Mudawi1, Luisa Giaccone4,5 and Benedetto Bruno4,5* 1 Department of Medical Oncology, National Center for Cancer Care and Research, HMC, Doha, Qatar, 2 Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milano, Italy, 3 Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy, 4 Department of Oncology/Hematology, A.O.U. Città della Salute e della Scienza di Torino, Presidio Molinette, Torino, Italy, 5 Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy, 6 Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milano, Italy, 7 Vita-Salute San Raffaele University, Milano, Italy Transformed plasma cells in multiple myeloma (MM) are susceptible to natural killer (NK) cell-mediated killing via engagement of tumor ligands for NK activating receptors or “missing-self” recognition. Similar to other cancers, MM targets may elude NK cell immunosurveillance by reprogramming tumor microenvironment and editing cell surface antigen repertoire. Along disease continuum, these effects collectively result in a pro- gressive decline of NK cell immunity, a phenomenon increasingly recognized as a critical determinant of MM progression. In recent years, unprecedented efforts in drug devel- opment and experimental research have brought about emergence of novel therapeutic interventions with the potential to override MM-induced NK cell immunosuppression.
    [Show full text]
  • B-Cell Development, Activation, and Differentiation
    B-Cell Development, Activation, and Differentiation Sarah Holstein, MD, PhD Nov 13, 2014 Lymphoid tissues • Primary – Bone marrow – Thymus • Secondary – Lymph nodes – Spleen – Tonsils – Lymphoid tissue within GI and respiratory tracts Overview of B cell development • B cells are generated in the bone marrow • Takes 1-2 weeks to develop from hematopoietic stem cells to mature B cells • Sequence of expression of cell surface receptor and adhesion molecules which allows for differentiation of B cells, proliferation at various stages, and movement within the bone marrow microenvironment • Immature B cell leaves the bone marrow and undergoes further differentiation • Immune system must create a repertoire of receptors capable of recognizing a large array of antigens while at the same time eliminating self-reactive B cells Overview of B cell development • Early B cell development constitutes the steps that lead to B cell commitment and expression of surface immunoglobulin, production of mature B cells • Mature B cells leave the bone marrow and migrate to secondary lymphoid tissues • B cells then interact with exogenous antigen and/or T helper cells = antigen- dependent phase Overview of B cells Hematopoiesis • Hematopoietic stem cells (HSCs) source of all blood cells • Blood-forming cells first found in the yolk sac (primarily primitive rbc production) • HSCs arise in distal aorta ~3-4 weeks • HSCs migrate to the liver (primary site of hematopoiesis after 6 wks gestation) • Bone marrow hematopoiesis starts ~5 months of gestation Role of bone
    [Show full text]
  • Distribution in Trout Immune Tissues Plasmablast and Plasma Cell
    The Journal of Immunology Plasmablast and Plasma Cell Production and Distribution in Trout Immune Tissues1 Erin S. Bromage,* Ilsa M. Kaattari,* Patty Zwollo,† and Stephen L. Kaattari2* These studies describe the in vitro and ex vivo generation of plasmablasts and plasma cells in trout (Oncorhynchus mykiss) peripheral blood and splenic and anterior kidney tissues. Cells were derived either from naive trout and cultured with the polyclonal activator, Escherichia coli LPS, or from trout that had been immunized with trinitrophenyl-keyhole limpet hemocyanin. Hydroxyurea was used to resolve populations of replicating (plasmablast) and nonreplicating (plasma cell) Ab-secreting cells (ASC). Complete inhibition of Ig secretion was only observed within the PBL. Both anterior kidney and splenic lymphocytes possessed a subset of ASCs that were hydroxyurea resistant. Thus, in vitro production of plasma cells appears to be restricted to the latter two tissues, whereas peripheral blood is exclusively restricted to the production of plasmablasts. After immunization with trinitrophenyl-keyhole limpet hemocyanin, specific ASC could be isolated from all immune organs; however, the anterior kidney contained 98% of all ASC. Late in the response (>10 wk), anterior kidney ASC secreted specific Ab for at least 15 days in culture, indicating that they were long-lived plasma cells. Cells from spleen and peripheral blood lost all capacity to secrete specific Ab in the absence of Ag. Late in the Ab response, high serum titer levels are solely the result of Ig secretion from anterior kidney plasma cells. The Journal of Immunology, 2004, 173: 7317–7323. he immune system of the trout and other teleosts exhibits Plasma cells may become long-lived upon migration to a sup- two striking anatomical differences from mammals: 1) portive niche within the bone marrow, relying on specialized cues T they possess neither bone marrow nor lymph nodes; and for their longevity (14).
