Extending List’s Levels Neil Dewar, Samuel C. Fletcher, and Laurenz Hudetz Abstract Christian List [24] has recently proposed a category-theoretic model of a system of levels, applying it to various pertinent metaphysical questions. We mod- ify and extend this framework to correct some minor defects and better adapt it to application in philosophy of science. This includes a richer use of category theoretic ideas and some illustrations using social choice theory. 1 List’s descriptive, explanatory, and ontological levels In general, a system of levels for List [24] is a preordered class: that is, a class L equipped with a reflexive and transitive binary relation ≤. The elements of L are to be interpreted as levels, and the binary relation ≤ as the relation of supervenience: L ≤ L0 means L0 supervenes on L. Thus, requiring that ≤ be a preorder amounts to assuming that every level supervenes upon itself, and if the level L1 supervenes on the level L2, and L2 on the level L3, then L1 supervenes on L3. In requiring only these characteristics, List is deliberately opting for a fairly weak conception of supervenience. For instance, it is possible to have two distinct levels within the system, neither of which supervene upon the other, or to have two distinct levels both of which supervene upon the other. Neil Dewar LMU Munich, Geschwister-Scholl-Platz 1, 80539 Munich, Germany e-mail:
[email protected] Samuel C. Fletcher University of Minnesota, Twin Cities, 271 19th Ave S, Minneapolis, MN 55455, USA e-mail: scfl
[email protected] Laurenz Hudetz London School of Economics, Houghton Street, WC2A 2AE, London, UK e-mail:
[email protected] 1 2 Neil Dewar, Samuel C.