Ordering the Order of a Distributive Lattice by Itself

Total Page:16

File Type:pdf, Size:1020Kb

Ordering the Order of a Distributive Lattice by Itself View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Available online at www.sciencedirect.com The Journal of Logic and Algebraic Programming 76 (2008) 198–208 www.elsevier.com/locate/jlap Ordering the order of a distributive lattice by itself Michel Krebs ∗, Jürg Schmid Institute of Mathematics, University of Bern, CH-3012 Bern, Switzerland Available online 18 April 2008 Abstract We order the ordering relation of an arbitrary poset P component-wise by itself, obtaining a poset (P) extending P. In particular, the effects of on L ∈ DLAT01, the category of all bounded distributive lattices, are studied, mainly with the aid of Priestley duality. We characterize those L ∈ DLAT01 which occur as (K) for some K ∈ DLAT01, decide this situation in polynomial time for finite L, characterize fixpoints of within DLAT01 and relate them to free objects in DLAT01. © 2008 Elsevier Inc. All rights reserved. AMS classification: Primary 06A07, 06D05, 06D50 Keywords: Partially ordered set; Distributive lattice; Priestley duality; Free distributive lattice 1. Introduction In January 2005, at the end of a long seminar day devoted to ordered sets and lattices, van der Zypen wondered what happens if one orders the order relation of a poset component-wise – that is, by itself. Since no interesting fixed points of this operation came up, the topic was dropped quickly. Soon after Krebs fired up the AlgebraWorkBench (AWB) (see [9,8]) – a software package developed by Sprenger for the handling of finite (universal) algebras in an e-learning environment – fed it the two-element chain and performed the above operation on the latter repeatedly. To general surprise, AWB returned the first few freely generated distributive 0–1-lattices in succession, and eventually led to Krebs’ Ph.D. thesis [6], in whose title stands – for lack of a better idea – for the operation sketched above. This note collects some results, partially contained in [6], on the effects of “ordering the order by itself” within bounded distributive lattices. The paper is organized as follows: Section 2 collects, mostly without proofs, the basic properties of we need; for worked-out proofs and details one might consult [7,6]. Section 3 contains the germinating example which sparked our interest in , with a brute force direct proof (tailored to the finite case) showing that n(2) is nothing else than FD01(n). In Section 4, the effects of on a bounded distributive lattices L are studied in topological terms, based on Priestley duality, the main result being that (L) is the free product of L with the three-element chain. Returning to the finite case, we show in Section 5 how to decide in polynomial time whether a given finite distributive lattice occurs ∗ Corresponding author. E-mail addresses: [email protected] (M. Krebs), [email protected] (J. Schmid). 1567-8326/$ - see front matter ( 2008 Elsevier Inc. All rights reserved. doi:10.1016/j.jlap.2008.02.003 M. Krebs, J. Schmid / Journal of Logic and Algebraic Programming 76 (2008) 198–208 199 as the -image of another one. Section 6 characterizes those L which stay fixed under and relates them to free bounded distributive lattices on infinitely many generators. The final Section 7 considers the special case of Boolean lattices and lists some open questions. The authors’ sincere thanks go to referee who with his constructive and detailed criticism substantially improved the presentation of this paper. 2. Set-up A partially ordered set – for short: a poset – is a pair P = (P, RP ) consisting of a carrier set P and a bi- nary relation RP or just R on P which is reflexive, antisymmetric and transitive, that is, an order (relation). We will freely confuse P and P if the order is clear from the context; also, instead of RP we will mostly use the standard infix notation ≤P or just ≤. Write POSET for the category of all posets together with order-preserving maps. Let P × P be the cartesian square of P, having carrier P × P and the product order ≤P ×P given by (a, a ) ≤P ×P (b, b ) iff a ≤ b and a ≤ b , for all (a, a ), (b, b ) ∈ P × P .NowRP as a binary relation is actually a subset of P × P , consisting of all pairs (a, a) ∈ P × P satisfying a ≤ a, and thus carries the canonical order induced by ≤ × = ≤ × P P . For some of the