    [Show full text]
  • B Cell Responses: Plasmablasts Walk the Line
    RESEARCH HIGHLIGHTS B CELL RESPONSES Plasmablasts walk the line During an adaptive immune patterns in lymph nodes. Following molecule intercellular adhesion response, long-lived antibody- immunization with specific antigen, molecule 1 (ICAM1) in plasmablast producing plasma cells are generated YFP+ cells mainly aggregated in migration. Both YFP+ and naive in T cell-dependent germinal centres. the medulla of the lymph node but B cells migrated on ICAM1-coated Plasma cells subsequently localize to could also be found in the B and glass surfaces, but only naive B cells the lymph node medullary chords, T cell zones and at the border of required Gαi-signalling for this move- but their migration to these sites has germinal centres. By contrast, naive ment. In addition, naive B cells and never been directly observed. A study B cells were predominantly localized plasma blasts had different migratory in Immunity has now reported in B cell follicles. behaviour on the ICAM1-coated sur- unique migratory behaviour for their When the migratory patterns faces; naive B cells showed frequent precursors, plasmablasts; these cells of the different populations were detachment and reattachment to the traverse the lymph node in a linear observed in situ using time-lapse substrate, but YFP+ cells migrated in manner and, surprisingly, do not two-photon intravital microscopy, a steady, amoeboid manner. + require Gαi-coupled receptor YFP cells in the medullary chords Interestingly, in assays carried signalling to migrate. were found to be mainly stationary, out in vivo and in vitro, the authors The transcriptional repressor but YFP+ cells in the follicles were reported an inverse correlation B lymphocyte-induced maturation highly motile.
    [Show full text]
  • Lymphoid System IUSM – 2016
    Lab 14 – Lymphoid System IUSM – 2016 I. Introduction Lymphoid System II. Learning Objectives III. Keywords IV. Slides A. Thymus 1. General Structure 2. Cortex 3. Medulla B. Lymph Nodes 1. General Structures 2. Cortex 3. Paracortex 4. Medulla C. MALT 1. Tonsils 2. BALT 3. GALT a. Peyer’s patches b. Vermiform appendix D. Spleen 1. General Structure 2. White Pulp 3. Red Pulp V. Summary SEM of an activated macrophage. Lab 14 – Lymphoid System IUSM – 2016 I. Introduction Introduction II. Learning Objectives III. Keywords 1. The main function of the immune system is to protect the body against aberrancy: IV. Slides either foreign pathogens (e.g., bacteria, viruses, and parasites) or abnormal host cells (e.g., cancerous cells). A. Thymus 1. General Structure 2. The lymphoid system includes all cells, tissues, and organs in the body that contain 2. Cortex aggregates (accumulations) of lymphocytes (a category of leukocytes including B-cells, 3. Medulla T-cells, and natural-killer cells); while the functions of the different types of B. Lymph Nodes lymphocytes vary greatly, they generally all appear morphologically similar so cannot be 1. General Structures routinely distinguished in light microscopy. 2. Cortex 3. Lymphocytes can be found distributed throughout the lymphoid system as: (1) single 3. Paracortex cells, (2) isolated aggregates of cells, (3) distinct non-encapsulated lymphoid nodules in 4. Medulla loose CT associated with epithelium, or (4) encapsulated individual lymphoid organs. C. MALT 1. Tonsils 4. Primary lymphoid organs are sites where lymphocytes are formed and mature; they 2. BALT include the bone marrow (B-cells) and thymus (T-cells); secondary lymphoid organs are sites of lymphocyte monitoring and activation; they include lymph nodes, MALT, and 3.
