Plasma Cells: Finding New Light at the End of B Cell Development Kathryn L
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Environments of Haematopoiesis and B-Lymphopoiesis in Foetal Liver K
Environments of haematopoiesis and B-lymphopoiesis in foetal liver K. Kajikhina1, M. Tsuneto1,2, F. Melchers1 1Max Planck Fellow Research Group ABSTRACT potent myeloid/lymphoid progenitors on “Lymphocyte Development”, In human and murine embryonic de- (MPP), and their immediate progeny, Max Planck Institute for Infection velopment, haematopoiesis and B-lym- common myeloid progenitors (CMP) Biology, Berlin, Germany; phopoiesis show stepwise differentia- and common lymphoid progenitors 2Department of Stem Cell and Developmental Biology, Mie University tion from pluripotent haematopoietic (CLP) soon thereafter (10). The first Graduate School of Medicine, Tsu, Japan. stem cells and multipotent progenitors, T- or B-lymphoid lineage-directed pro- Katja Kajikhina over lineage-restricted lymphoid and genitors appear at E12.5-13.5, for T- Motokazu Tsuneto, PhD myeloid progenitors to B-lineage com- lymphocytes in the developing thymus Fritz Melchers, PhD mitted precursors and finally differenti- (11), for B-lymphocytes in foetal liver Please address correspondence to: ated pro/preB cells. This wave of dif- (12). Time in development, therefore, Fritz Melchers, ferentiation is spatially and temporally separates and orders these different Max Planck Fellow Research Group organised by the surrounding, mostly developmental haematopoietic stages. on “Lymphocyte Development”, non-haematopoietic cell niches. We re- Three-dimensional imaging of progen- Max Planck Institute for Infection Biology, view here recent developments and our itors and precursors indicates that stem Chariteplatz 1, current contributions on the research D-10117 Berlin, Germany. cells are mainly found inside the em- E-mail: [email protected] on blood cell development. bryonic blood vessel, and are attracted Received and accepted on August 28, 2015. -
B Cell Activation and Escape of Tolerance Checkpoints: Recent Insights from Studying Autoreactive B Cells
cells Review B Cell Activation and Escape of Tolerance Checkpoints: Recent Insights from Studying Autoreactive B Cells Carlo G. Bonasia 1 , Wayel H. Abdulahad 1,2 , Abraham Rutgers 1, Peter Heeringa 2 and Nicolaas A. Bos 1,* 1 Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, 9713 Groningen, GZ, The Netherlands; [email protected] (C.G.B.); [email protected] (W.H.A.); [email protected] (A.R.) 2 Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 Groningen, GZ, The Netherlands; [email protected] * Correspondence: [email protected] Abstract: Autoreactive B cells are key drivers of pathogenic processes in autoimmune diseases by the production of autoantibodies, secretion of cytokines, and presentation of autoantigens to T cells. However, the mechanisms that underlie the development of autoreactive B cells are not well understood. Here, we review recent studies leveraging novel techniques to identify and characterize (auto)antigen-specific B cells. The insights gained from such studies pertaining to the mechanisms involved in the escape of tolerance checkpoints and the activation of autoreactive B cells are discussed. Citation: Bonasia, C.G.; Abdulahad, W.H.; Rutgers, A.; Heeringa, P.; Bos, In addition, we briefly highlight potential therapeutic strategies to target and eliminate autoreactive N.A. B Cell Activation and Escape of B cells in autoimmune diseases. Tolerance Checkpoints: Recent Insights from Studying Autoreactive Keywords: autoimmune diseases; B cells; autoreactive B cells; tolerance B Cells. Cells 2021, 10, 1190. https:// doi.org/10.3390/cells10051190 Academic Editor: Juan Pablo de 1. -
An Essential Role of UBXN3B in B Lymphopoiesis Tingting Geng Et Al. This File Contains 9 Supplemental Figures and Legends