properties of (P) (RP , P P RP ) for an arbitrary poset P, the reader may wish to consult [6]. This paper is about (P) in the special case when P is a bounded distributive lattice. Such lattices will be written L = (L;∧, ∨, 0, 1), and DLAT01 stands for the category of all bounded distributive lattices satisfying 0 =/ 1, together with all 0–1-preserving lattice homomorphisms. Here’s the formal definition of for this case: Definition 2.1. For L ∈ DLAT01 with order ≤L ⊆ L × L, let (L) be the 0–1-sublattice of L × L with carrier ≤L. Given f : K −→ L in DLAT01, define (f ) : (K) −→ (L) by (f )(a, a):=(f (a), f (a)) for all (a, a) ∈ (K), that is, (f ) = f × f . Fact 2.2. is a functor from DLAT01 to DLAT01. Proof. This follows easily since, for L ∈ DLAT01, the sup of (a, a), (b, b) ∈ (L) is given by (a ∨ b, a ∨ b), and their inf by (a ∧ b, a ∧ b). Define L : L −→ (L) by L(a):=(a, a) for a ∈ L. The subscript L will be omitted if clear from the context. Fact 2.3. (L) is a 0–1-sublattice of (L) isomorphic to L for any L ∈ DLAT01, thus L =∼ (L) ⊆ (L) ⊆ L × L (as 0–1-sublattices). Proof. Routine. One may check that preserves, e.g., injectivity of morphisms (if K is a 0–1-sublattice of L, then (K) a0– =∼ ∈ 1-sublattice of (L)), arbitrary direct products (( i∈I Li) ∈I (Li) for any index set I and lattices Li DLAT01), and even completeness (if L is a complete lattice, so is (L)), but we do not need these facts for the purposes of this paper. 3. Unleashing So far, we have not seen doing any real work. The simplest nontrivial candidate for testing will be the two-element chain 2 with carrier {0, 1} and order {(0, 0), (0, 1), (1, 1)}. The following figures show 0(2):=2, 1(2) = (2), 2(2) and 3(2). 200 M. Krebs, J. Schmid / Journal of Logic and Algebraic Programming 76 (2008) 198–208 Especially the last diagram will immediately ring a bell for anyone having been exposed to an introductory “Order and Lattices” course: It depicts the free algebra in DLAT01 on three generators, and invites us to recognize the other three as the diagrams of the free algebras on 0, 1 and 2 generators. To formulate the expected theorem, we write FD01(n) for the lattice freely generated in DLAT01 by n generators. ∼ n Theorem 3.1. FD01(n) = (2) for all n ∈ ω. ∼ Proof. Put Ln := FD01(n). We show (Ln) = Ln+1 for all n ∈ ω by brute force, transforming an arbitrary n- element set freely generating Ln into a (n + 1)-element set freely generating (Ln). The procedure is based on a peculiar property of free generating sets in DLAT01: G is such for L ∈ DLAT01 iff G generates L and H ≤ K implies H ∩ K/=∅, for any nonempty subsets H,K ⊆ G (see, e.g., [2, section V.3]). So assume G ={g1,...,gn} freely generates Ln (if n = 0, G is empty), and put G :=[G]∪{(0, 1)}. Consider an arbitrary element (a, b) ∈ (Ln), thus a,b ∈ Ln and a ≤ b. We see that (a, b) = ((0, 1) ∧ (b)) ∨ (a) since meets and joins are computed component-wise in (Ln). Since a ∈ Ln, we may write a = p(g1,...,gn) for some M. Krebs, J. Schmid / Journal of Logic and Algebraic Programming 76 (2008) 198–208 201 (lattice) polynomial p, and thus (a) = p((g1),...,(gn)). Analogously, (b) = q((g1),...,(gn)) for a suitable polynomial, hence, (a, b) is in the 0–1-sublattice of (Ln) generated by G . It remains to show that G freely generates (Ln). Assume that, for some H ,K ⊆ G ,wehave H ≤ K . Put H :=−1(H ) and K :=−1(K), thus H,K ⊆ G.If(0, 1) ∈ H ∩ K, we are done, so we may assume that (0, 1) occurs in at most one of H resp. K . Suppose(0, 1) ∈ H but (0, 1)/∈K . Hence K/=∅and K = ( K, K). It follows that H =/ (0, 1) since (0, 1) ≤ ( K, K) implies 1 ≤ K which is not possible for any nonempty K⊆ G, G being a free generating set for Ln. But H =/(0, 1) is only possible if H/=∅ , in which case H = (0, H). We conclude that (0, H) = H ≤ K = ( K, K) and thus H ≤ K. The last comparability is in Ln and we infer that H ∩ K/=∅, G being a free generating set. Pick gi ∈ H ∩ K, then (gi,gi) ∈ H ∩ K and we are done. The dual argument works for (0, 1)/∈ H but (0, 1) ∈ K. Finally, if (0, 1)/∈ H ∪ K, the desired conclusion H ∩ K/=∅is obtained directly. So the orbit of on 2 gives the complete list of all finitely generated free algebras in DLAT01. The obvious question at this point is what other – if any – lattices K ∈ DLAT01 are of the form (L) for some L ∈ DLAT01. As it turns out, the best way to characterize these lattices is to use Priestley’s topological duality theory for DLAT01.
