An Introduction to Order Theory

Total Page:16

File Type:pdf, Size:1020Kb

An Introduction to Order Theory An Introduction to Order Theory Presented by Oliver Scarlet May 16, 2019 Motivation Relations Orders Bounds and Lattices Links to Other Areas My Research Why learn about Order Theory? – Orders can be found in many areas of maths, if you know to look – They can be intuitive algebraic objects and good examples – Order theory has applications in proving difficult theoretical results – It is used in computational type theory and some representation theory – Maths is fun 2/36 Motivation Relations Orders Bounds and Lattices Links to Other Areas My Research Binary Relations Definition (Binary Relation) A Binary Relation between elements of X and Y is some subset R ⊆ X × Y . If x 2 X and y 2 Y are related by R, instead of (x; y) 2 R we write xRy. Examples – X = fpeopleg, Y = fhousesg, L = f(p; h) j p lives in hg. – X = fpeopleg, Y = fpeopleg, S = f(p; q) j p is shorter than qg. – X = Z, Y = C, R = f(x; y) j xy = 2 or y =6 0g. – R = f(x; y) j f (x) = yg. 3/36 Motivation Relations Orders Bounds and Lattices Links to Other Areas My Research Properties of Relations Definition A relation R ⊆ X × X is – Transitive if xRy and yRz implies xRz. Examples – Reflexive if xRx for all x 2 X . – R = f(p; q) j p lives with qg. – Anti-Reflexive if xRx is not true for any – R = f(x; y) j x − y ≤ 0g ⊆ Z2. x 2 X . – R = f(S; T ) j S ( T g. – Symmetric if xRy implies yRx. – v ? u if they are non-zero and – Anti-Symmetric if xRy and yRx implies perpendicular. x = y. – xRy if and only if x is purple. – Connexive if xRy or yRx for all x; y 2 X . 4/36 Motivation Relations Orders Bounds and Lattices Links to Other Areas My Research Equivalence Relations Definition (Equivalence Relation) A relation R is an Equivalence Relation if it is – Transitive, – Reflexive, – Symmetric. ∼ Common notation for equivalence relations include =, ', ∼, =, ≡. Examples – xRy if and only if x = y. – x ∼ y iff 1 = 1. – ` k m iff ` and m are parallel. ∼ – S = T iff there exists a bijection from S to T . 5/36 Motivation Relations Orders Bounds and Lattices Links to Other Areas My Research Equivalence Classes Definition (Equivalence Class) Given an equivalence relation ∼ over a set X , the Equivalence Class of x is [x] := fy 2 X j x ∼ yg: We write X / ∼ for the set of equivalence classes of X . Examples – x ∼ y if x = y, then [x] = fxg. – x ∼ y for x; y 2 X if 1 = 1, then [x] = X . – ` k m, then there is one class for each direction. ∼ – S = T when there is a bijection S ! T , then there is one class for each cardinality. 6/36 Motivation Relations Orders Bounds and Lattices Links to Other Areas My Research Preorders Definition (Preorder) A relation R is a Preorder if it is – Transitive, – Reflexive. Examples – Integers with the relation ≤. – Natural numbers where xjy if there is a 2 N such that ax = y. – sRt iff to complete subject t you must complete subject s. – P ) Q meaning P implies Q. 7/36 Motivation Relations Orders Bounds and Lattices Links to Other Areas My Research Preorders Theorem If ≤ is a preorder, then ≥ is a preorder, where x ≥ y if y ≤ x. Theorem If ≤ is a preorder, then < is a transitive anti-reflexive relation, where x < y if x ≤ y but not y ≤ x. Definition (Order Preserving) If (X ; ≤) and (Y ; ⪯) are preordered sets, then a function f : X ! Y is Order Preserving if x ≤ y implies f (x) ⪯ f (y). 8/36 Motivation Relations Orders Bounds and Lattices Links to Other Areas My Research Making a Preorder Theorem For every reflexive relation R ⊆ X 2 there is a preorder ≤ on X where xRy implies x ≤ y. Proof. We define the preorder as x ≤ y if there is a sequence z1; z2;:::; zn 2 X where xRz1, zn Ry, and each zi Rzi+1. This preorder is called the Transitive Closure of R. Examples – If we have the relation xRy whenever x is y or a child of y, the transitive closure is x ≤ y when x is a descendent of y. – If we have the relation xRy whenever x is y or a prerequisite subject for y, the transitive closure is x ≤ y if you mast pass x to pass y. 9/36 Motivation Relations Orders Bounds and Lattices Links to Other Areas My Research Special Preorders Definition (Equivalence Relation) A preorder R is an Equivalence Relation if it is symmetric. Definition (Partial Order) A preorder R is a Partial Order if it is anti-symmetric. Common notation for partial orders includes ⊆, ≤, ⪯. The set X and some partial order R ⊆ X 2 together form a Poset (X ; R). Examples – (Z; ≤). – (N; j) where xjy if there is a 2 N such that ax = y. – (fsubjectsg; ⪯) where s ⪯ t iff to complete t you must complete s. 10/36 Motivation Relations Orders Bounds and Lattices Links to Other Areas My Research Partial Orders Theorem If ≤ is a partial order, then ≥ is a partial order. 