An Essential Role of UBXN3B in B Lymphopoiesis Tingting Geng et al. This file contains 9 supplemental figures and legends. a Viral load (relative) load Viral Serum TNF-α b +/+ Serum IL-6 Ubxn3b Ubxn3b-/- Ubxn3b+/+ 100 100 ** Ubxn3b-/- ** 10 10 IL-6 IL-6 (pg/ml) GM-CSF (pg/ml) GM-CSF 1 1 0 3 8 14 35 0 3 8 14 35 Time post infection (Days) Time post infection (Days) Serum IL-10 Serum CXCL10 Ubxn3b+/+ Ubxn3b-/- 10000 1000 +/+ -/- * Ubxn3b Ubxn3b 1000 100 IFN-γ (pg/ml) CXCL10 (pg/ml) CXCL10 100 10 0 3 8 14 35 0 3 8 14 35 Time post infection (Days) Time post infection (Days) IL-1β IL-1β (pg/ml) Supplemental Fig.s1 UBXN3B is essential for controlling SARS-CoV-2 pathogenesis. Sex- and-age matched littermates were administered 2x105 plaque forming units (PFU) of SARS-CoV-2 intranasally. a) Quantitative RT-PCR (qPCR) quantification of SARS-CoV-2 loads in the lung at days 3 and 10 post infection (p.i). Each symbol= one mouse, the small horizontal line: the median of the result. *, p<0.05; **, p<0.01, ***, p<0.001 (non-parametric Mann-Whitney test) between Ubxn3b+/+ and Ubxn3b-/- littermates at each time point. Ubxn3b+/+ Ubxn3b-/- Live Live 78.0 83.6 CD45+ CD45+ UV UV CD45 94.1 CD45 90.9 FSC-A FSC-A FSC-A FSC-A Mac Mac 23.0 38.1 MHC II MHC II CD11b Eso CD11b Eso 5.81 7.44 CD19, MHCII subset F4_80, CD11b subset CD19, MHCII subset F4_80, CD11b subset Myeloid panel Myeloid 70.1 65.6 94.2 51.1 CD19 F4/80 CD19 F4/80 Neu DC Neu DC 4.87 1.02 16.2 2.24 CD11b, Ly-6G subset CD11b, Ly-6G subset 94.9 83.3 Ly-6G Ly-6G MHC II MHC II CD11b CD11c CD11b CD11c Live Live 82.3 76.5 CD45+ CD45+ 91.1 91.3 UV UV CD45 CD45 FSC-A FSC-A FSC-A FSC-A Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Lymphoid panel Lymphoid 20.1 0.29 54.1 1.17 4.27 0.060 39.2 2.55 CD4 CD4 CD19 CD19 Q4 Q3 Q4 Q3 Q4 Q3 Q4 Q3 47.0 32.6 7.21 37.5 67.7 28.0 7.27 51.0 CD3 CD8 CD3 CD8 Supplemental Fig.s2 Dysregulated immune compartmentalization in Ubxn3b-/- lung. -
Overview of B-Cell Maturation, Activation, Differentiation
Overview of B-Cell Maturation, Activation, Differentiation B-Cell Development Begins in the Bone Marrow and Is Completed in the Periphery Antigen-Independent (Maturation) 1) Pro-B stages B-cell markers 2) Pre B-stages H- an L- chain loci rearrangements surrogate light chain 3) Naïve B-cell functional BCR . B cells are generated in the bone marrow. Takes 1-2 weeks to develop from hematopoietic stem (HSC) cells to mature B cells. Sequence of expression of cell surface receptor and adhesion molecules which allows for differentiation of B cells, proliferation at various stages, and movement within the bone marrow microenvironment. HSC passes through progressively more delimited progenitor-cell stages until it reaches the pro-B cell stage. Pre-B cell is irreversibly committed to the B-cell lineage and the recombination of the immunoglobulin genes expressed on the cell surface Immature B cell (transitional B cell) leaves the bone marrow to complete its maturation in the spleen through further differentiation. Immune system must create a repertoire of receptors capable of recognizing a large array of antigens while at the Source: Internet same time eliminating self-reactive B cells. B-Cell Activation and Differentiation • Exposure to antigen or various polyclonal mitogens activates resting B cells and stimulates their proliferation. • Activated B cells lose expression of sIgD and CD21 and acquire expression of activation antigens. Growth factor receptors, structures involved in cell-cell interaction, molecules that play a role in the localization and binding of activated B cells Two major types: T cell dependent (TD) T cell independent (TI) B-Cell Activation by Thymus-Independent and Dependent Antigens Source: Kuby T cell dependent: Involves protein antigens and CD4+ helper T cells. -
Our Immune System (Children's Book)
OurOur ImmuneImmune SystemSystem A story for children with primary immunodeficiency diseases Written by IMMUNE DEFICIENCY Sara LeBien FOUNDATION A note from the author The purpose of this book is to help young children who are immune deficient to better understand their immune system. What is a “B-cell,” a “T-cell,” an “immunoglobulin” or “IgG”? They hear doctors use these words, but what do they mean? With cheerful illustrations, Our Immune System explains how a normal immune system works and what treatments may be necessary when the system is deficient. In this second edition, a description of a new treatment has been included. I hope this book will enable these children and their families to explore together the immune system, and that it will help alleviate any confusion or fears they may have. Sara LeBien This book contains general medical information which cannot be applied safely to any individual case. Medical knowledge and practice can change rapidly. Therefore, this