Recommended publications
  • Logic and Set Theory
    University of Cambridge Mathematics Tripos Part II Logic and Set Theory Lent, 2018 Lectures by I. B. Leader Notes by Qiangru Kuang Contents Contents 1 Propositional Logic 2 1.1 Semantic Entailment ......................... 2 1.2 Syntactic Implication ......................... 4 2 Well-orderings and Ordinals 9 2.1 Definitions ............................... 9 2.2 Constructing well-orderings ..................... 13 2.3 Ordinals ................................ 13 2.4 Some ordinals ............................. 15 2.5 Successors and Limits ........................ 16 2.6 Ordinal arithmetics .......................... 17 3 Posets and Zorn’s Lemma 20 3.1 Partial Orders ............................. 20 3.2 Zorn’s Lemma ............................. 23 3.3 Zorn’s Lemma and Axiom of Choice ................ 25 3.4 Bourbaki-Witt Theorem* ...................... 26 4 Predicate Logic 28 4.1 Definitions ............................... 28 4.2 Semantic Entailment ......................... 30 4.3 Syntactic Implication ......................... 32 4.4 Gödel Completeness Theorem* ................... 34 4.5 Peano Arithmetic ........................... 38 5 Set Theory 40 5.1 Zermelo-Fraenkel Set Theory .................... 40 5.2 Properties of ZF ........................... 44 5.3 Picture of the Universe ........................ 48 6 Cardinals 50 6.1 Definitions ............................... 50 6.2 Cardinal Arithmetics ......................... 51 7 Gödel Incompleteness Theorem* 54 A Classes 57 Index 58 1 1 Propositional Logic 1 Propositional Logic Let 푃 be a set of primitive propositions. Unless otherwise stated, 푃 = {푝1, 푝2,…}. Definition (Language). The language or set of propositions 퐿 = 퐿(푃 ) is defined inductively by 1. for every 푝 ∈ 푃, 푝 ∈ 퐿, 2. ⊥ ∈ 퐿 (reads “false”), 3. if 푝, 푞 ∈ 퐿 then (푝 ⟹ 푞) ∈ 퐿. Example. (푝1 ⟹ ⊥), ((푝1 ⟹ 푝2) ⟹ (푝1 ⟹ 푝3)), ((푝1 ⟹ ⊥) ⟹ ⊥) are elements of 퐿. Note. 1. Each proposition is a finite string of symbols from the alphabet (, ), ⟹ , 푝1, 푝2,….