11/36 Motivation Relations Orders Bounds and Lattices Links to Other Areas My Research Hasse Diagrams How do we draw a poset graphically? For example, f2; 3; 4; 6; 8; 9; 12g ordered by divisibility. We place x below y when x < y and connect them with a line if there is no z such that x < z < y. 8 12 4 6 9 2 3 12/36 Motivation Relations Orders Bounds and Lattices Links to Other Areas My Research Preorder to Partial Order Theorem If R is a preorder on X , then x ∼ y iff xRy and yRx defines an equivalence relation on X . Theorem If R is a preorder on X , and x ∼ y iff xRy and yRx, then [x] ≤ [y] iff xRy defines a partial order on X / ∼. Examples – S ≤ T if there is an injective function S ! T . – x ⪯ y if there is a way to travel from x to y. – xjy for x; y 2 Z if there is some z 2 Z with xz = y. 13/36 Motivation Relations Orders Bounds and Lattices Links to Other Areas My Research Total Orders 9 Definition (Total Order) 8 A partial order ≤ is a Total Order if it is connexive. 7 A set equipped with a total order is called a Totally Ordered Set. Examples 6 – (Z; ≤). 5 – Words ordered alphabetically. 4 – [S] ≤ [T ] if there is an injective function S ! T (assuming the Axiom of Choice). 3 What does the Hasse Diagram of a Total Order look like? 2 1 14/36 Motivation Relations Orders Bounds and Lattices Links to Other Areas My Research Partial to Total Definition In a poset X , x is maximal if there is no y 2 X where x < y. Theorem Given a finite poset (X ; ≤), there is a total ordering ⪯ where x ≤ y implies x ⪯ y. Proof. Let n be the size of X . For each i = n; n − 1;:::; 2; 1 pick a maximal element xi 2 X n fxn ;:::; xi+1g. Then let xi ⪯ xj if i ≤ j . 15/36 Motivation Relations Orders Bounds and Lattices Links to Other Areas My Research Partial to Total x7 = 12 8 12 x6 = 9 x5 = 6 x = 8 4 6 9 4 x3 = 3 x = 4 2 3 2 x1 = 2 16/36 Motivation Relations Orders Bounds and Lattices Links to Other Areas My Research More Orders Theorem n If ≤ is a preorder on X , we can define a preorder on X where (x1;:::; xn ) ≤ (y1;:::; yn ) if each xi ≤ yi . We call this the Product Order. Theorem If ≤ is partial order on X , the product order is a partial order. Theorem If ≤ is a total order on X , we can define a total order on X n where (x1;:::; xn ) ≤ (y1;:::; yn ) if there is some i 2 f1;:::; ng where – xj = yj for j < i and – xi ≤ yi . We call this the Lexicographical Order. 17/36 Motivation Relations Orders Bounds and Lattices Links to Other Areas My Research Bounds Definition (Upper and Lower Bound) If ≤ is a preorder on X and S ⊆ X is some subset, then x 2 X is an Upper Bound of S if s ≤ x for all s 2 S. x is a Lower Bound of S if it is an upper bound in terms of the preorder ≥. Definition (Supremum and Infimum) If ≤ is a partial order on X and S ⊆ X is some subset, then x 2 X is the Supremum of S if it is an upper bound of S, and if whenever y is an upper bound of S, then x ≤ y. We write x = sup S. x is the Infimum of S if it is the supremum in terms of the partial order ≥, and we write this x = inf S. Theorem In a partial ordering, if S contains its upper bound, then that upper bound is its supremum, and we call it the Maximum of S. 18/36 Motivation Relations Orders Bounds and Lattices Links to Other Areas My Research Bounds Examples S T ⊆ – For sets ordered by , sup S = s2S s and inf S = s2S s. – For natural numbers ordered by divisibility, the supremum is the least common multiple, and the infimum is the greatest common divisor. – In X = f2; 3; 12; 18g ordered by divisibility, S = f2; 3g has upper bounds, but no supremum. – In the set of mathematical statements ordered by implication, supfP; Qg is P or Q, and inffP; Qg is P and Q.