    [Show full text]
  • Early Life Imprints the Hierarchy of T Cell Clone Sizes Mario U Gaimann1,2, Maximilian Nguyen1, Jonathan Desponds3, Andreas Mayer1*
    RESEARCH ARTICLE Early life imprints the hierarchy of T cell clone sizes Mario U Gaimann1,2, Maximilian Nguyen1, Jonathan Desponds3, Andreas Mayer1* 1Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, United States; 2Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universita¨ t Mu¨ nchen, Mu¨ nchen, Germany; 3NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, United States Abstract The adaptive immune system responds to pathogens by selecting clones of cells with specific receptors. While clonal selection in response to particular antigens has been studied in detail, it is unknown how a lifetime of exposures to many antigens collectively shape the immune repertoire. Here, using mathematical modeling and statistical analyses of T cell receptor sequencing data, we develop a quantitative theory of human T cell dynamics compatible with the statistical laws of repertoire organization. We find that clonal expansions during a perinatal time window leave a long-lasting imprint on the human T cell repertoire, which is only slowly reshaped by fluctuating clonal selection during adult life. Our work provides a mechanism for how early clonal dynamics imprint the hierarchy of T cell clone sizes with implications for pathogen defense and autoimmunity. Introduction The hallmark of adaptive immunity is the generation of diversity through genetic recombination and clonal selection. Their interplay balances the breadth and specificity of the ~1012 T cells in the human *For correspondence: body (Figure 1A; Arstila et al., 1999; Farber et al., 2014): The genetic recombination of the T cell [email protected] receptor (TCR) locus, termed VDJ recombination, generates an enormous potential diversity of receptors ranging from early estimates of ~1015 (Davis and Bjorkman, 1988) to more recent esti- Competing interests: The mates of ~1061 (Mora and Walczak, 2016) different possible receptor TCRab heterodimers.
    [Show full text]
  • IL-6 Supports the Generation of Human Long-Lived Plasma Cells in Combination with Either APRIL Or Stromal Cell-Soluble Factors
    Leukemia (2014) 28, 1647–1656 & 2014 Macmillan Publishers Limited All rights reserved 0887-6924/14 www.nature.com/leu ORIGINAL ARTICLE IL-6 supports the generation of human long-lived plasma cells in combination with either APRIL or stromal cell-soluble factors M Jourdan1, M Cren1, N Robert2, K Bollore´ 2, T Fest3,4, C Duperray1,2, F Guilloton4, D Hose5,6,KTarte3,4 and B Klein1,2,7 The recent understanding of plasma cell (PC) biology has been obtained mainly from murine models. The current concept is that plasmablasts home to the BM and further differentiate into long-lived PCs (LLPCs). These LLPCs survive for months in contact with a complex niche comprising stromal cells (SCs) and hematopoietic cells, both producing recruitment and survival factors. Using a multi-step culture system, we show here the possibility to differentiate human memory B cells into LLPCs surviving for at least 4 months in vitro and producing immunoglobulins continuously. A remarkable feature is that IL-6 is mandatory to generate LLPCs in vitro together with either APRIL or soluble factors produced by SCs, unrelated to APRIL/BAFF, SDF-1, or IGF-1. These LLPCs are out of the cell cycle, express highly PC transcription factors and surface markers. This model shows a remarkable robustness of human LLPCs, which can survive and produce highly immunoglobulins for months in vitro without the contact with niche cells, providing the presence of a minimal cocktail of growth factors and nutrients. This model should be useful to understand further normal PC biology and its deregulation in premalignant or malignant PC disorders.