    [Show full text]
  • Order Isomorphisms of Complete Order-Unit Spaces Cormac Walsh
    Order isomorphisms of complete order-unit spaces Cormac Walsh To cite this version: Cormac Walsh. Order isomorphisms of complete order-unit spaces. 2019. hal-02425988 HAL Id: hal-02425988 https://hal.archives-ouvertes.fr/hal-02425988 Preprint submitted on 31 Dec 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ORDER ISOMORPHISMS OF COMPLETE ORDER-UNIT SPACES CORMAC WALSH Abstract. We investigate order isomorphisms, which are not assumed to be linear, between complete order unit spaces. We show that two such spaces are order isomor- phic if and only if they are linearly order isomorphic. We then introduce a condition which determines whether all order isomorphisms on a complete order unit space are automatically affine. This characterisation is in terms of the geometry of the state space. We consider how this condition applies to several examples, including the space of bounded self-adjoint operators on a Hilbert space. Our techniques also allow us to show that in a unital C∗-algebra there is an order isomorphism between the space of self-adjoint elements and the cone of positive invertible elements if and only if the algebra is commutative.
    [Show full text]
  • A Categorical View on Algebraic Lattices in Formal Concept Analysis
    Wright State University CORE Scholar Computer Science and Engineering Faculty Publications Computer Science & Engineering 2006 A Categorical View on Algebraic Lattices in Formal Concept Analysis Pascal Hitzler [email protected] Markus Krotzsch Guo-Qiang Zhang Follow this and additional works at: https://corescholar.libraries.wright.edu/cse Part of the Computer Sciences Commons, and the Engineering Commons Repository Citation Hitzler, P., Krotzsch, M., & Zhang, G. (2006). A Categorical View on Algebraic Lattices in Formal Concept Analysis. Fundamenta Informaticae, 74 (2/3), 301-328. https://corescholar.libraries.wright.edu/cse/165 This Article is brought to you for free and open access by Wright State University’s CORE Scholar. It has been accepted for inclusion in Computer Science and Engineering Faculty Publications by an authorized administrator of CORE Scholar. For more information, please contact [email protected]. Fundamenta Informaticae XX (2006) 1–28 1 IOS Press A Categorical View on Algebraic Lattices in Formal Concept Analysis Pascal Hitzler, Markus Krötzsch Institut AIFB Universität Karlsruhe Karlsruhe, Germany Guo-Qiang Zhang Department of Electrical Engineering and Computer Science Case Western Reserve University Cleveland, Ohio, U.S.A. Abstract. Formal concept analysis has grown from a new branch of the mathematical field of lattice theory to a widely recognized tool in Computer Science and elsewhere. In order to fully benefit from this theory, we believe that it can be enriched with notions such as approximation by computation or representability. The latter are commonly studied in denotational semantics and domain theory and captured most prominently by the notion of algebraicity, e.g. of lattices.
    [Show full text]
  • A Relation R on a Set a Is a Partial Order Iff R
    4. PARTIAL ORDERINGS 43 4. Partial Orderings 4.1. Definition of a Partial Order. Definition 4.1.1. (1) A relation R on a set A is a partial order iff R is • reflexive, • antisymmetric, and • transitive. (2) (A, R) is called a partially ordered set or a poset. (3) If, in addition, either aRb or bRa, for every a, b ∈ A, then R is called a total order or a linear order or a simple order. In this case (A, R) is called a chain. (4) The notation a b is used for aRb when R is a partial order. Discussion The classic example of an order is the order relation on the set of real numbers: aRb iff a ≤ b, which is, in fact, a total order. It is this relation that suggests the notation a b, but this notation is not used exclusively for total orders. Notice that in a partial order on a set A it is not required that every pair of elements of A be related in one way or the other. That is why the word partial is used. 4.2. Examples. Example 4.2.1. (Z, ≤) is a poset. Every pair of integers are related via ≤, so ≤ is a total order and (Z, ≤) is a chain. Example 4.2.2. If S is a set then (P (S), ⊆) is a poset. Example 4.2.3. (Z, |) is a poset. The relation a|b means “a divides b.” Discussion Example 4.2.2 better illustrates the general nature of a partial order. This partial order is not necessarily a total order; that is, it is not always the case that either A ⊆ B or B ⊆ A for every pair of subsets of S.