Recommended publications
  • Directed Sets and Topological Spaces Definable in O-Minimal Structures
    Directed sets and topological spaces definable in o-minimal structures. Pablo And´ujarGuerrero∗ Margaret E. M. Thomas ∗ Erik Walsbergy 2010 Mathematics Subject Classification. 03C64 (Primary), 54A20, 54A05, 54D30 (Secondary). Key words. o-minimality, directed sets, definable topological spaces. Abstract We study directed sets definable in o-minimal structures, show- ing that in expansions of ordered fields these admit cofinal definable curves, as well as a suitable analogue in expansions of ordered groups, and furthermore that no analogue holds in full generality. We use the theory of tame pairs to extend the results in the field case to definable families of sets with the finite intersection property. We then apply our results to the study of definable topologies. We prove that all de- finable topological spaces display properties akin to first countability, and give several characterizations of a notion of definable compactness due to Peterzil and Steinhorn [PS99] generalized to this setting. 1 Introduction The study of objects definable in o-minimal structures is motivated by the notion that o-minimality provides a rich but \tame" setting for the theories of said objects. In this paper we study directed sets definable in o-minimal structures, focusing on expansions of groups and fields. By \directed set" we mean a preordered set in which every finite subset has a lower (if downward ∗Department of Mathematics, Purdue University, 150 N. University Street, West Lafayette, IN 47907-2067, U.S.A. E-mail addresses: [email protected] (And´ujarGuer- rero), [email protected] (Thomas) yDepartment of Mathematics, Statistics, and Computer Science, Department of Math- ematics, University of California, Irvine, 340 Rowland Hall (Bldg.# 400), Irvine, CA 92697-3875, U.S.A.
    [Show full text]
  • Filtering Germs: Groupoids Associated to Inverse Semigroups
    FILTERING GERMS: GROUPOIDS ASSOCIATED TO INVERSE SEMIGROUPS BECKY ARMSTRONG, LISA ORLOFF CLARK, ASTRID AN HUEF, MALCOLM JONES, AND YING-FEN LIN Abstract. We investigate various groupoids associated to an arbitrary inverse semigroup with zero. We show that the groupoid of filters with respect to the natural partial order is isomorphic to the groupoid of germs arising from the standard action of the inverse semigroup on the space of idempotent filters. We also investigate the restriction of this isomorphism to the groupoid of tight filters and to the groupoid of ultrafilters. 1. Introduction An inverse semigroup is a set S endowed with an associative binary operation such that for each a 2 S, there is a unique a∗ 2 S, called the inverse of a, satisfying aa∗a = a and a∗aa∗ = a∗: The study of ´etalegroupoids associated to inverse semigroups was initiated by Renault [Ren80, Remark III.2.4]. We consider two well known groupoid constructions: the filter approach and the germ approach, and we show that the two approaches yield isomorphic groupoids. Every inverse semigroup has a natural partial order, and a filter is a nonempty down-directed up-set with respect to this order. The filter approach to groupoid construction first appeared in [Len08], and was later simplified in [LMS13]. Work in this area is ongoing; see for instance, [Bic21, BC20, Cas20]. Every inverse semigroup acts on the filters of its subsemigroup of idempotents. The groupoid of germs associated to an inverse semigroup encodes this action. Paterson pioneered the germ approach in [Pat99] with the introduction of the universal groupoid of an inverse semigroup.
