4-Phase, 140-A Reference Design for Intel® Stratix® 10 GX Fpgas Using
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
OMAP2430 Applications Processor
TM Technology for Innovators OMAP2430 applications processor All-in-One Key features entertainment • Advanced Imaging, Video and Audio Accelerator (IVA™ 2) boosts video for 3G mobile performance in mobile phones by up to 4X and imaging performance by up to 1.5X phones • Delivering a multimedia experience with consumer electronics quality to the handset • Multi-engine parallel processing architecture for supporting complex usage scenarios • Built-in M-Shield™ mobile security technology enables value-added services and terminal security • Support for all major High Level Operating Systems (HLOS) aids applications development PRODUCT BULLETIN Leading imaging The new OMAP2430 processor from Texas Instruments (TI) delivers a new and video level of multimedia performance to third-generation (3G) mobile phones and performance other handheld systems. Leveraging TI’s proven OMAP™ 2 architecture, the OMAP2430 features an advanced imaging, video and audio accelerator (IVA™ 2) that provides a 4X improvement in video processing and 1.5X improvement in image processing over previously available solutions for mobile phones. The processor’s high video performance enables advanced codec algorithms that promote higher compression ratios allowing networks to support more data, bringing down costs for service providers and allowing them to deploy revenue- generating services such as mobile digital TV and mobile-to-mobile gaming. Support for these services, plus high-resolution, high-speed decode of standard video compression algorithms, brings a TV-like viewing quality and the familiar features of consumer electronics to mobile communications. The OMAP2430 is optimized for the complex applications characteristic of 3G wireless communications. Offering even higher performance than first-generation OMAP 2 processors while at a lower cost, the OMAP2430 processor provides the ultimate balance between multimedia performance, flexibility, power and cost. -
Mac Labs. More Creativity
Mac labs. More creativity. More engagement. More learning. Every Mac comes ready for 21st-century learning. Mac OS X Server creates the ultimate lab environment. Creativity and innovation are critical skills in the modern Mac OS X Server includes simplified tools for creating wikis and workplace, which makes them critical skills to teach today’s blogs, so students and staff can set up and manage them with students. Apple offers comprehensive lab solutions for your little or no help from IT. The Spotlight Server feature makes it school or university that will creatively engage students and easy for students collaborating on projects to find and view motivate them to take an interest in their own learning. The content stored anywhere on the network. Of course, access iLife ’09 suite of applications comes standard on every Mac, controls are built in, so they only get the search results they’re so students can immediately begin creating podcasts, editing authorised to see. Mac OS X Server also allows for real-time videos, composing music, producing photo essays and more. streaming of audio and video content, which lets everyone get right to work instead of waiting for downloads – saving major Mac or PC? Have both. storage across your network. Now one lab really can solve all your computing needs. Every Mac is powered by an Intel processor and features Launch careers from your Mac lab. Mac OS X – the world’s most advanced operating system. As an Apple Authorised Training Centre for Education, your Mac OS X comes with an amazing dual-boot feature called school can build a bridge between students and real-world Boot Camp that lets students run Windows XP or Vista natively careers. -
GS40 0.11-Μm CMOS Standard Cell/Gate Array
GS40 0.11-µm CMOS Standard Cell/Gate Array Version 1.0 January 29, 2001 Copyright Texas Instruments Incorporated, 2001 The information and/or drawings set forth in this document and all rights in and to inventions disclosed herein and patents which might be granted thereon disclosing or employing the materials, methods, techniques, or apparatus described herein are the exclusive property of Texas Instruments. No disclosure of information or drawings shall be made to any other person or organization without the prior consent of Texas Instruments. IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability. TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this war- ranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage (“Critical Applications”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WAR- RANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. -
Integrated Step-Down Converter with SVID Interface for Intel® CPU