    [Show full text]
  • The Rees Product of Posets
    The Rees product of posets Patricia Muldoon Brown and Margaret A. Readdy∗ Dedicated to Dennis Stanton on the occasion of his 60th birthday Abstract We determine how the flag f-vector of any graded poset changes under the Rees product with the chain, and more generally, any t-ary tree. As a corollary, the M¨obius function of the Rees product of any graded poset with the chain, and more generally, the t-ary tree, is exactly the same as the Rees product of its dual with the chain, respectively, t-ary chain. We then study enumerative and homological properties of the Rees product of the cubical lattice with the chain. We give a bijective proof that the M¨obius function of this poset can be expressed as n times a signed derangement number. From this we derive a new bijective proof of Jonsson’s result that the M¨obius function of the Rees product of the Boolean algebra with the chain is given by a derangement number. Using poset homology techniques we find an explicit basis for the reduced homology and determine a representation for the reduced homology of the order complex of the Rees product of the cubical lattice with the chain over the symmetric group. 2010 Mathematics Subject Classification: 06A07, 05E10, 05A05. 1 Introduction Bj¨orner and Welker [2] initiated a study to generalize concepts from commutative algebra to the area of poset topology. Motivated by the ring-theoretic Rees algebra, one of the new poset operations they define is the Rees product. Definition 1.1 For two graded posets P and Q with rank function ρ the Rees product, denoted P ∗Q, is the set of ordered pairs (p, q) in the Cartesian product P × Q with ρ(p) ≥ ρ(q).
    [Show full text]
  • 4 Posets and Lattices 4.1 Partial Orders Many Important Relations Cover Some Idea of Greater and Smaller: the Partial Orders
    73 4 Posets and lattices 4.1 Partial orders Many important relations cover some idea of greater and smaller: the partial orders. 4.1 Definition. An (endo)relation v (\under") on a set P is called a partial order if it is reflexive, antisymmetric, and transitive. We recall that this means that, for all x; y; z 2P , we have: • x v x ; • x v y ^ y v x ) x = y ; • x v y ^ y v z ) x v z . The pair (P; v ) is called a partially ordered set or, for short, a poset. Two elements x and y in a poset (P; v ) are called comparable if x v y or y v x , otherwise they are called incomparable, that is, if :(x v y) and :(y v x). A partial order is a total order, also called linear order, if every two elements are comparable. 2 4.2 Lemma. For every poset (P; v ) and for every subset X of P , the pair (X; v ) is a poset too. 2 4.3 Example. • On every set, the identity relation I is a partial order. It is the smallest possible partial order relation on that set. • On the real numbers R the relation ≤ is a total order: every two numbers x; y2R satisfy x ≤ y or y ≤ x . Restriction of ≤ to any subset of R { for example, restriction to Q; Z; N { also yields a total order on that subset. • The power set P(V ) of a set V , that is, the set of all subsets of V , with relation ⊆ (subset inclusion), is a poset.
    [Show full text]
  • An Introduction to Order Theory
    An Introduction to Order Theory Presented by Oliver Scarlet May 16, 2019 Motivation Relations Orders Bounds and Lattices Links to Other Areas My Research Why learn about Order Theory? – Orders can be found in many areas of maths, if you know to look – They can be intuitive algebraic objects and good examples – Order theory has applications in proving difficult theoretical results – It is used in computational type theory and some representation theory – Maths is fun 2/36 Motivation Relations Orders Bounds and Lattices Links to Other Areas My Research Binary Relations Definition (Binary Relation) A Binary Relation between elements of X and Y is some subset R ⊆ X × Y . If x 2 X and y 2 Y are related by R, instead of (x; y) 2 R we write xRy. Examples – X = fpeopleg, Y = fhousesg, L = f(p; h) j p lives in hg. – X = fpeopleg, Y = fpeopleg, S = f(p; q) j p is shorter than qg. – X = Z, Y = C, R = f(x; y) j xy = 2 or y =6 0g. – R = f(x; y) j f (x) = yg. 3/36 Motivation Relations Orders Bounds and Lattices Links to Other Areas My Research Properties of Relations Definition A relation R ⊆ X × X is – Transitive if xRy and yRz implies xRz. Examples – Reflexive if xRx for all x 2 X . – R = f(p; q) j p lives with qg. – Anti-Reflexive if xRx is not true for any – R = f(x; y) j x − y ≤ 0g ⊆ Z2. x 2 X . – R = f(S; T ) j S ( T g. – Symmetric if xRy implies yRx.