book should not be used as a substitute for professional medical advice. SECOND EDITION COPYRIGHT 1990, 2007 IMMUNE DEFICIENCY FOUNDATION Copyright 2007 by Immune Deficiency Foundation, USA. Readers may redistribute this article to other individuals for non-commercial use, provided that the text, html codes, and this notice remain intact and unaltered in any way. Our Immune System may not be resold, reprinted or redistributed for compensation of any kind without prior written permission from Immune Deficiency Foundation. If you have any questions about permission, please contact: Immune Deficiency Foundation, 40 West Chesapeake Avenue, Suite 308, Towson, MD 21204, USA; or by telephone at 1-800-296-4433. -
B-Cell Reconstitution Recapitulates B-Cell Lymphopoiesis Following Haploidentical BM Transplantation and Post-Transplant CY
Bone Marrow Transplantation (2015) 50, 317–319 © 2015 Macmillan Publishers Limited All rights reserved 0268-3369/15 www.nature.com/bmt LETTER TO THE EDITOR B-cell reconstitution recapitulates B-cell lymphopoiesis following haploidentical BM transplantation and post-transplant CY Bone Marrow Transplantation (2015) 50, 317–319; doi:10.1038/ From week 9, the proportion of transitional B cells progressively bmt.2014.266; published online 24 November 2014 decreased (not shown), whereas that of mature B cells increased (Figure 1d). To further evaluate the differentiation of mature cells, we included markers of naivety (IgM and IgD) and memory (IgG) in The treatment of many hematological diseases benefits from our polychromatic panel. At week 9, when a sufficient proportion myeloablative or non-myeloablative conditioning regimens of cells were available for the analysis, B cells were mostly naive followed by SCT or BMT. HLA-matched donors are preferred but and remained so for 26 weeks after haploBMT (Figure 1d). Despite not always available. Instead, haploidentical donors can be rapidly low, the proportion of memory B cells reached levels similar to identified. Unmanipulated haploidentical BMT (haploBMT) with that of marrow donors (Supplementary Figure 1D). non-myeloablative conditioning and post-transplant Cy has been To further investigate the steps of B-cell maturation, we developed to provide a universal source of BM donors.1 Cy, analyzed CD5, a regulator of B-cell activation, and CD21, a which depletes proliferating/allogeneic cells, prevents GVHD.1 component of the B-cell coreceptor complex, on transitional B Importantly, the infection-related mortality was remarkably low, cells. These surface markers characterize different stages of 5,6 5,6 suggesting effective immune reconstitution.1,2 However, a transitional B-cell development. -
Human B Cell Isolation Product Selection Diagram
Human B Cell Isolation Product Selection Explore the infographic below to find the correct human B cell isolation product for your application. 1. Your Starting Sample Whole Peripheral Blood/Buffy Coat PBMCs/Leukapheresis Pack 2. Cell Separation Platform Immunodensity Cell Separation Immunomagnetic Cell Separation Immunomagnetic Cell Separation 3. Product Line RosetteSep™ EasySep™ EasySep™ Sequential Selection Negative Selection Negative Selection Positive Selection Negative Selection Positive Selection 4. Selection Method (Positive + Negative) iRosetteSep™ HLA iEasySep™ Direct HLA i, iiEasySep™ HLA iEasySep™ HLA B Cell viEasySep™ Human CD19 EasySep™ Human IgG+ B Cell Enrichment Cocktail B Cell Isolation Kit Chimerism Whole Blood Enrichment Kit Positive Selection Kit II Memory B Cell Isolation (15064HLA)1, 2, 3 (89684) / EasySep™ Direct B Cell Positive Selection (19054HLA)1, 2 (17854)1, 2 Kit (17868)1 (optional), 2' HLA Crossmatch B Cell Kit (17886)1, 2 Isolation Kit (19684 - 1, 2 RosetteSep™ Human available in the US only) iiiEasySep™ Human B Cell viEasySep™ Release EasySep™ Human Memory 5. Cell Isolation Kits B Cell Enrichment Cocktail i, iiEasySep™ HLA Enrichment Kit Human CD19 Positive B Cell Isolation Kit 1, 2, 3 1, 2 1, 2 1 (optional), 2 Catalog #s shown in ( ) (15024) Chimerism Whole Blood (19054) Selection Kit (17754) (17864) EasySep™ Direct Human CD19 Positive Selection B-CLL Cell Isolation Kit Kit (17874)1, 2 1, 2, 3, 4 *RosetteSep™ Human (19664) iiiEasySep™ Human B Cell EasySep™ Human CD138 Multiple Myeloma Cell Isolation Kit -
Defining Natural Antibodies