    [Show full text]
  • Relations on Semigroups
    International Journal for Research in Engineering Application & Management (IJREAM) ISSN : 2454-9150 Vol-04, Issue-09, Dec 2018 Relations on Semigroups 1D.D.Padma Priya, 2G.Shobhalatha, 3U.Nagireddy, 4R.Bhuvana Vijaya 1 Sr.Assistant Professor, Department of Mathematics, New Horizon College Of Engineering, Bangalore, India, Research scholar, Department of Mathematics, JNTUA- Anantapuram [email protected] 2Professor, Department of Mathematics, SKU-Anantapuram, India, [email protected] 3Assistant Professor, Rayalaseema University, Kurnool, India, [email protected] 4Associate Professor, Department of Mathematics, JNTUA- Anantapuram, India, [email protected] Abstract: Equivalence relations play a vital role in the study of quotient structures of different algebraic structures. Semigroups being one of the algebraic structures are sets with associative binary operation defined on them. Semigroup theory is one of such subject to determine and analyze equivalence relations in the sense that it could be easily understood. This paper contains the quotient structures of semigroups by extending equivalence relations as congruences. We define different types of relations on the semigroups and prove they are equivalence, partial order, congruence or weakly separative congruence relations. Keywords: Semigroup, binary relation, Equivalence and congruence relations. I. INTRODUCTION [1,2,3 and 4] Algebraic structures play a prominent role in mathematics with wide range of applications in science and engineering. A semigroup
    [Show full text]
  • Scott Spaces and the Dcpo Category
    SCOTT SPACES AND THE DCPO CATEGORY JORDAN BROWN Abstract. Directed-complete partial orders (dcpo’s) arise often in the study of λ-calculus. Here we investigate certain properties of dcpo’s and the Scott spaces they induce. We introduce a new construction which allows for the canonical extension of a partial order to a dcpo and give a proof that the dcpo introduced by Zhao, Xi, and Chen is well-filtered. Contents 1. Introduction 1 2. General Definitions and the Finite Case 2 3. Connectedness of Scott Spaces 5 4. The Categorical Structure of DCPO 6 5. Suprema and the Waybelow Relation 7 6. Hofmann-Mislove Theorem 9 7. Ordinal-Based DCPOs 11 8. Acknowledgments 13 References 13 1. Introduction Directed-complete partially ordered sets (dcpo’s) often arise in the study of λ-calculus. Namely, they are often used to construct models for λ theories. There are several versions of the λ-calculus, all of which attempt to describe the ‘computable’ functions. The first robust descriptions of λ-calculus appeared around the same time as the definition of Turing machines, and Turing’s paper introducing computing machines includes a proof that his computable functions are precisely the λ-definable ones [5] [8]. Though we do not address the λ-calculus directly here, an exposition of certain λ theories and the construction of Scott space models for them can be found in [1]. In these models, computable functions correspond to continuous functions with respect to the Scott topology. It is thus with an eye to the application of topological tools in the study of computability that we investigate the Scott topology.