    [Show full text]
  • Representation of Strongly Independent Preorders by Vector-Valued Functions
    Munich Personal RePEc Archive Representation of strongly independent preorders by vector-valued functions McCarthy, David and Mikkola, Kalle and Thomas, Teruji University of Hong Kong, Aalto University, University of Oxford 15 August 2017 Online at https://mpra.ub.uni-muenchen.de/80806/ MPRA Paper No. 80806, posted 16 Aug 2017 15:42 UTC Representation of strongly independent preorders by vector-valued functions∗ David McCarthy† Kalle Mikkola‡ Teruji Thomas§ Abstract We show that without assuming completeness or continuity, a strongly independent preorder on a possibly infinite dimensional convex set can always be given a vector-valued representation that naturally generalizes the standard expected utility representation. More precisely, it can be represented by a mixture-preserving function to a product of lexicographic function spaces. Keywords. Expected utility; discontinuous preferences; incomplete preferences; lexico- graphic representations. JEL Classification. D81. 1 Introduction The completeness axiom of expected utility theory was questioned even at its inception. Von Neumann and Morgenstern (1953) found it “very dubious”, but claimed that without it, a vector- valued generalization of expected utility could be obtained, though they did not provide details. Likewise, the continuity axiom (or axioms, as there are several) has not received strong support. It is often presented as a ‘merely technical’ condition, adopted simply to underwrite a convenient representation theorem, and cases are commonly given where its status as normative requirement is quite doubtful. This prompts the view that the essence of expected utility is the strong independence axiom. In this article we show that without assuming completeness or continuity, a strongly independent preorder on a possibly infinite dimensional convex set can always be given a vector-valued repre- sentation that naturally generalizes the standard expected utility representation.
    [Show full text]
  • Labeled Well-Quasi-Order for Permutation Classes
    Labeled Well-Quasi-Order for Permutation Classes Robert Brignall Vincent Vatter∗ School of Mathematics and Statistics Department of Mathematics The Open University University of Florida Milton Keynes, England UK Gainesville, Florida USA March 16, 2021 While the theory of labeled well-quasi-order has received significant at- tention in the graph setting, it has not yet been considered in the context of permutation patterns. We initiate this study here, and using labeled well-quasi-order are able to subsume and extend all of the well-quasi- order results in the permutation patterns literature. Connections to the graph setting are emphasized throughout. In particular, we establish that a permutation class is labeled well-quasi-ordered if and only if its corresponding graph class is also labeled well-quasi-ordered. 1. Introduction A prominent theme of the past 80 years1 of combinatorics research has been the study of well- quasi-order (although as Kruskal laments in [63], the property is known by a mishmash of names). Suppose we have a universe of finite combinatorial objects and a notion of embedding one object into another that is at least reflexive and transitive, that is, the notion of embedding forms a quasi-order 2 arXiv:2103.08243v1 [math.CO] 15 Mar 2021 (in our situation the order is also antisymmetric, so it in fact forms a partial order ). Assuming that this notion of embedding does not permit infinite strictly descending chains (as is usually the case for orders on finite combinatorial objects), it is well-quasi-ordered (abbreviated wqo, and written belordonné in French) if it does not contain an infinite antichain—that is, there is no infinite subset of pairwise incomparable objects (this is but one of several ways to define wqo; some others are presented in Section 1.2).