PERSPECTIVE published: 26 July 2017 doi: 10.3389/fimmu.2017.00872 Defining Natural Antibodies Nichol E. Holodick1*, Nely Rodríguez-Zhurbenko2 and Ana María Hernández2* 1 Department of Biomedical Sciences, Center for Immunobiology, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States, 2 Natural Antibodies Group, Tumor Immunology Division, Center of Molecular Immunology, Havana, Cuba The traditional definition of natural antibodies (NAbs) states that these antibodies are present prior to the body encountering cognate antigen, providing a first line of defense against infection thereby, allowing time for a specific antibody response to be mounted. The literature has a seemingly common definition of NAbs; however, as our knowledge of antibodies and B cells is refined, re-evaluation of the common definition of NAbs may be required. Defining NAbs becomes important as the function of NAb production is used to define B cell subsets (1) and as these important molecules are shown to play numerous roles in the immune system (Figure 1). Herein, we aim to briefly summarize our current knowledge of NAbs in the context of initiating a discussion within the field of how such an important and multifaceted group of molecules should be defined. Edited by: Keywords: natural antibody, antibodies, natural antibody repertoire, B-1 cells, B cell subsets, B cells Harry W. Schroeder, University of Alabama at Birmingham, United States NATURAL ANTIBODY (NAb) PRODUCING CELLS Reviewed by: Andre M. Vale, Both murine and human NAbs have been discussed in detail since the late 1960s (2, 3); however, Federal University of Rio cells producing NAbs were not identified until 1983 in the murine system (4, 5). -
Cells, Tissues and Organs of the Immune System
Immune Cells and Organs Bonnie Hylander, Ph.D. Aug 29, 2014 Dept of Immunology [email protected] Immune system Purpose/function? • First line of defense= epithelial integrity= skin, mucosal surfaces • Defense against pathogens – Inside cells= kill the infected cell (Viruses) – Systemic= kill- Bacteria, Fungi, Parasites • Two phases of response – Handle the acute infection, keep it from spreading – Prevent future infections We didn’t know…. • What triggers innate immunity- • What mediates communication between innate and adaptive immunity- Bruce A. Beutler Jules A. Hoffmann Ralph M. Steinman Jules A. Hoffmann Bruce A. Beutler Ralph M. Steinman 1996 (fruit flies) 1998 (mice) 1973 Discovered receptor proteins that can Discovered dendritic recognize bacteria and other microorganisms cells “the conductors of as they enter the body, and activate the first the immune system”. line of defense in the immune system, known DC’s activate T-cells as innate immunity. The Immune System “Although the lymphoid system consists of various separate tissues and organs, it functions as a single entity. This is mainly because its principal cellular constituents, lymphocytes, are intrinsically mobile and continuously recirculate in large number between the blood and the lymph by way of the secondary lymphoid tissues… where antigens and antigen-presenting cells are selectively localized.” -Masayuki, Nat Rev Immuno. May 2004 Not all who wander are lost….. Tolkien Lord of the Rings …..some are searching Overview of the Immune System Immune System • Cells – Innate response- several cell types – Adaptive (specific) response- lymphocytes • Organs – Primary where lymphocytes develop/mature – Secondary where mature lymphocytes and antigen presenting cells interact to initiate a specific immune response • Circulatory system- blood • Lymphatic system- lymph Cells= Leukocytes= white blood cells Plasma- with anticoagulant Granulocytes Serum- after coagulation 1. -
Med-Pathway Zoom Workshop