Product Order Technical Tools & Support & Folder Now Documents Software Community TPS53820 SLUSE33 –FEBRUARY 2020 Integrated Step-Down Converter with SVID Interface for Intel® CPU Power Supply 1 Features 3 Description The TPS53820 device is D-CAP+ mode integrated 1• Single chip to support Intel VR13.HC SVID POL applications step-down converter for low current SVID rails of Intel CPU power supply. It provides up to two outputs to • Two outputs to support VCCANA (5.5 A) and power the low current SVID rails such as VCCANA P1V8 (4 A) (5.5 A) and P1V8 (4 A). The device employs D-CAP+ • D-CAP+™ Control for Fast Transient Response mode control to provide fast load transient • Wide Input Voltage (4.5 V to 15 V) performance. Internal compensation allows ease of use and reduces external components. • Differential Remote Sense • Programmable Internal Loop Compensation The device also provides telemetry, including input voltage, output voltage, output current and • Per-Phase Cycle-by-Cycle Current Limit temperature reporting. Over voltage, over current and • Programmable Frequency from 800 kHz to 2 MHz over temperature protections are provided as well. 2 • I C System Interface for Telemetry of Voltage, The TPS53820 device is packaged in a thermally Current, Output Power, Temperature, and Fault enhanced 35-pin QFN and operates between –40°C Conditions and 125°C. • Over-Current, Over-Voltage, Over-Temperature (1) protections Table 1. Device Information • Low Quiescent Current PART NUMBER PACKAGE BODY SIZE (NOM) • 5 mm × 5 mm, 35-Pin QFN, PowerPAD Package TPS53820 RWZ (35) 5 mm × 5 mm (1) For all available packages, see the orderable addendum at 2 Applications the end of the data sheet. -
Introduction to Intel® FPGA IP Cores
Introduction to Intel® FPGA IP Cores Updated for Intel® Quartus® Prime Design Suite: 20.3 Subscribe UG-01056 | 2020.11.09 Send Feedback Latest document on the web: PDF | HTML Contents Contents 1. Introduction to Intel® FPGA IP Cores..............................................................................3 1.1. IP Catalog and Parameter Editor.............................................................................. 4 1.1.1. The Parameter Editor................................................................................. 5 1.2. Installing and Licensing Intel FPGA IP Cores.............................................................. 5 1.2.1. Intel FPGA IP Evaluation Mode.....................................................................6 1.2.2. Checking the IP License Status.................................................................... 8 1.2.3. Intel FPGA IP Versioning............................................................................. 9 1.2.4. Adding IP to IP Catalog...............................................................................9 1.3. Best Practices for Intel FPGA IP..............................................................................10 1.4. IP General Settings.............................................................................................. 11 1.5. Generating IP Cores (Intel Quartus Prime Pro Edition)...............................................12 1.5.1. IP Core Generation Output (Intel Quartus Prime Pro Edition)..........................13 1.5.2. Scripting IP Core Generation.................................................................... -
Introducing the New 11Th Gen Intel® Core™ Desktop Processors
Product Brief 11th Gen Intel® Core™ Desktop Processors Introducing the New 11th Gen Intel® Core™ Desktop Processors The 11th Gen Intel® Core™ desktop processor family puts you in control of your compute experience. It features an innovative new architecture for reimag- ined performance, immersive display and graphics for incredible visuals, and a range of options and technologies for enhanced tuning. When these advances come together, you have everything you need for fast-paced professional work, elite gaming, inspired creativity, and extreme tuning. The 11th Gen Intel® Core™ desktop processor family gives you the power to perform, compete, excel, and power your greatest contributions. Product Brief 11th Gen Intel® Core™ Desktop Processors PERFORMANCE Reimagined Performance 11th Gen Intel® Core™ desktop processors are intelligently engineered to push the boundaries of performance. The new processor core architecture transforms hardware and software efficiency and takes advantage of Intel® Deep Learning Boost to accelerate AI performance. Key platform improvements include memory support up to DDR4-3200, up to 20 CPU PCIe 4.0 lanes,1 integrated USB 3.2 Gen 2x2 (20G), and Intel® Optane™ memory H20 with SSD support.2 Together, these technologies bring the power and the intelligence you need to supercharge productivity, stay in the creative flow, and game at the highest level. Product Brief 11th Gen Intel® Core™ Desktop Processors Experience rich, stunning, seamless visuals with the high-performance graphics on 11th Gen Intel® Core™ desktop -
Intel® Omni-Path Architecture (Intel® OPA) for Machine Learning