    [Show full text]
  • Representation of Strongly Independent Preorders by Vector-Valued Functions
    MPRA Munich Personal RePEc Archive Representation of strongly independent preorders by vector-valued functions David McCarthy and Kalle Mikkola and Teruji Thomas University of Hong Kong, Aalto University, University of Oxford 15 August 2017 Online at https://mpra.ub.uni-muenchen.de/80806/ MPRA Paper No. 80806, posted 16 August 2017 15:42 UTC Representation of strongly independent preorders by vector-valued functions∗ David McCarthyy Kalle Mikkolaz Teruji Thomasx Abstract We show that without assuming completeness or continuity, a strongly independent preorder on a possibly infinite dimensional convex set can always be given a vector-valued representation that naturally generalizes the standard expected utility representation. More precisely, it can be represented by a mixture-preserving function to a product of lexicographic function spaces. Keywords. Expected utility; discontinuous preferences; incomplete preferences; lexico- graphic representations. JEL Classification. D81. 1 Introduction The completeness axiom of expected utility theory was questioned even at its inception. Von Neumann and Morgenstern (1953) found it \very dubious", but claimed that without it, a vector- valued generalization of expected utility could be obtained, though they did not provide details. Likewise, the continuity axiom (or axioms, as there are several) has not received strong support. It is often presented as a `merely technical' condition, adopted simply to underwrite a convenient representation theorem, and cases are commonly given where its status as normative requirement is quite doubtful. This prompts the view that the essence of expected utility is the strong independence axiom. In this article we show that without assuming completeness or continuity, a strongly independent preorder on a possibly infinite dimensional convex set can always be given a vector-valued repre- sentation that naturally generalizes the standard expected utility representation.
    [Show full text]
  • Equivalence and Order
    Unit EO Equivalence and Order Section 1: Equivalence The concept of an equivalence relation on a set is an important descriptive tool in mathe- matics and computer science. It is not a new concept to us, as “equivalence relation” turns out to be just another name for “partition of a set.” Our emphasis in this section will be slightly different from our previous discussions of partitions in Unit SF. In particular, we shall focus on the basic conditions that a binary relation on a set must satisfy in order to define a partition. This “local” point of view regarding partitions is very helpful in many problems. We start with the definition. Definition 1 (Equivalence relation) An equivalence relation on a set S is a partition of S. We say that s,t S are equivalent if and only if they belong to the same block of theK partition . We call∈ a block an equivalence class of the equivalence relation. K If the symbol denotes the equivalence relation, then we write s t to indicate that s and t are equivalent≡ (in the same block) and s t to denote that they≡ are not equivalent. 6≡ Here’s a trivial equivalence relation that you use all the time. Let S be any set and let all the blocks of the partition have one element. Two elements of S are equivalent if and only if they are the same. This rather trivial equivalence relation is, of course, denoted by “=”. Example 1 (All the equivalence relations on a set) Let S = a, b, c .
    [Show full text]
  • CATEGORICAL ONTOLOGY I Contents 1. Introduction 2 2. Categories As Places 8 3. Preliminaries on Variable Set Theory 16 4. the In
    CATEGORICAL ONTOLOGY I EXISTENCE DARIO DENTAMARO AND FOSCO LOREGIAN Abstract. The present paper is the first piece of a series whose aim is to develop an approach to ontology and metaontology through category theory. We exploit the theory of elementary toposes to claim that a satisfying “theory of existence”, and more at large ontology itself, can both be obtained through category theory. In this perspective, an ontology is a mathematical object: it is a category, the universe of discourse in which our mathematics (intended at large, as a theory of knowledge) can be deployed. The internal language that all categories possess prescribes the modes of existence for the objects of a fixed ontology/category. This approach resembles, but is more general than, fuzzy logics, as most choices of E and thus of ΩE yield nonclassical, many-valued logics. Framed this way, ontology suddenly becomes more mathematical: a solid corpus of tech- niques can be used to backup philosophical intuition with a useful, modular language, suitable for a practical foundation. As both a test-bench for our theory, and a literary divertissement, we propose a possible category-theoretic solution of Borges’ famous paradoxes of Tl¨on’s“nine copper coins”, and of other seemingly paradoxical construction in his literary work. We then delve into the topic with some vistas on our future works. Contents 1. Introduction2 2. Categories as places8 3. Preliminaries on variable set theory 16 4. The internal language of variable sets 20 5. Nine copper coins, and other toposes 24 6. Vistas on ontologies 35 Appendix A. Category theory 39 References 44 1 2 DARIO DENTAMARO AND FOSCO LOREGIAN 1.
    [Show full text]