MCAT Immunology Dr. Phillip Carpenter medpathwaymcat Med-pathway AAMC MCAT Content Outline: Immunology Category 1A: Structure/Function of Proteins/AA Immune System Category 3B: Organ Systems Innate vs. Adaptive Immunity T and B Lymphocytes Macrophages & Phagocytes Tissue-Bone marrow, Spleen, Thymus, Lymph nodes Antigen and Antibody Antigen Presentation Clonal Selection Antigen-Antibody recognition Structure of antibody molecule Self vs. Non-self, Autoimmune Diseases Major Histocompatibility Complex Lab Techniques: ELISA & Western Blotting Hematopoiesis Creates Immune Cells Self vs. Non-self Innate vs Adaptive Innate Immunity Physical Barriers: Skin, mucous membranes, pH Inflammatory mediators: Complement, Cytokines, Prostaglandins Cellular Components: Phagocytes-Neutrophils, Eosinophils, Basophils, Mast Cells Antigen Presenting Cells-Monocytes, Macrophages, Dendritic Cells Adaptive (Acquired) Immunity Composed of B and T lymphocytes: Activated by Innate Immunity B cells: Express B cell receptor and secrete antibodies as plasma cells T cells: Mature in thymus, express TCR surface receptor; Activated by Antigen Presenting Cells (APCs) Direct Immune response (The Ringleaders of immune system) Major Lymphoid Organs TYPE SITE FUNCTION Fetal production of Liver 1° lymphoid cells Hematopoietic production of 1° Bone marrow myeloid and lymphoid cells Receives bone marrow T 1° Thymus cells; site where self is selected from non-self Lymph nodes 2° Sites of antigen activation Spleen of lymphocytes; clearance Macrophages (Sentinel Cells) Pattern Recognition -
In Situ Observation of Germinal Center Cell Apoptosis During a Secondary Immune Response
J Clin Exp Hematopathol Vol. 46, No. 2, Nov 2006 Original Article In Situ Observation of Germinal Center Cell Apoptosis During a Secondary Immune Response Hito-aki Saitoh, Kunihiko Maeda, and Mitsunori Yamakawa Germinal centers are highly organized anatomic structures essential for the clonal expansion of germinal center (GC) B- cells and associated somatic hypermutation, isotype switching, selection of the high-affinity B-cells (affinity maturation), and elimination of irrelevant or autoreactive clones. The identification of cellular interactions and regulatory mechanisms controlling apoptosis within GCs is essential for a complete understanding of the cellular and molecular dynamics of the GC reaction. We performed a kinetic analysis of the apoptotic activity occurring within GCs of draining lymph nodes of mice immunized with sheep red blood cells (SRBC) after secondary stimulation. The apoptotic activity of GC cells can be divided into three distinct phases : 1) initial phase (within the first days after immunization), 2) reactive phase (from the 5th day to 15th day after secondary immunization), and 3) late phase (after the 15th day). Apoptosis decreased shortly after secondary immunization followed by an increase to peak after an additional 10 days. Finally, apoptosis of GC cells decreased to basal levels. Administration of apoptosis inhibitors decreased the amount of apoptosis during the reactive phase. These results suggest that the reactive phase may be the critical period in which clonal selection and cellular differentiation -
Thymic Lymphoid Follicles in Autoimmune Diseases
Keio J. Med. 20: 57-68. 1971 THYMIC LYMPHOID FOLLICLES IN AUTOIMMUNE DISEASES ‡U. HISTOLOGICAL, HISTOCHEMICAL AND ELECTRON MICROSCOPIC STUDIES NORIKAZU TAMAOKI, SONOKO HABU and TORU KAMEYA Department of Pathology, School of Medicine, Keio University, Tokyo (Received for publication May 8, 1971) Thymic lymphoid follicles have been known to occur frequently in patients of myasthenia gravis, Graves' disease and other autoimmune diseases, and occa sionally in the young subjects dying by accident.1,2,3,4,5 Spontaneous as well as experimental lymphoid follicles have also been described in the thymus of rodents 6,7,8,9 The presense of a thymic lymphoid follicle has been interpreted as an indication of an abnormal immunological reaction, since the thymus is not a site of antibody production under normal conditions. 10 The thymus is an epithelial organ separated from mesenchymal tissue by an epithelial barrier on the capsular surface and around the blood vessels.11,12,13,14 On the other hand, lymphoid follicles are usually found in the peripheral lymphoid tissue composed of mesenchymal reticular cells, such as lymph nodes, spleen andd lymphoid tissue associated with gut. The present study was intended to describe histological, histochemical and electron microscopic characteristics of thymic lymphoid follicles in order to con firm whether they were related to epithelial or mesenchymal elements and to clarify their histogenesis in the human thymus. MATERIALS AND METHODS The materials were the same biospied human thymuses as described in the previous report.5 Serial sections in some cases were made from paraffin blocks and stained alternatively with H & E and silver impregnation.