Big Data ® The Intel Omni-Path Architecture (OPA) for Machine Learning Big Data Sponsored by Intel Srini Chari, Ph.D., MBA and M. R. Pamidi Ph.D. December 2017 mailto:[email protected] Executive Summary Machine Learning (ML), a major component of Artificial Intelligence (AI), is rapidly evolving and significantly improving growth, profits and operational efficiencies in virtually every industry. This is being driven – in large part – by continuing improvements in High Performance Computing (HPC) systems and related innovations in software and algorithms to harness these HPC systems. However, there are several barriers to implement Machine Learning (particularly Deep Learning – DL, a subset of ML) at scale: • It is hard for HPC systems to perform and scale to handle the massive growth of the volume, velocity and variety of data that must be processed. • Implementing DL requires deploying several technologies: applications, frameworks, libraries, development tools and reliable HPC processors, fabrics and storage. This is www.cabotpartners.com hard, laborious and very time-consuming. • Training followed by Inference are two separate ML steps. Training traditionally took days/weeks, whereas Inference was near real-time. Increasingly, to make more accurate inferences, faster re-Training on new data is required. So, Training must now be done in a few hours. This requires novel parallel computing methods and large-scale high- performance systems/fabrics. To help clients overcome these barriers and unleash AI/ML innovation, Intel provides a comprehensive ML solution stack with multiple technology options. Intel’s pioneering research in parallel ML algorithms and the Intel® Omni-Path Architecture (OPA) fabric minimize communications overhead and improve ML computational efficiency at scale. -
Intel® Arria® 10 Device Overview
Intel® Arria® 10 Device Overview Subscribe A10-OVERVIEW | 2020.10.20 Send Feedback Latest document on the web: PDF | HTML Contents Contents Intel® Arria® 10 Device Overview....................................................................................... 3 Key Advantages of Intel Arria 10 Devices........................................................................ 4 Summary of Intel Arria 10 Features................................................................................4 Intel Arria 10 Device Variants and Packages.....................................................................7 Intel Arria 10 GX.................................................................................................7 Intel Arria 10 GT............................................................................................... 11 Intel Arria 10 SX............................................................................................... 14 I/O Vertical Migration for Intel Arria 10 Devices.............................................................. 17 Adaptive Logic Module................................................................................................ 17 Variable-Precision DSP Block........................................................................................18 Embedded Memory Blocks........................................................................................... 20 Types of Embedded Memory............................................................................... 21 Embedded Memory Capacity in -
Notes to Portfolio of Investments—March 31, 2021 (Unaudited)
Notes to portfolio of investments—March 31, 2021 (unaudited) Shares Value Common stocks: 99.36% Communication services: 9.92% Interactive media & services: 8.14% Alphabet Incorporated Class C † 4,891 $ 10,117,669 Facebook Incorporated Class A † 21,120 6,220,474 16,338,143 Wireless telecommunication services: 1.78% T-Mobile US Incorporated † 28,582 3,581,039 Consumer discretionary: 10.99% Automobiles: 1.91% General Motors Company † 66,899 3,844,017 Internet & direct marketing retail: 3.59% Amazon.com Incorporated † 2,329 7,206,112 Multiline retail: 1.69% Dollar General Corporation 16,717 3,387,199 Specialty retail: 3.80% Burlington Stores Incorporated † 15,307 4,573,732 Ulta Beauty Incorporated † 9,936 3,071,913 7,645,645 Consumer staples: 2.81% Food & staples retailing: 1.60% Sysco Corporation 40,883 3,219,127 Household products: 1.21% Church & Dwight Company Incorporated 27,734 2,422,565 Financials: 7.38% Capital markets: 4.85% CME Group Incorporated 7,970 1,627,713 Intercontinental Exchange Incorporated 24,575 2,744,536 S&P Global Incorporated 9,232 3,257,696 The Charles Schwab Corporation 32,361 2,109,290 9,739,235 Insurance: 2.53% Chubb Limited 13,181 2,082,203 Marsh & McLennan Companies Incorporated 24,610 2,997,498 5,079,701 Health care: 14.36% Biotechnology: 1.11% Alexion Pharmaceuticals Incorporated † 14,516 2,219,642 Health care equipment & supplies: 6.29% Align Technology Incorporated † 5,544 3,002,242 Boston Scientific Corporation † 79,593 3,076,269 See accompanying notes to portfolio of investments Wells Fargo VT Opportunity -
