Physics-Department
Total Page:16
File Type:pdf, Size:1020Kb
PHYSICS -DEPARTMENT Improvement of a biokinetic model for cerium in humans by tracerkinetic studies Dissertation of Teresa Maria Keiser TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Fachbereich Strahlenphysik Improvement of a biokinetic model for cerium in humans by tracerkinetic studies Teresa Maria Keiser Vollständiger Abdruck der von der Fakultät für Physik der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr. Martin Zacharias Prüfer der Dissertation: 1. Hon.-Prof. Dr. Herwig G. Paretzke 2. Univ.-Prof. Dr. Thorsten Hugel Die Dissertation wurde am 27.04.2011 bei der Technischen Universität München eingereicht und durch die Fakultät für Physik am 25.05.2011 angenommen. Table of contents Abstract _____________________________________________________________ 1 List of acronyms, symbols and abbreviations________________________________ 2 1 Introduction ______________________________________________________ 5 2 Theoretical considerations __________________________________________ 7 2.1 The element cerium _________________________________________________ 7 2.1.1 Natural isotopes of cerium__________________________________________________7 2.1.2 Applications of cerium salts in medicine______________________________________10 2.1.3 Radioactive isotopes of cerium _____________________________________________11 2.2 Analytics of cerium _________________________________________________ 13 2.2.1 History of mass spectrometry ______________________________________________14 2.2.2 Thermal ionisation mass spectrometry (TIMS) _________________________________16 2.2.3 Isotope dilution technique for tracer concentration calculation_____________________18 2.3 Calculation of internal doses _________________________________________ 19 2.4 Current biokinetic models of cerium __________________________________ 25 2.5 Fractional absorption _______________________________________________ 30 2.6 First order kinetic compartment modelling _____________________________ 32 3 Materials and Methods ____________________________________________ 35 3.1 Collection of human biokinetic data ___________________________________ 35 3.1.1 Preparation of tracer solutions______________________________________________37 3.1.2 Implementation of volunteer tests ___________________________________________39 3.1.3 Test persons____________________________________________________________41 3.2 Measurement of Ce tracer concentration in biological samples_____________ 42 3.2.1 Mass spectrometric method ________________________________________________43 3.2.2 Sample preparation ______________________________________________________46 3.2.3 Isotope dilution technique for tracer concentration calculation_____________________48 3.3 Model development for data interpretation _____________________________ 50 3.3.1 Fractional absorption _____________________________________________________50 3.3.2 Approaches and software used for modelling in this work ________________________53 3.3.3 Model development process _______________________________________________55 3.4 Improved Dosimetry of cerium _______________________________________ 57 3.5 Errors and uncertainties ____________________________________________ 61 4 Results and discussions ____________________________________________ 63 4.1 Development and optimization of sensitive Ce analytics___________________ 63 ii 4.2 Sample measurements ______________________________________________ 71 4.2.1 Measurements in blood plasma samples ______________________________________72 4.2.2 Measurements in urine samples_____________________________________________76 4.2.3 Comparison of the own newly measured human data with model predictions of the ICRP and of Taylor and Leggett ________________________________________________________79 4.3 Fractional absorption without compartment modelling ___________________ 83 4.4 Tracer kinetics and the corresponding development of a new compartmental model _________________________________________________________________ 86 4.5 Proposed new model ________________________________________________ 94 4.6 Implications of the new model for dosimetry___________________________ 102 4.6.1 Dosimetry with the old ICRP model ________________________________________102 4.6.2 Dose coefficients of 144 Ce of the new cerium biokinetic model ___________________108 5 Conclusions ____________________________________________________ 114 Bibliography________________________________________________________ 115 Appendix __________________________________________________________ 121 Acknowledgments ___________________________________________________ 135 iii Abstract Abstract The calculation of internal doses from incorporated