    [Show full text]
  • Topological Duality and Lattice Expansions Part I: a Topological Construction of Canonical Extensions
    TOPOLOGICAL DUALITY AND LATTICE EXPANSIONS PART I: A TOPOLOGICAL CONSTRUCTION OF CANONICAL EXTENSIONS M. ANDREW MOSHIER AND PETER JIPSEN 1. INTRODUCTION The two main objectives of this paper are (a) to prove topological duality theorems for semilattices and bounded lattices, and (b) to show that the topological duality from (a) provides a construction of canonical extensions of bounded lattices. The paper is first of two parts. The main objective of the sequel is to establish a characterization of lattice expansions, i.e., lattices with additional operations, in the topological setting built in this paper. Regarding objective (a), consider the following simple question: Is there a subcategory of Top that is dually equivalent to Lat? Here, Top is the category of topological spaces and continuous maps and Lat is the category of bounded lattices and lattice homomorphisms. To date, the question has been answered positively either by specializing Lat or by generalizing Top. The earliest examples are of the former sort. Tarski [Tar29] (treated in English, e.g., in [BD74]) showed that every complete atomic Boolean lattice is represented by a powerset. Taking some historical license, we can say this result shows that the category of complete atomic Boolean lattices with complete lat- tice homomorphisms is dually equivalent to the category of discrete topological spaces. Birkhoff [Bir37] showed that every finite distributive lattice is represented by the lower sets of a finite partial order. Again, we can now say that this shows that the category of finite distributive lattices is dually equivalent to the category of finite T0 spaces and con- tinuous maps.
    [Show full text]
  • A Guide to Topology
    i i “topguide” — 2010/12/8 — 17:36 — page i — #1 i i A Guide to Topology i i i i i i “topguide” — 2011/2/15 — 16:42 — page ii — #2 i i c 2009 by The Mathematical Association of America (Incorporated) Library of Congress Catalog Card Number 2009929077 Print Edition ISBN 978-0-88385-346-7 Electronic Edition ISBN 978-0-88385-917-9 Printed in the United States of America Current Printing (last digit): 10987654321 i i i i i i “topguide” — 2010/12/8 — 17:36 — page iii — #3 i i The Dolciani Mathematical Expositions NUMBER FORTY MAA Guides # 4 A Guide to Topology Steven G. Krantz Washington University, St. Louis ® Published and Distributed by The Mathematical Association of America i i i i i i “topguide” — 2010/12/8 — 17:36 — page iv — #4 i i DOLCIANI MATHEMATICAL EXPOSITIONS Committee on Books Paul Zorn, Chair Dolciani Mathematical Expositions Editorial Board Underwood Dudley, Editor Jeremy S. Case Rosalie A. Dance Tevian Dray Patricia B. Humphrey Virginia E. Knight Mark A. Peterson Jonathan Rogness Thomas Q. Sibley Joe Alyn Stickles i i i i i i “topguide” — 2010/12/8 — 17:36 — page v — #5 i i The DOLCIANI MATHEMATICAL EXPOSITIONS series of the Mathematical Association of America was established through a generous gift to the Association from Mary P. Dolciani, Professor of Mathematics at Hunter College of the City Uni- versity of New York. In making the gift, Professor Dolciani, herself an exceptionally talented and successfulexpositor of mathematics, had the purpose of furthering the ideal of excellence in mathematical exposition.
    [Show full text]
  • Section 8.6 What Is a Partial Order?
    Announcements ICS 6B } Regrades for Quiz #3 and Homeworks #4 & Boolean Algebra & Logic 5 are due Today Lecture Notes for Summer Quarter, 2008 Michele Rousseau Set 8 – Ch. 8.6, 11.6 Lecture Set 8 - Chpts 8.6, 11.1 2 Today’s Lecture } Chapter 8 8.6, Chapter 11 11.1 ● Partial Orderings 8.6 Chapter 8: Section 8.6 ● Boolean Functions 11.1 Partial Orderings (Continued) Lecture Set 8 - Chpts 8.6, 11.1 3 What is a Partial Order? Some more defintions Let R be a relation on A. The R is a partial order iff R is: } If A,R is a poset and a,b are A, reflexive, antisymmetric, & transitive we say that: } A,R is called a partially ordered set or “poset” ● “a and b are comparable” if ab or ba } Notation: ◘ i.e. if a,bR and b,aR ● If A, R is a poset and a and b are 2 elements of A ● “a and b are incomparable” if neither ab nor ba such that a,bR, we write a b instead of aRb ◘ i.e if a,bR and b,aR } If two objects are always related in a poset it is called a total order, linear order or simple order. NOTE: it is not required that two things be related under a partial order. ● In this case A,R is called a chain. ● i.e if any two elements of A are comparable ● That’s the “partial” of it. ● So for all a,b A, it is true that a,bR or b,aR 5 Lecture Set 8 - Chpts 8.6, 11.1 6 1 Now onto more examples… More Examples Let Aa,b,c,d and let R be the relation Let A0,1,2,3 and on A represented by the diagraph Let R0,01,1, 2,0,2,2,2,33,3 The R is reflexive, but We draw the associated digraph: a b not antisymmetric a,c &c,a It is easy to check that R is 0 and not 1 c d transitive d,cc,a, but not d,a Refl.