Performance Analysis of Intel Gen9.5 Integrated GPU Architecture
Performance Analysis of Intel Gen9.5 Integrated GPU Architecture Helder Francisco Pereira Duarte Thesis to obtain the Master of Science Degree in Electrical and Computer Engineering Supervisor(s): Doctor Aleksandar Ilic Examination Committee Chairperson: Doctor António Manuel Raminhos Cordeiro Grilo Supervisor: Doctor Aleksandar Ilic Member of the Committee: Doctor Ricardo Jorge Fernandes Chaves June 2018 Declaration I declare that this document is an original work of my own authorship and that it fulfills all the require- ments of the Code of Conduct and Good Practices of the Universidade de Lisboa. Acknowledgments I would like to thank my family and friends, whose support was paramount to the completion of this thesis, and to INESC-ID Lisboa, for providing the facilities in which this thesis was developed. In particular I would like to thank Diogo Marques for his tips that helped drive my research forward and, of course, to Prof. Aleksander for his incredible patience in dealing with me. i ii Resumo Recentemente os CPUs vemˆ equipados com placas graficas´ integradas. Este acoplamento tem o potencial de oferecer ganhos de desempenho consideraveis´ caso as ditas GPUs sejam usadas como aceleradores. No entanto, placas graficas´ integradas temˆ dificuldade em atingir os n´ıveis de desem- penho que placas discretas proporcionam devido ao menor numero´ de nucleos.´ Contudo, a sua prox- imidade com o CPU significa uma partilha de dados com menos sobrecargas associadas. Ademais, as vantagens de partilhar a hierarquia de memoria´ com o processador e o consumo de energia mais baixo que as placas discretas a` custa de desempenho permite atingir n´ıveis de eficienciaˆ energetica´ mais elevados. -
GS30 Product Overview
GS30 0.15-µm CMOS Standard Cell/Gate Array Version 1.0 February, 2001 Copyright Texas Instruments Incorporated, 2001 The information and/or drawings set forth in this document and all rights in and to inventions disclosed herein and patents which might be granted thereon disclosing or employing the materials, methods, techniques, or apparatus described herein are the exclusive property of Texas Instruments. No disclosure of information or drawings shall be made to any other person or organization without the prior consent of Texas Instruments. IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability. TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this war- ranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage (“Critical Applications”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WAR- RANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. -
WIND RIVER INTELLIGENT DEVICE PLATFORM XT the Foundation for Building Devices That Connect to the Internet of Things
WIND RIVER INTELLIGENT DEVICE PLATFORM XT The Foundation for Building Devices That Connect to the Internet of Things The opportunities presented by the burgeoning Internet of Things (IoT) may be new, but Wind River® has been providing the intelligence that powers interconnected, automated systems for decades. Wind River Intelligent Device Platform XT is a scalable, sustainable, and secure development environment that simplifies the development, integration, and deployment of IoT gateways. It is based on Wind River industry-leading operating systems, which are standards-compliant and fully tested, as well as Wind River development tools. The platform provides device security, smart connectivity, rich network options, and device management; and it includes ready-to-use components built exclusively for developing IoT gateway applications. Intelligent Device Platform XT provides outstanding software and expertise to fuel the rapid innovation and deployment of safe, secure, and reliable intel- ligent devices through more efficient development cycles, standards-based data connec- tions, and intuitive management tools. CONNECTIVITY TOOLS ZigBee Bluetooth WWAN VPN MQTT Cloud Connector Wi MANAGEMENT nd River Integrated Development Environment T Secure Updates OMA DM, TR-069 Device Authentication Web Interface Application Signing API OpenJDK Lua VM SQLite OSGi To SECURITY ol TCG Standards Role Based Access Control Integrity Monitoring Signed Software ool s WIND RIVER OPERATING ENVIRONMENTS Trusted Secure Boot Wind River Intelligent Device Operating Platform Feature Environment Base Figure 1: Wind River Intelligent Device Platform architecture Product Note INNOVATORS START HERE. WIND RIVER INTELLIGENT DEVICE PLATFORM XT INTEL, MCAFEE, AND WIND RIVER, BETTER TOGETHER Intelligent Device Platform XT is part of Intel® Gateway Solutions for Internet of Things (IoT), a family of platforms that enables companies to seamlessly interconnect indus- trial devices and other systems into a system of systems.