    [Show full text]
  • Advancing the Management of Plasma Cell Dyscrasias
    Advancing the Management of Plasma Cell Dyscrasias Rachid Baz, MD Moffitt Cancer Center Beth Faiman, PhD, MSN, APRN-BC, AOCN® Cleveland Clinic Learning Objectives • Interpret differential diagnoses of plasma cell dyscrasias • Assess recent changes in clinical management of the spectrum of multiple myeloma (smoldering, monoclonal gammopathy of undetermined significance [MGUS]) • Evaluate the risks and benefits of early treatments for smoldering myeloma • Plan management strategies for patients with solitary plasmacytomas and amyloidosis Financial Disclosure • Dr. Faiman has acted as a consultant and served on the speakers bureau for Amgen and Takeda; she has served on the speakers bureau for Celgene and Janssen. • Dr. Baz has received research support from AbbVie, Bristol- Myers Squibb, Celgene, Karyopharm, Merck, and Takeda; he has received honoraria from Celgene. All Blood Cells Begin as Hematopoietic Stem Cells Natural killer Healthy Bone Marrow Neutrophils (NK) cells Lymphoid progenitor T lymphocytes Basophils cell B lymphocytes Eosinophils Hematopoietic Multipotential Myeloid Monocytes/ stem cell stem cell progenitor cell macrophages Platelets Red blood cells NIH Stem Cell Information website. Based on: https://stemcells.nih.gov/info/basics/4.htm. Plasma Cell Disorders: Distribution of Plasma Cell Dyscrasias N = 1,296 SMM 3.5% (44) Lymphoproliferative Solitary or extramedullary 2.5% 1.5% AL Amyloidosis 10% Macro 3% Other 2.5% Myeloma 15% MGUS 62% AL = amyloidosis; MGUS = monoclonal gammopathy of uncertain significance; SMM = smoldering
    [Show full text]
  • The Effects of Thymus and Other Lymphoid Organs Enclosed in Millipore Diffusion Chambers on Neonatally Thymectomized Mice* by David Osoba, M.D
    THE EFFECTS OF THYMUS AND OTHER LYMPHOID ORGANS ENCLOSED IN MILLIPORE DIFFUSION CHAMBERS ON NEONATALLY THYMECTOMIZED MICE* BY DAVID OSOBA, M.D. (From the Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada) PLATES 39 XO 42 (Received for publication, April 7, 1965) The possibility that the thymus produces a humoral substance with far reaching biological effects has been frequently considered. Support for the production of a hormone has been offered on morphological grounds by the description of secretory vesicles in the frog thymus (1), and colloid-containing cysts lined by ciliated cuboidal cells in normal mouse thymus (2, 3). Although there have been claims of the discovery of thymus-derived substances exhibiting anticancer properties (4, 5), with growth-promoting or growth-retarding effects (6), and with antibacterial (7) and antiviral activity (8), none of these claims has been widely substantiated. Meanwhile, the possibility that the thymus, e/a a humoral factor, exerts an effect on other lymphoid tissue has been receiving increasing support. Several authors have reported a transient lymphocytosis-stimulating effect following the injection of a variety of thymus extracts in guinea pigs (9) and mice thymec- tomized in adult life (10), in intact neonatal mice (11), and in young rabbits (12) and rats (13). Also, extracts and implants of heavily irradiated thymuses from pigs and rabbits have been found to produce a lymphoid hyperplastic response in the regional lymph nodes of young rats (14). Direct evidence that the thymus produces a humoral factor, which plays a role in the development of immunity, has been provided by the discovery that the deficient immune responses found in mice after neonatal thymectomy can be prevented by intraperitoneally implanted grafts of thymus tissue enclosed within Millipore diffusion chambers (15-19).
    [Show full text]