radionuclides depends critically on the biokinetic behaviour of the substances. Internal radiation dosimetry relies on biokinetic models, which link exposure and dose, because internal dose cannot be measured directly in exposed persons. The data for the biokinetic model should preferably be derived from experimental investigations on humans. However, far a number of radiological important elements there are still inconsistencies in the current knowledge of the biokinetic behaviour and thus in dose estimates. Therefore, there is a persisting need for further examination of biokinetic parameters of incorporated radionuclides. The purpose of the present work is to improve current knowledge about the element cerium. The structure and parameters of the current cerium model presented from the International Commission on Radiological Protection (ICRP) have been estimated from animal data. In ICRP 30 (ICRP, 1979) only one case of human data is reported, but of accidental inhalation (Sill et al., 1969). In this work, for the first time data on cerium metabolism, especially fractional absorption, retention in the body and excretion, are obtained directly from humans by the use of enriched stable cerium isotopes as tracers. The use of stable tracer instead of radionuclides represents an ethically justifiable method. For analysis purpose, thermal ionization mass spectrometry (TIMS) method has been developed for being able to simultaneously detect different cerium isotopes in biological samples (i.e. blood and urine) at very low concentrations. Twelve adult volunteers (7 female, age range 21-62 years; 5 male, age range 29-54 years) who did not have chronic illness such as diabetes, heart disease, or gastrointestinal disorders participated in the study. Blood plasma and urine data from double tracer studies with up to 30 d duration serve as input for developing a new first order kinetic compartment model. The data were compared with the current ICRP cerium model. The model was further on validated and improved by establishing a more physiologic logical model. The new measured data show a series of deviations from the current model predictions. A satisfactory exact conformation of the data is only possible after modification of the model. Ingestion dose coefficients for 144 Ce were evaluated with the new proposed model. The resulting dose coefficients differ significantly from the old ICRP estimated values about 70 %. 1 List of acronyms, symbols and abbreviations List of acronyms, symbols and abbreviations This list comprises only expressions used commonly in different sections of the work. Expressions specific to single sections or equations are explained at their respective first occurrence. AFi(T ←S) absorbed fraction AIC Akaike information criterion and the ASj Cumulative activity of radionuclide j in source organ S aw atomic weight APCI Atmospheric Pressure Chemical Ionisation BIC Bayesian information criterion CE capillary electrophoresis CI Chemical Ionisation DT Absorbed dose to a target region T DT,R Absorbed dose averaged over tissue or organ T, due to radiation R DL Detection limit E Effective dose Ei energy of radiation i per transformation EI Electron Impact EM electron multiplier EOID electro-optical ion detector ESI Electro spray Ionisation ET Extrathoracic tissues FAB Fast Atom Bombardment FCC Fluid catalytic cracking f1, f A Fractional absorption FD Field Desorption 2 List of acronyms, symbols and abbreviations FI Field Ionisation GC gas chromatography GI tract gastrointestinal tract GUM ISO-Guide to the expression of uncertainties in measurement HAT Human alimentary tract (model) HAECs Human aortic endothelial cells HMGU Helmholtz Zentrum München, German Research Centre of Environmental Health HPLC high pressure liquid chromatography HT Equivalent dose to a target region T i.v. intravenous ID(-MS) Isotope dilution (mass spectrometry) ICP-MS Inductively-coupled plasma mass spectrometry ICP-OES inductively coupled plasma optical emission spectrometry ICRP International Commission on Radiological Protection ISO International Organization for Standardization IUPAC International Union of Pure and Applied Chemistry k Boltzman constant ki→j Transfer rate (of a substance) from a model compartment i to compartment j MALDI Matrix assisted laser desorption Ionisation MIRD Medical Internal Radiation Dose MT mass of target organ T N+ Number of positive ions N0 Number of neutral atoms ORNL Oak Ridge National Laboratory p.o. per-oral (used to denote tracer administration by ingestion) PNA Proton nuclear activation (analysis) S spike SAF specific absorbed fraction 3 SEE (T←S) Specific effective energy absorbed in a target region T from a nuclear transformation in a source region S TIMS Thermal