    [Show full text]
  • [Math.NT] 1 Nov 2006
    ADJOINING IDENTITIES AND ZEROS TO SEMIGROUPS MELVYN B. NATHANSON Abstract. This note shows how iteration of the standard process of adjoining identities and zeros to semigroups gives rise naturally to the lexicographical ordering on the additive semigroups of n-tuples of nonnegative integers and n-tuples of integers. 1. Semigroups with identities and zeros A binary operation ∗ on a set S is associative if (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a,b,c ∈ S. A semigroup is a nonempty set with an associative binary operation ∗. The semigroup is abelian if a ∗ b = b ∗ a for all a,b ∈ S. The trivial semigroup S0 consists of a single element s0 such that s0 ∗ s0 = s0. Theorems about abstract semigroups are, in a sense, theorems about the pure process of multiplication. An element u in a semigroup S is an identity if u ∗ a = a ∗ u = a for all a ∈ S. If u and u′ are identities in a semigroup, then u = u ∗ u′ = u′ and so a semigroup contains at most one identity. A semigroup with an identity is called a monoid. If S is a semigroup that is not a monoid, that is, if S does not contain an identity element, there is a simple process to adjoin an identity to S. Let u be an element not in S and let I(S,u)= S ∪{u}. We extend the binary operation ∗ from S to I(S,u) by defining u ∗ a = a ∗ u = a for all a ∈ S, and u ∗ u = u. Then I(S,u) is a monoid with identity u.
    [Show full text]
  • T0 Topological Spaces and T0 Posets in the Topos of M-Sets
    Theory and Applications of Categories, Vol. 33, No. 34, 2018, pp. 1059{1071. T0 TOPOLOGICAL SPACES AND T0 POSETS IN THE TOPOS OF M-SETS M.M. EBRAHIMI, M. MAHMOUDI, AND A.H. NEJAH Abstract. In this paper, we introduce the concept of a topological space in the topos M-Set of M-sets, for a monoid M. We do this by replacing the notion of open \subset" by open \subobject" in the definition of a topology. We prove that the resulting category has an open subobject classifier, which is the counterpart of the Sierpinski space in this topos. We also study the relation between the given notion of topology and the notion of a poset in this universe. In fact, the counterpart of the specialization pre-order is given for topological spaces in M-Set, and it is shown that, similar to the classic case, for a special kind of topological spaces in M-Set, namely T0 ones, it is a partial order. Furthermore, we obtain the universal T0 space, and give the adjunction between topological spaces and T0 posets, in M-Set. 1. Introduction Topoi are categories which behave like the category Set, of sets and functions between them. Naturally one tries to reconstruct the classical mathematics in such categories. The difference between classical mathematics and topos base mathematics is that the latter is in some sense constructive. In fact, the internal logic of a topos is intuitionistic, and so topoi provide a convenient set up for constructive mathematics. One of the most important features of constructive mathematics is in computer science and semantic of programing languages.
    [Show full text]
  • Data Monoids∗
    Data Monoids∗ Mikolaj Bojańczyk1 1 University of Warsaw Abstract We develop an algebraic theory for languages of data words. We prove that, under certain conditions, a language of data words is definable in first-order logic if and only if its syntactic monoid is aperiodic. 1998 ACM Subject Classification F.4.3 Formal Languages Keywords and phrases Monoid, Data Words, Nominal Set, First-Order Logic Digital Object Identifier 10.4230/LIPIcs.STACS.2011.105 1 Introduction This paper is an attempt to combine two fields. The first field is the algebraic theory of regular languages. In this theory, a regular lan- guage is represented by its syntactic monoid, which is a finite monoid. It turns out that many important properties of the language are reflected in the structure of its syntactic monoid. One particularly beautiful result is the Schützenberger-McNaughton-Papert theorem, which describes the expressive power of first-order logic. Let L ⊆ A∗ be a regular language. Then L is definable in first-order logic if and only if its syntactic monoid ML is aperiodic. For instance, the language “words where there exists a position with label a” is defined by the first-order logic formula (this example does not even use the order on positions <, which is also allowed in general) ∃x. a(x). The syntactic monoid of this language is isomorphic to {0, 1} with multiplication, where 0 corresponds to the words that satisfy the formula, and 1 to the words that do not. Clearly, this monoid does not contain any non-trivial group. There are many results similar to theorem above, each one providing a connection between seemingly unrelated concepts of logic and algebra, see e.g.
    [Show full text]
  • Limits Commutative Algebra May 11 2020 1. Direct Limits Definition 1
    Limits Commutative Algebra May 11 2020 1. Direct Limits Definition 1: A directed set I is a set with a partial order ≤ such that for every i; j 2 I there is k 2 I such that i ≤ k and j ≤ k. Let R be a ring. A directed system of R-modules indexed by I is a collection of R modules fMi j i 2 Ig with a R module homomorphisms µi;j : Mi ! Mj for each pair i; j 2 I where i ≤ j, such that (i) for any i 2 I, µi;i = IdMi and (ii) for any i ≤ j ≤ k in I, µi;j ◦ µj;k = µi;k. We shall denote a directed system by a tuple (Mi; µi;j). The direct limit of a directed system is defined using a universal property. It exists and is unique up to a unique isomorphism. Theorem 2 (Direct limits). Let fMi j i 2 Ig be a directed system of R modules then there exists an R module M with the following properties: (i) There are R module homomorphisms µi : Mi ! M for each i 2 I, satisfying µi = µj ◦ µi;j whenever i < j. (ii) If there is an R module N such that there are R module homomorphisms νi : Mi ! N for each i and νi = νj ◦µi;j whenever i < j; then there exists a unique R module homomorphism ν : M ! N, such that νi = ν ◦ µi. The module M is unique in the sense that if there is any other R module M 0 satisfying properties (i) and (ii) then there is a unique R module isomorphism µ0 : M ! M 0.
    [Show full text]
  • A “Three-Sentence Proof” of Hansson's Theorem
    Econ Theory Bull (2018) 6:111–114 https://doi.org/10.1007/s40505-017-0127-2 RESEARCH ARTICLE A “three-sentence proof” of Hansson’s theorem Henrik Petri1 Received: 18 July 2017 / Accepted: 28 August 2017 / Published online: 5 September 2017 © The Author(s) 2017. This article is an open access publication Abstract We provide a new proof of Hansson’s theorem: every preorder has a com- plete preorder extending it. The proof boils down to showing that the lexicographic order extends the Pareto order. Keywords Ordering extension theorem · Lexicographic order · Pareto order · Preferences JEL Classification C65 · D01 1 Introduction Two extensively studied binary relations in economics are the Pareto order and the lexicographic order. It is a well-known fact that the latter relation is an ordering exten- sion of the former. For instance, in Petri and Voorneveld (2016), an essential ingredient is Lemma 3.1, which roughly speaking requires the order under consideration to be an extension of the Pareto order. The main message of this short note is that some fundamental order extension theorems can be reduced to this basic fact. An advantage of the approach is that it seems less abstract than conventional proofs and hence may offer a pedagogical advantage in terms of exposition. Mandler (2015) gives an elegant proof of Spzilrajn’s theorem (1930) that stresses the importance of the lexicographic I thank two anonymous referees for helpful comments. Financial support by the Wallander–Hedelius Foundation under Grant P2014-0189:1 is gratefully acknowledged. B Henrik Petri [email protected] 1 Department of Finance, Stockholm School of Economics, Box 6501, 113 83 Stockholm, Sweden 123 112 H.
    [Show full text]